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ABSTRACT

To improve how neural networks function it is crucial to understand their learning
process. The information bottleneck theory of deep learning proposes that neural
networks achieve good generalization by compressing their representations to dis-
regard information that is not relevant to the task. However, empirical evidence
for this theory is conflicting, as compression was only observed when networks
used saturating activation functions. In contrast, networks with non-saturating
activation functions achieved comparable levels of task performance but did not
show compression. In this paper we developed more robust mutual information
estimation techniques, that adapt to hidden activity of neural networks and pro-
duce more sensitive measurements of activations from all functions, especially
unbounded functions. Using these adaptive estimation techniques, we explored
compression in networks with a range of different activation functions. With two
improved methods of estimation, firstly, we show that saturation of the activation
function is not required for compression, and the amount of compression varies
between different activation functions. We also find that there is a large amount
of variation in compression between different network initializations. Secondary,
we see that L2 regularization leads to significantly increased compression, while
preventing overfitting. Finally, we show that only compression of the last layer is
positively correlated with generalization.

1 INTRODUCTION

Although deep learning (reviewed by |Schmidhuber| (2015)) has produced astonishing advances in
machine learning (Silver et al., |2017), a rigorous statistical explanation for the outstanding perfor-
mance of deep neural networks (DNNs) is still to be found.

According to the information bottleneck (IB) theory of deep learning (Tishby & Zaslavsky, 2015}
Shwartz-Ziv & Tishby, 2017) the ability of DNNs to generalize can be seen as a type of repre-
sentation compression. The theory proposes that DNNs use compression to eliminate noisy and
task-irrelevant information from the input, while retaining information about the relevant segments
(Chechik & Tishby, 2003). The information bottleneck method (Tishby et al.l [2000) quantifies the
relevance of information by considering an intermediate representation 7" between the original sig-
nal X and the salient data Y. 7T is the most relevant representation of X, and is said to be an
information bottleneck, when it maximally compresses the input, retaining only the most relevant
information, while maximizing the information it shares with the target variable Y. Formally, the
information bottleneck minimizes the Lagrangian:

Llp(tlz)] = I(T, X) = BI(T,Y) (D

where I(+) is mutual information. In this Lagrangian £ is the Lagrange multiplier, determining the
trade-off between compression and retention of information about the target. In the context of deep
learning, T’ is a layer’s hidden activity represented as a single variable, X is a data set and Y is the set
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of labels. Compression for a given layer is signified by a decrease in I(T, X) value, while I(7,Y)
is increasing during training. Fitting behaviour refers to both values increasing.

Shwartz-Ziv & Tishby| (2017) visualized the dynamic of training a neural network by plotting the
values of I(T, X) and I(T,Y’) against each other. This mapping was named the information plane.
According to IB theory the learning trajectory should move the layer values to the top left of this
plane. In fact what was observed was that a network with fanh activation function had two distinct
phases: fitting and compression. The paper and the associated talksp_-] show that the compression
phase leads to layers stabilizing on the IB bound. When this study was replicated by Saxe et al.
(2018) with networks using ReLU (Nair & Hinton| 2010) activation function instead of tanh, the
compression phase did not happen, and the information planes only showed fitting throughout the
whole training process. This behaviour required more detailed study, as a constant increase in mutual
information between the network and its input implies increasing memorization, an undesired trait
that is linked to overfitting and poor generalization (Morcos et al.,[2018)).

Measuring differential mutual information in DNNSs is an ill-defined task, as the training process is
deterministic (Saxe et al.,2018]). Mutual information of hidden activity 7" with input X is:

(T, X) = H(T) — H(T|X) 2

If we consider the hidden activity variable 7" to be deterministic then entropy is:

N
H(T) == pi(t)logpi(t) 3)
i=1
However, if T' is continuous then the entropy formula is:

H(T) = - / pu(t) log e (1)t @

In the case of deterministic DNNs, hidden activity T is a continuous variable and p(7T'|X) is dis-
tributed as the delta function. For the delta function:

HT) = - [ pit)logpi(t)dt = oo )

Thus, the true mutual information value (7', X) is in fact infinite. However, to observe the dynamics
of training in terms of mutual information, finite values are needed. The simplest way to avoid trivial
infinite mutual information values, is to add noise to hidden activity.

Two ways of adding noise have been explored previously by |Shwartz-Ziv & Tishby|(2017) and|Saxe
et al.| (2018). One way is to add noise Z directly to 7" and get a noisy variable T =T + Z. Then
H(T|X) = H(Z) and mutual information is I(7', X) = H(T')+ H(Z). When the additive noise is
Gaussian, the mutual information can be approximated using kernel density estimation (KDE), with
an assumption that the noisy variable is distributed as a Gaussian mixture (Kolchinsky & ‘Tracey,
2017). The second way to add noise is to discretize the continuous variables into bins. To estimate
mutual information, Shwartz-Ziv & Tishby|(2017) and |Saxe et al.|(2018)) primarily relied on binning
hidden activity. The noise comes embedded with the discretization that approximates the probability
density function of a random variable. In context of neural networks, adding noise can be done by
binning hidden activity and approximating H(T') as a discrete variable. In this case H(T|X) = 0
since the mapping is deterministic and I (T, X) = H(T).

Generally, when considering mutual information in DNNGs, the analyzed values are technically the
result of the estimation process and, therefore, are highly sensitive to it. For this reason it is vital
to maintain consistency when estimating mutual information. The problem is not as acute when
working with DNNs implemented with saturating activation functions, since all hidden activity is
bounded. However, with non-saturating functions, and the resulting unbounded hidden activity, the
level of noise brought by the estimation procedure has to be proportional and consistent, adapting to
the state of every layer of the network at a particular epoch.

In the next section adaptive estimation schemes are presented, both for the binning and KDE esti-
mators. It is shown that for networks with unbounded activation functions in their hidden layers,

!Available at: https://youtu.be/FSEN2K3tnJU and https://youtu.be/bLgJHjXihK8
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the estimates of information change drastically. Moreover, the adaptive estimators are better able
to evaluate different activation functions in a way that allows them to be compared. This approach
shows considerable variation in compression for different activation functions. It also shows that
L2 regularization leads to more compression and clusters all layers to the same value of mutual
information. When compression in hidden layers is quantified with a compression metric and com-
pared with generalization, no significant correlation is observed. However, compression of the last
softmax layer is correlated with generalization.

1.1 METHODS

In this paper we used a fully connected network consisting of 5 hidden layers with 10-7-5-4-3 units,
similar to [Shwartz-Ziv & Tishby| (2017) and some of the networks described in [Saxe et al.| (2018).
ADAM (Kingma & Bal [2014) optimizer was used with cross-entropy error function. We trained the
network with a binary classification task produced by Shwartz-Ziv & Tishby|(2017) for consistency
with previous papers. Inputs were 12-bit binary vectors mapped deterministically to the 1-bit binary
output, with the categories equally balanced (see [Shwartz-Ziv & Tishby|(2017) for details). Weight
initialization was done using random truncated Gaussian initialization from|Glorot & Bengio|(2010),
with 50 instances of this initialization procedure for every network configuration used. Based on the
observed data, even 10 initializations provide a clear picture of the average network behaviour, but
for the purpose of consistency with previous studies, we used 50 initializations. 80% of the dataset
was used for training, using batches of 512 samples. During the training process, hidden activity for
different epochs was saved. The calculation of mutual information was done using the saved hidden
activity, after training has been completed; the two processes did not interfere with one another.

2 MUTUAL INFORMATION ESTIMATION

The observed dynamics of a neural network’s training on the information plane depends strongly on
the estimation procedure. Estimating mutual information at different epochs and layers presents a
problem as these variables are inherently different from one another. Using more adaptive frame-
works makes it possible to choose estimator parameters that would produce comparable estimate
values.

2.1 ENTROPY-BASED BINNING

Binning networks with saturating activation functions is straightforward, since the saturation points
define the range of the binning. With non-saturating activation functions a range of activation values
must be specified. In|[Saxe et al.|(2018)) for networks with ReL.U units in their hidden layer, all hidden
activity was binned using a single range, going from zero to m, where m is the maximum value any
ReLU unit has achieved throughout the training. The argument behind this choice of binning range
is that the whole space explored by the ReL.U function must be included in the binning process.

This approach is inherently limited, since a network at every epoch is different. If the binning range
is determined by picking a maximum value across all epochs and all layers, then the information
plane values estimated for a given epoch and a given layer depend on factors that are unrelated to
their own properties. In fact, the behaviour of the activation values is markedly different in different
layers; the maximum values can differ by as much as two orders of magnitude in different layers and
epochs (Figure [T). Using a single maximum value when binning the data usually means that some
layers during some epochs will have all of their values binned together in the lowest bin.

To avoid this we use an entropy-based binning strategy (Kohavi & Sahamil, [1996) to choose bin
boundaries: the bin boundaries are chosen so that each bin contains the same number of unique
observed activation levels in a given layer and epoch. When there are repeated activation levels, as
can happen for any activation function that is not unbounded, these are ignored when calculating
the boundaries. This often occurs near the saturation regions where the activation levels are indis-
tinguishable even as float64 values. However, we calculate the entropy for the whole layer rather
than for individual units; in other words, the vector of activation levels of the units in the layer is
converted to a vector of bin indices and the entropy is calculated for these vectors. This binning
procedure will be referred to as entropy-based adaptive binning (EBAB).
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Figure 1: The graphs show the discrepancy of maximum activation values for a ReLU network. On
the left is the maximum value across the whole network, on the right we also show the breakdown
by layers. Here the last ReLU layer dominates the maximum values of the whole network. The
red area represents the source of inaccuracy brought by binning with non-adaptive range. Similarly,
yellow area leads to inaccuracy when all layers are binned using one maximum value.
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Figure 2: Entropy-based binning allows making accurate mutual information estimates for any dis-
tribution of hidden activity, without adjusting the number of bins to the magnitude of the hidden
activity.

In this approach there is no need to define a range as part of the binning procedure. It has other
advantages. Firstly, the definition of the bins depends on the distribution of the observed activation
values, not on the shape of the activation functions. This means this binning strategy applies in the
same way to all activation functions, allowing different networks with different activation functions
to be compared. Secondly, a fixed width binning approach can be insensitive to the behaviour of the
layer because much of the activity occurs in a single bin. An example of binning where a very small
subset of hidden activity achieves high values is shown in Figure [2] as such, most of the hidden
activity falls into the first bin. With entropy-based binning, bin edges are more densely distributed
closer to the lower bound of binning range, providing a better spread.

The difference in mutual information estimates produced with an adaptive binning procedure is
significant when visualized on the information plane. Non-adaptive binning consistently underesti-
mates compression. Information planes of the same network in Figure [3|using ReLU analyzed with
different estimators show how non-adaptive binning consistently underestimates compression.
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Figure 3: One network initialization visualized of the information plane using two different binning
estimators. Each line on the information plane represents a single network layer, with colour scheme
indicating the epoch during training. Leftmost layer is the output layers, rightmost layer is the closest
to the data.

2.2 KERNEL DENSITY ESTIMATION

Saxe et al.| (2018) used non-parametric KDE estimator outlined by [Kolchinsky & Tracey| (2017)
to estimate mutual information, as well as binning. This method of estimation directly adds small
Gaussian noise to the data to produce estimates that are not infinite.

The vast variation of the level of activation values (Figure [1)) makes it inappropriate to use a fixed
noise level. Due to the difference in activation values, noise added to layers with smaller activation
values produces a different effect, as the noise of the same magnitude, added to the largest activa-
tion. Hence, KDE estimation with a fixed level of noise produces inconsistent estimations. Here the
noise variable o2 was adapted for every layer of every epoch. To implement this we chose a constant
reference rate of noise of 03 = 1- 1073, and then for a given layer o2 was calculated by scaling o3
by the maximum value of the hidden activity in that layer for every epoch. With this estimation ad-
justment, each layer at every epoch received noise of different magnitude, but of similar proportion.
This estimation procedure will be referred to as adaptive KDE (aKDE).
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(a) Non-adaptive KDE. (b) Adaptive KDE.
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Figure 4: Information planes for the same network as in Figure produced with non-adaptive KDE
and the adaptive version. (a) Hidden layers show no compression, slight compression visible in the
leftmost output layer. (b) Two-penultimate hidden layers undergo compression, as well as the output
layer.

Figure 4| demonstrates that scaling the noise variance 2 in unison with the magnitude of the acti-

vation values produces estimates that are very similar to EBAB. Similarly, non-adaptive KDE re-
sembles binning with non-adaptive range and widths. The network initialization implemented with
ReLU in Figures [3| and [ exhibits compression when analyzed with EBAB and aKDE. In the next
section we look at ReLU networks with different initializations to see whether this compression
always happens.
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3 COMPRESSION IN DEEP NEURAL NETWORKS

After deriving adaptive estimation framework, we investigated the occurrence of compression in
networks with non-saturating activation functions. Network initializations showed a large variation
of compression behaviour. Figures [3|and ] showed a network with significant information compres-
sion. However, other network initializations can lead to different behaviour on the information plane.
Figure [5] shows different ways a network can evolve during training. Based on the observed varia-
tion of behaviour, it cannot be said that a network with ReLU always exhibits compression during
training, as in the case with the saturating tanh. Networks are capable to learn without compression.
However, it also cannot be said that using a non-saturating ReLLU prevents any compression. More-
over, unlike networks with zanh activation function, the compression phase can happen first, with or
without subsequent fitting phase.
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(b) No compression, only
fitting.
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(¢) No compression or fit-
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Figure 5: Plots produced with EBAB for the same network configuration using ReLU. The variation
of behaviour is caused solely by the stochasticity of the initialization. While the variation of be-
haviour of the leftmost output layer is modest, the hidden layers have vastly different trajectories on
the information planes. ReLU compression happens only in Figure (a) which is marked by an initial
leftward movement of two hidden layers. In Figure (b) some fitting is observed in hidden layers,
which is signified by a rightward movement. In Figure (c) hidden layers do not compress or fit to
data, the I(X,T') values are stationary for hidden layers.

Similarly to previous studies, we generated 50 networks with different random initializations for
every activation function to investigate the average behaviour. When one information plot averaged
from 50 network initializations is produced, fitting and compression mostly cancel out. On the
resulting information plot, the averaged network does not show strong fitting or compression, the
I(T, X) values are mostly stable (Figure |§[)
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(a) ReLLU. (b) Tanh.

Figure 6: The information plane averaged over 50 network initializations using ReLU activation
function in the hidden layers. For comparison Figure (b) shows an information plane of an averaged
network using saturating tanh activation function.

ReLU network averaged over 50 individual network initializations shows no distinct phases of fitting
or compression. To see if this behaviour on the information plane is simply the product of absence of
a saturating activation function, we have tested other non-saturating activation functions and show
information plots averaged over 50 initializations in Figure[7] Different unit types tested are absolute
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value, PReLU (He et al.| [2015), ELU (Clevert et al.l [2015)), softplus (Glorot et al., 2011)), centered
softplus, (Mishkin et al., 2017) and Swish (Ramachandran et al., 2018; Elfwing et al., |[2018]).
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(a) Absolute value. (b) PReLU. (c) ELU.
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(d) Softplus. (e) Centered softplus. (f) Swish.

Figure 7: Information planes of networks, using different non-saturating activation functions in the
hidden layers. However all networks used softmax function in the output layer. Therefore, the
shapes of the leftmost lines on all the information planes show less variation. For every activation
function 50 random initializations were trained and averaged mutual information values were used
for the information planes presented above.

The information planes demonstrate that finer properties of activation functions have an effect on
training dynamics on the information plane, as few functions look similar to each other. Even
though tanh has the strongest compression, ELU, Swish and centered softplus activation functions
also compress information, despite being non-saturating. This compression behaviour is marked by
a decrease in I (X, T) values for these activation functions in Figure

3.1 L2 REGULARIZATION AND COMPRESSION

We also considered a commonly used technique to increase testing accuracy: L2 regularization. It
spreads out the learning by preventing a subset of network activations from having very large values.
We implemented L2 regularization on all weights of hidden layers with a network using ReLU.

When we plotted the mutual information estimates on the information plane, L2 regularization in-
duced the network to compress information. Compression occurred in later stages of training, simi-
larly to networks using tanh, when networks usually go into an overfitting regime. When looking at
information planes averaged over 50 initializations, strong compression is visible. As seen in Figure
[l L2 regularization induces compression in networks with ReLU activation functions, that do not
show strong compression on their own. Therefore, compression of information about the input can
be a way for a network to avoid overfitting, since networks with L2 regularization increased their
test accuracy continuously, without going into an overfitting regime.

Moreover, L2 regularization clusters the mutual information of all layers in a single position on the
information planes. Thus it induces more compression in layers that are closer to the data (Figure
[](d)-(f). Even with the smallest penalty, compression is distinguishable on the information plane.
As the L2 penalty increases, layers are more attracted to a single point on the information plane.
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Figure 8: Information plots of a network with ReLU using L2 regularization with different penalties.

Information was averaged across multiple initializations. As the penalty increases, the layers get
pulled together more strongly.
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Figure 8: Plots (d)-(g) provide a detailed view of individual layer lines from plots (a)-(c), and are
shown on a different scale. For reference, input layer has number 1, output layer is number 7. Colors
represent the trajectory transformation that corresponds to an increase in L2 regularization penalty.

3.2 COMPRESSION AND GENERALIZATION

In order to analyze compression in a systematic manner, we have developed a simplistic quantitative
compression metric to assign a compression score to every network:

N
1
Score = ¥ ;(1 - lk,M/r}}Eag((Lk,i)) (6)

where L € RVY*M ig a matrix containing I(7, X) values of all layers and epochs, k enumerates the
layers in {1, ..., N}, E is the set of epoch indexes {1, ..., M}. The score ranges from zero to one,
with one meaning fully compressed information.

When we compared compression of individual network initializations with accuracy, higher rates of
compression did not show a significant correlation with generalization. However, the compression
that occurred in the last softmax layer showed significant correlation with accuracy. This is demon-
strated in Figure Dal We also looked at compression of 50 averaged network initializations with
different activation functions. The last layer was not taken into account, since it always uses saturat-
ing softmax function and is not relevant to comparison of compression in non-saturating activation
functions. Similarly to individual ReLU initializations, when compression was compared with the
average accuracy of networks, there was no significant correlation, as shown in Figure [9b]

These findings suggest that the information bottleneck is not implemented by the whole network,
and generalization can be achieved without compression in the hidden layers. However, the last
layer’s compression is correlated with generalization and compression there should be encouraged.
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Figure 9: Scatter plots of compression scores compared with accuracies.

4 DISCUSSION

In this paper we proposed adaptive approaches to estimating mutual information in the hidden lay-
ers of DNNs. These adaptive approaches allowed us to compare behaviour of different activation
functions and to observe compression in DNNs with non-saturating activation functions. However,
unlike saturating activation functions, compression is not always present and is sensitive to initializa-
tion. This may be due to the minimal size of the network architecture that was tested. Experiments
with larger convolutional neural networks could be used to explore this possibility.

Different non-saturating activation functions compress information at different rates. While satu-
ration plays a role in compression rates, we show that its absence does not imply absence of com-
pression. Even seemingly similar activation functions, such as softplus and centered softplus, gave
different compression scores. Compression does not always happen in later stages of training, but
can happen from initialization. Further work is needed to understand the other factors contributing
to compression.

We also found that DNNs implemented with L2 regularization strongly compress information, forc-
ing layers to forget information about the input. The clustering of mutual information to a single
point on the information plane has never been reported previously. This result could lay the ground
for further research to optimize the regularization to stabilize the layers on the information bottle-
neck bound to achieve better generalization (Achille & Soattol 2018)), as well as linking information
compression to memorization in neural networks (Zhang et al., [2016)).

There are a few limitations to the analysis presented here. Principally, for tractability, the networks
we explored were much smaller and more straightforward than many state of the art networks used
for practical applications. Furthermore, our methods for computing information, although adaptive
for any distribution of network activity, were not rigorously derived. Finally, our compression metric
is ad-hoc. However, overall we have three main observations: first, compression is not restricted to
saturating activation functions, second, L2 regularization induces compression, and third, general-
ization accuracy is positively correlated with the degree of compression only in the last layer and is
not significantly affected by compression of hidden layers.
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