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ABSTRACT

To improve how neural networks function it is crucial to understand their learning
process. The information bottleneck theory of deep learning proposes that neural
networks achieve good generalization by compressing their representations to dis-
regard information that is not relevant to the task. However, empirical evidence
for this theory is conflicting, as compression was only observed when networks
used saturating activation functions. In contrast, networks with non-saturating
activation functions achieved comparable levels of task performance but did not
show compression. In this paper we developed more robust mutual information
estimation techniques, that adapt to hidden activity of neural networks and pro-
duce more sensitive measurements of activations from all functions, especially
unbounded functions. Using these adaptive estimation techniques, we explored
compression in networks with a range of different activation functions. With two
improved methods of estimation, firstly, we show that saturation of the activation
function is not required for compression, and the amount of compression varies
between different activation functions. We also find that there is a large amount
of variation in compression between different network initializations. Secondary,
we see that L2 regularization leads to significantly increased compression, while
preventing overfitting. Finally, we show that only compression of the last layer is
positively correlated with generalization.

1 INTRODUCTION

Although deep learning (reviewed by Schmidhuber (2015)) has produced astonishing advances in
machine learning (Silver et al., 2017), a rigorous statistical explanation for the outstanding perfor-
mance of deep neural networks (DNNs) is still to be found.

According to the information bottleneck (IB) theory of deep learning (Tishby & Zaslavsky, 2015;
Shwartz-Ziv & Tishby, 2017) the ability of DNNs to generalize can be seen as a type of repre-
sentation compression. The theory proposes that DNNs use compression to eliminate noisy and
task-irrelevant information from the input, while retaining information about the relevant segments
(Chechik & Tishby, 2003). The information bottleneck method (Tishby et al., 2000) quantifies the
relevance of information by considering an intermediate representation T between the original sig-
nal X and the salient data Y . T is the most relevant representation of X , and is said to be an
information bottleneck, when it maximally compresses the input, retaining only the most relevant
information, while maximizing the information it shares with the target variable Y . Formally, the
information bottleneck minimizes the Lagrangian:

L[p(t̃|x)] = I(T,X)− βI(T, Y ) (1)

where I(·) is mutual information. In this Lagrangian β is the Lagrange multiplier, determining the
trade-off between compression and retention of information about the target. In the context of deep
learning, T is a layer’s hidden activity represented as a single variable, X is a data set and Y is the set

∗With gratitude to Tilo Burghardt, Rui Ponte Costa, Carl Henrik Ek, Galina Malisheva and Daniil Malkin
for their valuable contributions to this research.

1



Published as a conference paper at ICLR 2019

of labels. Compression for a given layer is signified by a decrease in I(T,X) value, while I(T, Y )
is increasing during training. Fitting behaviour refers to both values increasing.

Shwartz-Ziv & Tishby (2017) visualized the dynamic of training a neural network by plotting the
values of I(T,X) and I(T, Y ) against each other. This mapping was named the information plane.
According to IB theory the learning trajectory should move the layer values to the top left of this
plane. In fact what was observed was that a network with tanh activation function had two distinct
phases: fitting and compression. The paper and the associated talks1 show that the compression
phase leads to layers stabilizing on the IB bound. When this study was replicated by Saxe et al.
(2018) with networks using ReLU (Nair & Hinton, 2010) activation function instead of tanh, the
compression phase did not happen, and the information planes only showed fitting throughout the
whole training process. This behaviour required more detailed study, as a constant increase in mutual
information between the network and its input implies increasing memorization, an undesired trait
that is linked to overfitting and poor generalization (Morcos et al., 2018).

Measuring differential mutual information in DNNs is an ill-defined task, as the training process is
deterministic (Saxe et al., 2018). Mutual information of hidden activity T with input X is:

I(T,X) = H(T )−H(T |X) (2)

If we consider the hidden activity variable T to be deterministic then entropy is:

H(T ) = −
NX

i=1

pi(t) log pi(t) (3)

However, if T is continuous then the entropy formula is:

H(T ) = −
Z
pt(t) log pt(t)dt (4)

In the case of deterministic DNNs, hidden activity T is a continuous variable and p(T |X) is dis-
tributed as the delta function. For the delta function:

H(T |X) = −
Z
pt(t) log pt(t)dt = −∞ (5)

Thus, the true mutual information value I(T,X) is in fact infinite. However, to observe the dynamics
of training in terms of mutual information, finite values are needed. The simplest way to avoid trivial
infinite mutual information values, is to add noise to hidden activity.

Two ways of adding noise have been explored previously by Shwartz-Ziv & Tishby (2017) and Saxe
et al. (2018). One way is to add noise Z directly to T and get a noisy variable T̂ = T + Z. Then
H(T |X) = H(Z) and mutual information is I(T̂ ,X) = H(T̂ )+H(Z). When the additive noise is
Gaussian, the mutual information can be approximated using kernel density estimation (KDE), with
an assumption that the noisy variable is distributed as a Gaussian mixture (Kolchinsky & Tracey,
2017). The second way to add noise is to discretize the continuous variables into bins. To estimate
mutual information, Shwartz-Ziv & Tishby (2017) and Saxe et al. (2018) primarily relied on binning
hidden activity. The noise comes embedded with the discretization that approximates the probability
density function of a random variable. In context of neural networks, adding noise can be done by
binning hidden activity and approximating H(T ) as a discrete variable. In this case H(T |X) = 0
since the mapping is deterministic and I(T,X) = H(T ).

Generally, when considering mutual information in DNNs, the analyzed values are technically the
result of the estimation process and, therefore, are highly sensitive to it. For this reason it is vital
to maintain consistency when estimating mutual information. The problem is not as acute when
working with DNNs implemented with saturating activation functions, since all hidden activity is
bounded. However, with non-saturating functions, and the resulting unbounded hidden activity, the
level of noise brought by the estimation procedure has to be proportional and consistent, adapting to
the state of every layer of the network at a particular epoch.

In the next section adaptive estimation schemes are presented, both for the binning and KDE esti-
mators. It is shown that for networks with unbounded activation functions in their hidden layers,

1Available at: https://youtu.be/FSfN2K3tnJU and https://youtu.be/bLqJHjXihK8
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the estimates of information change drastically. Moreover, the adaptive estimators are better able
to evaluate different activation functions in a way that allows them to be compared. This approach
shows considerable variation in compression for different activation functions. It also shows that
L2 regularization leads to more compression and clusters all layers to the same value of mutual
information. When compression in hidden layers is quantified with a compression metric and com-
pared with generalization, no significant correlation is observed. However, compression of the last
softmax layer is correlated with generalization.

1.1 METHODS

In this paper we used a fully connected network consisting of 5 hidden layers with 10-7-5-4-3 units,
similar to Shwartz-Ziv & Tishby (2017) and some of the networks described in Saxe et al. (2018).
ADAM (Kingma & Ba, 2014) optimizer was used with cross-entropy error function. We trained the
network with a binary classification task produced by Shwartz-Ziv & Tishby (2017) for consistency
with previous papers. Inputs were 12-bit binary vectors mapped deterministically to the 1-bit binary
output, with the categories equally balanced (see Shwartz-Ziv & Tishby (2017) for details). Weight
initialization was done using random truncated Gaussian initialization from Glorot & Bengio (2010),
with 50 instances of this initialization procedure for every network configuration used. Based on the
observed data, even 10 initializations provide a clear picture of the average network behaviour, but
for the purpose of consistency with previous studies, we used 50 initializations. 80% of the dataset
was used for training, using batches of 512 samples. During the training process, hidden activity for
different epochs was saved. The calculation of mutual information was done using the saved hidden
activity, after training has been completed; the two processes did not interfere with one another.

2 MUTUAL INFORMATION ESTIMATION

The observed dynamics of a neural network’s training on the information plane depends strongly on
the estimation procedure. Estimating mutual information at different epochs and layers presents a
problem as these variables are inherently different from one another. Using more adaptive frame-
works makes it possible to choose estimator parameters that would produce comparable estimate
values.

2.1 ENTROPY-BASED BINNING

Binning networks with saturating activation functions is straightforward, since the saturation points
define the range of the binning. With non-saturating activation functions a range of activation values
must be specified. In Saxe et al. (2018) for networks with ReLU units in their hidden layer, all hidden
activity was binned using a single range, going from zero to m, where m is the maximum value any
ReLU unit has achieved throughout the training. The argument behind this choice of binning range
is that the whole space explored by the ReLU function must be included in the binning process.

This approach is inherently limited, since a network at every epoch is different. If the binning range
is determined by picking a maximum value across all epochs and all layers, then the information
plane values estimated for a given epoch and a given layer depend on factors that are unrelated to
their own properties. In fact, the behaviour of the activation values is markedly different in different
layers; the maximum values can differ by as much as two orders of magnitude in different layers and
epochs (Figure 1). Using a single maximum value when binning the data usually means that some
layers during some epochs will have all of their values binned together in the lowest bin.

To avoid this we use an entropy-based binning strategy (Kohavi & Sahami, 1996) to choose bin
boundaries: the bin boundaries are chosen so that each bin contains the same number of unique
observed activation levels in a given layer and epoch. When there are repeated activation levels, as
can happen for any activation function that is not unbounded, these are ignored when calculating
the boundaries. This often occurs near the saturation regions where the activation levels are indis-
tinguishable even as float64 values. However, we calculate the entropy for the whole layer rather
than for individual units; in other words, the vector of activation levels of the units in the layer is
converted to a vector of bin indices and the entropy is calculated for these vectors. This binning
procedure will be referred to as entropy-based adaptive binning (EBAB).
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