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Abstract

We consider the setup of stochastic multi-armed
bandits in the case when reward distributions
are piecewise i.i.d. and bounded with unknown
changepoints. We focus on the case when
changes happen simultaneously on all arms,
and in stark contrast with the existing literature,
we target gap-dependent (as opposed to only
gap-independent) regret bounds involving the
magnitude of changes (∆chg

i,g ) and optimality-
gaps (∆opt

i,g ). Under a slightly stronger set of
assumptions, we show that as long as the com-
pounded delayed detection for each changepoint
is bounded there is no need for forced exploration
to actively detect changepoints. We introduce
two adaptations of UCB-strategies that employ
scan-statistics in order to actively detect the
changepoints, without knowing in advance the
changepoints and also the mean before and after
any change. Our first method UCBL-CPD does
not know the number of changepoints G or time
horizon T and achieves the first time-uniform
concentration bound for this setting using the
Laplace method of integration. The second
strategy ImpCPD makes use of the knowledge
of T to achieve the order optimal regret bound

of min
{
O(

K∑
i=1

G∑
g=1

log(T/H1,g)

∆opt
i,g

), O(
√
GT )

}
,

(where H1,g is the problem complexity) thereby
closing an important gap with respect to the
lower bound in a specific setting. Our theoretical
findings are supported by numerical experiments
on synthetic and real-life datasets.
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1. Introduction
In this paper, we consider the piecewise i.i.d multi-armed
bandit problem, an interesting variation of the stochastic
multi-armed bandit (SMAB) setting. The learning algorithm
is provided with a set of decisions (or arms) which belong
to the finite setA with individual arm indexed by i such that
i = 1, . . . ,K. The learning proceeds in an iterative fashion,
where in each time step t, the algorithm chooses an arm
i ∈ A and receives a stochastic reward that is drawn from a
distribution specific to the arm selected. There exist a finite
number of changepoints G such that the reward distribution
of all arms changes at those changepoints. G denotes the
finite set of changepoints indexed by g = 1,. . . ,G, and
tg denotes the time step when the changepoint g occurs.
At τg the learner detects tg with some delay. The reward
distributions of all arms are unknown to the learner. The
learner has the goal of maximizing the cumulative reward at
the end of the horizon T .

The piecewise i.i.d setting is extremely relevant to a lot of
practical areas such as recommender systems, industrial
manufacturing, and medical applications. In the health-
care domain, the non-stationary assumption is more realistic
than i.i.d. assumption, and thus progress in this direction is
important. An interesting use-case of this setting arises in
drug-testing for a cure against a resistant bacteria, or virus
such as AIDS. Here, the arms can be considered as various
treatments while the feedback can be considered as to how
the bacteria/virus reacts to the treatment administered. It is
common in this setting that the behavior of the bacteria/virus
changes after some time and thus its response to all the arms
also change simultaneously. Moreover, in the health-care
domain it is extremely risky to conduct additional uniform
exploration of actions to detect simultaneous abrupt changes
and relying only on the past history of interactions might
lead to reliable detection of changepoints and safer policies.

A key aspect of this setting that the previous approaches
have not fully utilized is that in the global changepoint setup
when gaps are large enough on each arm so that they can
be detected long before the next changepoint, no additional
forced exploration is required to actively detect change-
points (like CUSUM (Liu et al., 2017), M-UCB (Cao et al.,
2018)). But, this has to be done carefully as detecting a
changepoint at tg requires some delay (τg) and this might
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endanger the detection of the next changepoint. This prob-
lem of compounded delayed detection becomes trickier if
the successive changepoint gaps are not large enough and
if they are not well separated. To avoid these complexities,
past approaches have relied on just minimizing regret over
a short window (passive algorithms) or conduct additional
exploration regularly to detect changepoints and reset (ac-
tive algorithms).These also inherently lead to less powerful
and less informative worst case gap-independent bounds
that depend on optimality gaps implicitly by assuming that
gaps are evolving at a constant frequency, thus requiring the
knowledge ofG orT or both.

However, we can do better by utilizing three mild assump-
tions and reduce the regret incurred for forced explorations.
These are assumption on global changepoint (1), a different
separation of changepoint assumption (2) based on maxi-
mal delay, and a slightly stronger assumption (3) involving
minimum detectable gaps (∆(tg, δ)). All the previous al-
gorithms take some combination of these assumptions (see
Table 1). But these only partially solve our problems, as
specific care still needs to be taken by individual strategies
as we have to show for each of our proposed detection strate-
gies that their compounded delayed detection happens well
before the next changepoint sets in. This approach provides
the opportunity to study this interesting setting as an ex-
tension of SMAB. Hence, we can prove the gap-dependent
regret upper bound that consist of both the changepoint gaps
(∆chg

i,g ) and optimality gaps (∆opt
i,g ) for each changepoint

g ∈ G. Furthermore, now we will be able to give minimax
(see 2.4.3 in Bubeck & Cesa-Bianchi (2012)) regret bounds
that incorporates the Hardness factor H1,g (introduced in
Audibert et al. (2010), best-arm identification) which char-
acterizes how difficult is the environment and depends on
both ∆chg

i,g and ∆opt
i,g . Also, for this setting we will be need-

ing an additional hardness parameter H2,g which captures
the trade-off between optimality and changepoint gaps. We
conjecture that an order optimal regret upper bound in the
piecewise i.i.d setting of the order

min

{
O

(
G∑
g=1

K∑
i=1

H2,g log(T/(GH1,g))

∆opt
i,g

)
, O
(√

GT
)}

is attainable. Obtaining such optimal minimax bound for
SMAB was discussed in Audibert & Bubeck (2009), Auer
& Ortner (2010), Bubeck & Cesa-Bianchi (2012) and solved
in Lattimore (2016). We further extend the results to piece-
wise i.i.d algorithms which is non-trivial given the change-
point and optimality gaps have to be tackled independently.
Our contributions are mainly threefold: Algorithmic, Time-
Uniform bound, and Order-optimal Regret bound.

1. Algorithmic: We propose two actively adaptive up-
per confidence bound (UCB) algorithms, referred to as
UCBLaplace-Changepoint Detector (UCBL-CPD ) and Im-

Table 1. Comparison of Algorithms

Algorithm Type T G Assumptions
ImpCPD (ours) Active Y N 1, 2, 3
UCBL-CPD (ours) Active N N 1, 2, 3
CUSUM Active Y Y 1, 21, 3
M-UCB Active Y Y 1, 21, 3
EXP3.R Active Y N 3
DUCB Passive Y Y 1, 3
SWUCB Passive Y Y 1, 3
Lower Bound Oracle Y Y 1, 3

proved Changepoint Detector (ImpCPD ). Unlike CD-UCB,
M-UCB and CUSUM, UCBL-CPD and ImpCPD do not
conduct forced exploration to detect changepoints. They
divide the time into slices, and for each time slice, for every
arm they check the UCB, LCB mismatch based on past ob-
servations only to detect changepoints. While UCBL-CPD
checks for every such combination of time slices, ImpCPD
only checks at certain estimated points in time horizon, and
hence saves on computation time. Thus, controlling the
compounded detection delay for ImpCPD is trickier than
UCBL-CPD .

2. Time-uniform bound: The previous approaches
CDUCB, CUSUM uses the Chernoff-Hoeffding inequal-
ity and M-UCB uses McDiarmids inequality with union
bound to obtain the regret bound. DUCB and SWUCB uses
the peeling argument which results in slightly tighter con-
centration bound but both these techniques results in less
tight bounds than the Laplace method of integration used
for UCBL-CPD . Moreover, UCBL-CPD has time-uniform
bound as its confidence interval does not depend explicitly
on t as opposed to other methods. On the contrary, ImpCPD
which is not anytime and has access to T uses the usual
union bound with geometrically increasing phase length
(like peeling) is somewhat in between union and peeling
argument. Both these proofs are of independent interest
which can be used in other settings as well. A detailed com-
parison of union, peeling and Laplace bound can be found
in Discussion 2.

3. Regret bound: We prove the gap-dependent regret upper
bound that consist of both the changepoint gaps (∆chg

i,g )
and optimality gaps (∆opt

i,g ) for each changepoint g ∈ G,
i ∈ A in Theorem 1, and 2 (under assumptions 1, 2, and 3).
For the gap-independent result we show in the special case
when all the gaps are same such that for all i ∈ A, g ∈ G,
∆opt
i,g = ∆chg

i,g = ∆(tg, δ), H1,g = K(∆(tg, δ))
−2 and

H2,g = 1, UCBL-CPD and ImpCPD achieves
√
GT log T

and
√
GT respectively (Table 2, Corollary 1, and 2). Such a

setup when all the gaps scale atleast as Ω(
√

1/T ) is natural
in view of existing works like Audibert & Bubeck (2009),

1Requires a different separation of changepoint assumption.
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Table 2. Regret Bound of Algorithms

Algorithm Gap-
Dependent

Gap-
Independent

ImpCPD (ours) Theorem 2 O
(√

GT
)

UCBL-CPD
(ours)

Theorem 1 O
(√

GT log T
)

CUSUM N/A O
(√

GT log T
G

)
M-UCB N/A O

(√
GT log T

)
EXP3.R N/A O

(
G
√
T log T

)
DUCB N/A O

(√
GT log T

)
SWUCB N/A O

(√
GT log T

)
Lower Bound Theorem 3 Ω

(√
GT
)

Auer & Ortner (2010). We also prove a gap-dependent and
independent lower bound for an optimal oracle policy π∗ as
opposed to Garivier & Moulines (2011) which proves a gap-
independent lower bound for a policy π only when G = 2
(Theorem 3). Note, that an oracle policy π∗ has access to
the exact changepoints, where it is restarted with its past
history of interactions erased. We show that UCBL-CPD
and ImpCPD perform very well across diverse piecewise
i.i.d environments (Section 6, and Appendix N).

The rest of the paper is organized as follows. We first setup
the problem in Section 2. Then we define our problem
statement in Section 3, and in Section 4 we present the
changepoint detection algorithms. Section 5 contains our
main result, remarks and discussions. Section 6 contains
numerical simulations, Section 7 contains related works,
and we conclude in Section 8. The proofs are provided in
Appendices in the supplementary material. The supplemen-
tary material is provided in this link. A full updated version
of the paper is available in this link.

2. Preliminaries
We assume all rewards are bounded in [0, 1]. Ni,τg:τg+1−1

denotes the number of times arm i has been pulled between
τg to τg+1 − 1 timesteps for any sequence of increasing
(τg)g of integers. Also, we define µ̂i,τg :τg+1−1 as the empiri-
cal mean of the arm i between τg to τg+1− 1 timesteps. We
consider that on each arm i, the process generating the re-
ward is piecewise mean constant according to the sequence
(tg)g. That is, if µi,t denotes the mean reward of arm i at
time t, then µi,t has same value for all t ∈ ρg .

Definition 1. We define tg as,

tg = min{t > tg−1 : ∃i, µi,t−1 6= µi,t}

Assumption 1. (Global changepoint) We assume the
global changepoint setting, that is tg = t implies µit−1

6=
µit , for all i ∈ A.

Definition 2. Let the changepoint gap at tg for an arm

i ∈ A between the segments ρg and ρg+1 be denoted as,

∆chg
i,g = |µi,g − µi,g+1|.

Thus, at each changepoint we assume that the mean of all
the arms change. So our assumption is stricter than Liu
et al. (2017), Cao et al. (2018), Besson & Kaufmann (2019)
where at tg , µit of any arm may or may not change requiring
the forced exploration of all arms to detect changepoint. We
make a distinction between the finite set of all arms A and
Achgg , such that Achgg denotes only those arms i ∈ A whose
∆chg
i,g > 0 at the tg-th changepoint.

Now , we carefully setup our problem. First, we define
the minimum number of samples n(tg,∆, δ) required for
an arm i ∈ A so that a deviation of ∆ > 0 of µ̂i,g−1

(or µ̂i,g) from µi,g−1 (or µi,g) before and after the tg-th
changepoint can be controlled with (1− δ) probability. This
is shown in Lemma 1. We then define the notion of maximal
delay of a best policy π∗ in detecting a changepoint at tg
starting exactly from tg−1 (Lemma 2). Finally, we define the
detectable changepoint gap ∆(tg, δ) based on the maximal
delay of π∗ and n(tg,∆, δ).

Lemma 1. (Control of large deviations) For our detec-
tion strategy using estimated means, it is sufficient to
collect a minimum number of samples n(tg,∆, δ) =

d 1
2 log(

2(t−tg−1)2

δ )/∆2e for an arm i ∈ Achgg before or
after tg so that |µ̂i,g−1 − µi,g−1| ≤ ∆ or |µ̂i,g − µi,g| ≤ ∆
with (1− δ) probability and tg−1 < tg < t.

Proof 1. The proof of Lemma 1 is given in Appendix B.

Assumption 2. (Separation of Changepoints) We assume
that for every two consecutive segments ρg−1 and ρg,∀g =
1, 2, . . . , G− 1 all the three changepoints tg−1, tg and tg+1

satisfy the following condition,

tg+dπ∗ (tg−tg−1)≤ tg+η(tg+1 − tg)=ηtg+1 + (1− η)tg

where η ∈ (0, 1), and dπ∗(tg − tg−1) is the maximal delay
of a best detection strategy starting at tg−1.

Using Lemma 1 and Assumption 2 now we properly define
detectable changepoint gap ∆(tg, δ) to be such ∆(tg, δ) ≥√

log(2(x2/δ))/2x where x = tg +dπ∗(tg− tg−1)− tg−1.

Lemma 2. (Detection Delay) With the standard assumption

that at tg , ∆(tg, δ) scales atleast as Ω(
√

log t
t ) for K arms,

then to detect a deviation of ∆ ≥ ∆(tg, δ) with probability
(1− δ), there exists a best detection strategy starting at tg−1

that suffers a worst case maximum delay of,

dπ∗(tg − tg−1) ≤

(
C(t, δ, η)K log( t

2

δ )

2(∆(tg, δ))2

)
+Kδ

where, C(t, δ, η) ≤ η log(t/δ), and η ∈ (0, 1).

https://github.com/Subhojyoti/INRIA_Intern/blob/master/ICML2019Workshop/supplementary.pdf
https://arxiv.org/abs/1905.13159
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Figure 1. A 2-arm and 2 changepoint scenario

Definition 3. The changepoint gap ∆chg
i,g for an arm i ∈

Achgg , g ∈ G is a δ-optimal changepoint gap if, ∆chg
i,g ≥

∆(tg, δ).
Assumption 3. (Minimum gap) We assume that ∀g ∈ G
the changepoint gaps ∆chg

i,g ,∀i ∈ A are δ-optimal gaps.

Discussion 1. Thus, Assumption 2 makes sure that tg +
dπ∗(tg − tg−1) stays away from tg+1. This ensures that
when restarting the detection strategy from tg + dπ∗(tg −
tg−1), the detection of tg+1 will not be too much endan-
gered. Moreover, all the gaps ∆chg

i,g , i ∈ Achgg ,∀g ∈ G
are δ-optimal changepoint gaps following Assumption 3.
A δ-optimal changepoint gap requires a minimum sam-
ple of n(tg,∆, δ) to ensure that ∆ ≥ ∆(tg, δ) deviation
from the mean occur with (1− δ) probability (Lemma 1).
A reasonable detection strategy π has its maximal delay
dπ(tg − τg−1) ≥ dπ∗(tg − tg−1) as it only has observation
to detect tg from τg−1 and not from tg−1 (unlike π∗). It
tries to minimize dπ(tg − τg−1) in detecting tg such that
dπ(tg − τg−1) ≤ (1 + β)dπ∗(tg − tg−1) holds with high
probability for some β ∈ (0, 1) and η ∈ (0, 1). This ap-
proach is different than Cao et al. (2018), Liu et al. (2017),
Besson & Kaufmann (2019) as they assume that all the pre-
vious changepoints before tg has been detected which is
unrealistic. In contrast, we assume that for a changepoint
tg if the number of available observations are large enough
then the tg-th changepoint is detected irrespective of the
detection of other changepoints (given assumption 2 and 3
holds). An illustrative explanation is shown in Figure 1.
Definition 4. Let the optimality gap ∆opt

i,g for an arm it′ 6=
i∗t′ ,∀t′ ∈ [tg−1, tg − 1] be defined as, ∆opt

i,g = µi∗,g − µi,g.

3. Problem Formulation
Regret Definition: The objective of the learner is to mini-
mize the cumulative regret till T , which is defined as:

RT =

T∑
t′=1

µi∗
t′
−

T∑
t′=1

µit′ I{it′ 6= i∗t′}

where T is the horizon, µi∗
t′

is the expected mean of the
optimal arm at the t′ timestep and µit′ I{it′ 6= i∗t′} is the

expected mean of the arm chosen by the learner at the t′

timestep when it was not the optimal arm i∗t′ . The expected
regret of an algorithm after T rounds can be written as,

E[RT ] = E

[
T∑
t′=1

µi∗
t′
−

T∑
t′=1

µit′ I{it′ 6= i∗t′}

]

(a)
=E

 G∑
g=1

tg∑
t′=tg−1

µi∗
t′
−

G∑
g=1

tg∑
t′=tg−1

µit′ I{it′ 6= i∗t′}


(b)
=

G∑
g=1

K∑
i=1

∆opt
i,g E[Ni,tg−1:tg ]

where (a) is from Assumption 1, and (b) from Definition 4.

Problem Complexity: We define the hardness of a change-
point g ∈ G using optimality and changepoint gaps by mod-
ifying the definitions of problem complexity as introduced
in Audibert et al. (2010) for stochastic bandits:

H1,g=max


K∑
i=1

1

(∆opt
i,g )2

,
∑

i∈Achgg

1

(∆chg
i,g )2

 , H2,g=
∆opt

max,g+1

∆(tg, δ)

where, ∆opt
max,g+1 = maxi∈A∆opt

i,g+1. The hardness pa-
rameter H2,g captures the tradeoff between the minimum
detectable gap ∆(tg, δ) and maximum optimality gap of the
next changepoint ∆opt

max,g+1 which serves as an upper bound
to all such possible trade-offs at changepoint g. The relation
between the above complexity terms can be derived as:

H2,g ≤ H1,g ≤
K

(∆(tg, δ))2
(H2,g).

Note that,
∆opt
i,g

∆chg
i,g

≤ H2,g,∀i ∈ Achgg , g ∈ G. In the special

case when ∆opt
i,g = ∆chg

i,g = ∆(tg, δ),∀i ∈ Achgg , g ∈ G,
then,

H1,g = K(∆(tg, δ))
−2, and H2,g = 1

4. Algorithms
We first introduce the policy UCBL-CPD in Algorithm 1
which is an adaptive algorithm based on the standard UCB1
(Auer et al., 2002a) approach. UCBL-CPD pulls an arm at
every timestep as like UCB1 but has the time-uniform con-
centration bound that holds simultaneously for all timestep
t. It calls upon the Changepoint Detection (CPD) subrou-
tine in Algorithm 2 for detecting a changepoint. Note, that
unlike CD-UCB, CUSUM, and M-UCB the UCBL-CPD
does not conduct forced exploration to detect changepoints.
UCBL-CPD is an anytime algorithm which does not require
the horizon as an input parameter or to tune its parameter δ.
This is in stark contrast with CD-UCB, CUSUM, M-UCB,
DUCB or SWUCB, that require the knowledge of G or T
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for optimal performance. we define the confidence interval
of UCB-Laplace as follows:

Si,ts:tp :=

√(
1 +

1

Ni,ts:tp

)
log(

√
Ni,ts:tp + 1/δ)

2Ni,ts:tp
(1)

Algorithm 1 UCB Laplace CPD (UCBL-CPD )

1: Input: δ > 0;
2: Definition: Si,ts:tp from (1)
3: Initialization: ts := 1, tp := 1.
4: Pull each arm once
5: for t = K + 1, .., T do
6: Pull arm j ∈ arg maxi∈A

{
µ̂i,ts:tp + Si,ts:tp

}
, ob-

serve reward Xj,t.
7: Update µ̂j,ts:tp , Nj,ts:tp := Nj,ts:tp + 1.
8: tp := tp + 1.
9: if (CPD(ts, tp, δ)) then

10: Restart: Set µ̂i,ts:tp := 0, Ni,ts:tp := 0, ∀i ∈ A,
ts := t, tp := ts.

11: Pull each arm once.
12: end if
13: end for

Algorithm 2 Changepoint Detection(ts, tp, δ) (CPD)

1: for i = 1, ..,K do
2: for t′ = ts, .., tp do
3: if

(
µ̂i,ts:t′ + Si,ts:t′ < µ̂i,t′+1:tp − Si,t′+1:tp

)
or(

µ̂i,ts:t′ − Si,ts:t′ > µ̂i,t′+1:tp + Si,t′+1:tp

)
then

4: Return True
5: end if
6: end for
7: end for

We introduce the phase-based ImpCPD in Algorithm 3 in
Appendix D. ImpCPD calls upon the changepoint detector
CPDI only at the end of phases and saves upon computation
time without incurring additional regret.

Running time of algorithms: UCBL-CPD (like CD-UCB,
and CUSUM) calls the changepoint detection at every
timestep, and ImpCPD calls upon the sub-routine only at
end of phases. Hence, for a fixed horizon T , K arms,
UCBL-CPD calls the changepoint detection subroutine
O(KT ) times while ImpCPD calls the changepoint detec-
tion O(K log T ) times, thereby substantially reducing the
costly operation of calculating the changepoint detection
statistics. By designing ImpCPD carefully and appropriately
modifying the confidence interval, this reduction comes at
no additional cost in the order of regret (see Discussion 7)

5. Main Results
Lemma 3. (Control of bad-event by Laplace method) Let,
Ni,ts:t be the number of times an arm i is pulled from ts till
the t-th timestep such that t > tg, then at the t-th timestep
for all δ ∈ (0, 1

2 ] it holds that,

P{ξchgi,t } ≤ 4δ

where the event ξchgi,t =

{
∃t′∈ [ts, t] :

(
µ̂i,ts:t′−Si,ts:t′ >

µ̂i,t′+1:t+Si,t′+1:t

)⋃ (
µ̂i,ts:t′+Si,ts:t′<µ̂i,t′+1:t−Si,t′+1:t

)}
and Si,ts:t′ =

√(
1 + 1

Ni,ts:t′

)
log(
√
Ni,ts:t′+1/δ)

2Ni,ts:t′
.

Proof 2. (Outline) We use the sub-Gaussian property of the
bounded random variables to define a non-negative super-
martingale Mλ

t . We show that it is well defined and intro-
duce a new stopped version Mλ

τ . By Fatou’s Lemma we
show that it is bounded as well. Finally, we introduce an
auxiliary variable Λ independent of all other variables and
use it to control MΛ

τ . We use Markov’s inequality to bound
the probability of the event ξchgi,t using MΛ

τ . The proof is in
Appendix E.

Remark 1. Choosing δ = 1
t , in Lemma 3 we can show that

P{ξchgi,t } ≤ 2
t , where the event ξchgi,t is the bad event. Note,

that δ does not depend on the knowledge of horizon T .

Discussion 2. Time-uniform bounds depends only on the
number of pulls Ni,ts:t′ and implicitly on t based on the
parameter δ. The concentration bounds based on peeling
and union bound method depends explicitly on t and has
larger coefficients attached to them. In Table 3 we give
a comparison over the three concentration bound method
involving Union bound, Peeling and Laplace method. We
provide the proof of the construction of concentration bound
for our changepoint detection strategy by union bound in
Lemma 4 in Appendix F for completeness. The log log(t)
scaling of the peeling method is not better than the one
derived by the Laplace method, unless for huge timestep t
(t > 106, for δ = 0.05 and any α > 1). Laplace method
uses the sub-Gaussian nature of the variables to give such
sharp concentration bounds as opposed to other methods.

Theorem 1. (Gap-dependent bound of UCBL-CPD ) For
η ≥ 6

2 log t+1 , δ = 1
t , the expected cumulative regret of

UCBL-CPD using the CPD is given by,

Eπ[Rt]≤
G∑
g=1

{K∑
i=1

6 log t

∆opt
i,g︸ ︷︷ ︸

(a)

+
∑
Achgg

(
18H2,g log t

∆(tg, δ)︸ ︷︷ ︸
(b)

+
18KH2,g log t

∆(tg, δ)︸ ︷︷ ︸
(c)

)}
.

Proof 3. (Outline) For each g ∈ G we bound the proba-
bility of the bad event of discarding the optimal arm be-
tween changepoints g − 1 and g and not detecting the
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Table 3. Comparison of Union, Peeling and Laplace method

Method Confidence interval Uniform
over t

Union
√

log(4t2/δ)
2Ni,ts:t′

No

Peeling
√

α
Ni,ts:t′

log
(
d log(t)

α e
1
δ

)
), α > 1 No

Laplace

√(
1 + 1

Ni,ts:t′

)
log(
√
Ni,ts:t′+1/δ)

2Ni,ts:t′
Yes

changepoint using the Laplace method (see Lemma 3).
The proof of Theorem 1 is given in Appendix G. Note,
that for a changepoint g, compounded detection delay
dπ(tg − tg−1) ≥ dπ∗(tg − tg−1) as it lacks observa-
tions from tg itself. But it suffices to show that atleast
dπ(tg − τg−1) = dπ(tg − (tg−1 + dπ(tg−1 − τg−2))) will
not be much greater than dπ∗(tg− tg−1) and for each g ∈ G
it is bounded with high probability as long as the η separa-
tion is maintained by Assumption 2 (see Step 6).

Discussion 3. In Theorem 1, (a) is the regret suffered for
finding the optimal arm between changepoints g−1 to g, (b)
is the maximal regret for delayed detection of g, and (c) is
the regret suffered for total compounded delayed detection.

Theorem 2. (Gap-dependent bound of ImpCPD ) For η ≥
8

2 log T+1 , δ = 1
T , the expected cumulative regret of ImpCPD

using CPDI is upper bounded by,

Eπ[RT ] ≤
G∑
j=1

∑
i∈A′

[ 48KC1 (γ) ∆opt
i,g log( T

K
√

logK
)

(K logK)−
3
2︸ ︷︷ ︸

(a)

+

16 log(
T (∆opt

i,g )2

K
√

logK
)

(∆opt
i,g )︸ ︷︷ ︸

(b)

]
+

G∑
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∑
i∈Achgg

[16H2,g log(
T (∆chg

i,g )2

K
√

logK
)

(∆chg
i,g )︸ ︷︷ ︸

(c)

]

+

G∑
j=1

∑
i∈Achgg

[16KH2,g log(
T (∆chg

i,g )2

K
√

logK
)

(∆(tg, δ))

]
︸ ︷︷ ︸

(d)

where γ is exploration parameter, C1 (γ) =
(

1+γ
γ

)4

, and

A′ =
{
i ∈ A : ∆opt

i,g ≥
√

e
T ,∆

chg
i,g ≥

√
e
T ,∀g ∈ G

}
.

Proof 4. (Outline) The key to proving this theorem is
to carefully construct each geometrically increasing phase
length `m so that the probability not pulling the optimal arm
between two changepoints g − 1 to g is bounded. Simul-
taneously, we use the phase length `m, confidence interval
Si,ts:tp and exploration factor γ to control the bad event of
not detecting the changepoint g. We use Chernoff-Hoeffding

inequality to bound the probability of the bad events. We
have to further balance `m, and Si,ts:tp by carefully defining
ψ so that γ is small enough and CPDI is called more often.
We also have to use additional union bounds to control the
event that arms are getting pulled unequal number of times
within each phase length. The proof is in Appendix H.
Discussion 4. In Theorem 2, (a) is the regret suffered for
calling the CPDI only at end of phases, (b) is the regret for
finding the optimal arm between changepoints g − 1 and
g, (c) is the regret for delayed detection of g, and (d) is the
regret suffered for total compounded delayed detection.
Discussion 5. UCBL-CPD (Thm 1) and ImpCPD (Thm 2)
performance is comparable to the best detection strategy
(see Lemma 2) as they have the coefficient in their com-
pounded detection delay of order O(K) that is less than
order O(η log(t/δ)) of C(t, δ, η) of π∗ when η is greater
than the respective values in the theorems. This is reason-
able as in the bandit setup each arm i ∈ A might be pulled a
logarithmic number of times before detecting a changepoint.
Corollary 1. (Gap-independent bound of UCBL-CPD )
In the specific scenario, when all the gaps are same, that is

∆opt
i,g = ∆chg

i,g = ∆(tg, δ) =
√

K log(T/G)
T/G ,∀i ∈ A,∀g ∈

G and δ = 1
t then the worst case gap-independent regret

bound of UCBL-CPD is given by,

Eπ[RT ] ≤ O(
√
GT log T ).

Proof 5. The proof of Corollary 1 is given in Appendix I.
Discussion 6. In Corollary 1, the largest contributing factor
to the gap-independent regret of UCBL-CPD is of the order
O
(√
GT log T

)
, same as that of DUCB but weaker than

CUSUM and SWUCB. The additional O(log T ) factor is
the cost UCBL-CPD must pay for not knowing T and G.
Corollary 2. (Gap-independent bound of ImpCPD ) In
the specific scenario, when all the gaps are same, that is

∆opt
i,g = ∆chg

i,g = ∆(tg, δ) =
√

K log(T/G)
T/G ,∀i ∈ A,∀g ∈

G and setting δ = 1
T , γ = 0.05 then the worst case gap-

independent regret bound of ImpCPD is given by,

Eπ[RT ] ≤ C1G
1.5K4.5(logK)2 +O(

√
GT )

where C1 is an integer constant.

Proof 6. The proof of Corollary 2 is given in Appendix J.
Discussion 7. In Corollary 2, the largest contributing factor
to the gap-independent regret of ImpCPD is of the order
O
(√

GT
)

. This is lower than the regret upper bound of
DUCB, SWUCB, EXP3.R and CUSUM (Table 1). The
smaller the value of the exploration parameter γ the larger is
the constant C1 associated with the factor GK4.5(logK)2.
Now, γ determines how frequently CPDI is called by Im-
pCPD and by modifying the confidence interval and phase-
length we have been able to control the probability of not
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detecting the changepoint at the cost of additional regret
that only scales with K and not with T .
Theorem 3. (Lower Bounds for oracle policy) The lower
bound of an oracle policy π∗ for a horizon T , K arms and
G changepoints is given by,

Eπ∗ [RT ] ≥min

{
Ω

(
G∑
g=1

K∑
i=1

log (T/(GH1,g))

∆opt
i,g

)
,Ω
(√

GT
)}

where, H1,g =
K∑
i=1

1
(∆opt

i,g )2
is the hardness of the problem.

Proof 7. The key observation to prove this theorem is
that the worst case scenario can occur when environment
changes uniform randomly. A similar argument has also
been made in the adaptive-bandit setting of Maillard &
Munos (2011). So, let the horizon T be divided into G
slices, each of length (T/G). For each of these slices an
oracle algorithm using OCUCB (Lattimore, 2015) should
get the optimal SMAB regret without suffering any delay.
The proof is in Appendix K.
Discussion 8. This lower bound is weaker than the bound
proposed in Wei et al. (2016) as they do not require the
knowledge of G or T . But we provide this for comple-
tion to discuss oracle-based bounds and also because the
previous approaches do not touch upon this approach. For
a non-oracle policy the additional trade-off between the
changepoint gap and the next optimality gap is captured by
H2,g . As long as the delayed detection is bounded with high
probability we should get a similar scaling for a good detec-
tion algorithm minimizing regret for each of these slices of
length (T/G). ImpCPD which has a gap-independent regret
upper bound of O(

√
GT ) reaches the lower bound of the

policy π∗ in an order optimal sense. Also, in the special case
when all the gaps are same such that for all i ∈ A, g ∈ G,
∆opt
i,g = ∆(tg, δ) = ∆chg

i,g , H1,g = K(∆(tg, δ))
−2 and

H2,g = 1, then ImpCPD with a gap-dependent bound of

O
( G∑
g=1

K∑
i=1

log(T/H1,g)

∆opt
i,g

)
matches the gap dependent lower

bound of π∗ except the factor G in the log term (ignoring
the log( 1√

logK
) term).

6. Experiments
We compare UCBL-CPD and ImpCPD against Oracle
Thompson Sampling (OTS), EXP3.R, Discounted Thomp-
son Sampling (DTS), Discounted UCB (DUCB), Sliding
Window UCB (SWUCB), Monitored-UCB (M-UCB) and
CUSUM-UCB (CUSUM) in four environments . The oracle
algorithms have access to the exact changepoints and are
restarted at those changepoints. For each of the experiments,
we average the performance of all the algorithms over 100
independent runs. More discussions on parameter selec-
tion for the algorithms can be found in Appendix M and
additional experiments are shown in Appendix N.

Experiment 1 (Bernoulli 3 arms): This experiment is con-
ducted to test the performance of algorithms in Bernoulli
distribution over a short horizon T = 4000 and and small
number of arms K = 3. There are 3 changepoints in this
testbed and the expected mean of the arms changes as shown
in equation 2. The experiment is shown in Figure 2(a) where
we can clearly see that UCBL-CPD and ImpCPD detect the
changepoints at t = 1000 and t = 2000 with a small delay
and restarts. However, because of the small changepoint
gap at t = 3000 it takes some time to adapt and restart.
UCBL-CPD and ImpCPD perform better than all the pas-
sively adaptive algorithms like DTS, DUCB, SWUCB, and
actively adaptive algorithm like EXP3.R, CUSUM and is
only outperformed by OUCB1 and OTS which have access
to the oracle. The performance of UCBL-CPD is similar to
ImpCPD in this small testbed. Because of the short hori-
zon and a small number of arms, the adaptive algorithms
CUSUM and EXP3.R are outperformed by passive algo-
rithms DUCB, SWUCB, and DTS.

r1 = 0.1, r2 = 0.2, r3 = 0.9 if t = [1, 1000];

r1 = 0.4, r2 = 0.9, r3 = 0.1 if t = [1001, 2000];

r1 = 0.5, r2 = 0.1, r3 = 0.2 if t = [2001, 3000];

r1 = 0.2, r2 = 0.2, r3 = 0.3 if t = [3001, 4000]. (2)

Experiment 2 (Jester dataset): This experiment is con-
ducted to test the performance of algorithms when our model
assumptions are violated. We evaluate on the Jester dataset
(Goldberg et al., 2001) which consist of over 4.1 million
continuous ratings of 100 jokes from 73,421 users collected
over 5 years. We use Jester because there exist a high num-
ber of users who have rated all the jokes, and so we do not
have to use any matrix completion algorithms to fill the
rating matrix. The goal of the learner is to suggest the best
joke when a new user comes to the system. We consider
20 users who have rated all the 100 jokes and use SVD to
get a low rank approximation of this rating matrix. Most
of the users belong to three classes who prefer either joke
number 49, 88, or 90. We uniform randomly sample 2 users
from each of the 3 classes (49, 88, 90). Then we divide
the horizon T = 150000 into 6 changepoints starting from
t = 1 and at an interval of 25000 we introduce a new user
from one of the three classes in round-robin fashion start-
ing from users who prefer joke 49. We change the user
at changepoints to simulate the change of distributions of
arms and hence a single learning algorithm has to adapt
multiple times to learn the best joke for each user. A real-
life motivation of doing this may stem from the fact that
running an independent bandit algorithm for each user is a
costly affair and when users are coming uniform randomly
a single algorithm may learn quicker across users if all the
users prefer a few common items. Note, that we violate As-
sumption 2 and Assumption 3 because the horizon is small,
the number of arms is large and gaps are too small to be
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detectable with sufficient delay. In Figure 2(b) we see that
ImpCPD outperforms most of the other algorithms except
OTS . ImpCPD and UCBL-CPD is only able to detect 2
of the 6 changepoints and restart while CUSUM failed to
detect any of the changepoints. Note that UCBL-CPD and
ImpCPD performs slightly worse than DUCB in this testbed.
This shows the importance of Assumption 2 and 3, that is
when gaps are small, and changepoints are less separated,
all the change-point detection techniques will perform badly
in those regimes.

(a) Expt-1: 3 Bernoulli-distributed arms.

(b) Expt-2: 20 Users, 100 items, Rank 3 approximation of Jester
Dataset

Figure 2. Cumulative regret of algorithms in Jester dataset

7. Related Works
Previous algorithms can be broadly divided into passive and
actively adaptive algorithms. Passive algorithms like Dis-
counted UCB (DUCB) (Kocsis & Szepesvári, 2006), Sliding
Window UCB (SWUCB) (Garivier & Moulines, 2011) and
Discounted Thompson Sampling (DTS) (Raj & Kalyani,
2017) do not actively try to detect changepoints and thus
perform badly when changepoints are of large magnitude
and are well-separated. The actively adaptive algorithm
EXP3.R (Allesiardo et al., 2017) is an adaptive alternative
to EXP3.S (Auer et al., 2002b) which was proposed for

arbitrary changing environments. But EXP3.R is primarily
intended for adversarial environments and thus is conserva-
tive when applied to a piecewise i.i.d. environment. The
recently introduced actively adaptive algorithms CD-UCB
(Liu et al., 2017), CUSUM (Liu et al., 2017) and M-UCB
(Cao et al., 2018) rely on additional forced exploration for
changepoint detection. With α probability they employ
some changepoint detection mechanism or pull the arm with
highest UCB with (1− α) probability (exploitation). This
α is hard to tune in experiments and come with limited the-
oretical guarantees. CD-UCB requires that the exploration
parameter is set to α = 0 for proving theoretical guarantees.
CUSUM (Liu et al., 2017) performs a two-sided CUSUM
test to detect changepoints and it empirically outperforms
CD-UCB. CUSUM requires the knowledge of G and T
for tuning α and its theoretical guarantees only hold for
Bernoulli rewards for widely separated changepoints. Also,
CUSUM wrongly applies Hoeffding inequality to a random
number of pulls (see eq (31), (32) in Liu et al. (2017)) which
raises serious concerns about the validity of the rest of their
analysis. Finally, M-UCB also requires the knowledge of G
and T for theoretical guarantees. Another approach involves
the Generalized Likelihood Ratio Test which was recently
studied by Maillard (2019) and Besson & Kaufmann (2019).
This is a different approach than others and looks at the
ratio of the likelihood of the sequence of rewards coming
from two different distributions and calculates the sufficient
statistics to detect changepoints. An extended discussion
can be found in Appendix A.

8. Conclusions and Future Works
We studied the piecewise i.i.d environment under Assump-
tion 1, 2 and 3 such that actively adaptive algorithms do not
need to conduct forced exploration to detect changepoints.
We studied two UCB algorithms, UCBL-CPD and ImpCPD
which are adaptive and restarts once the changepoints are de-
tected. We derived the first gap-dependent bounds for these
actively adaptive algorithms incorporating the hardness fac-
tor. The anytime UCBL-CPD uses the Laplace method to
derive sharp concentration bound, and ImpCPD achieves
the order optimal regret bound which is an improvement
over all the existing algorithms (in a specific setting). Empir-
ically, they perform very well in various environments and
is only outperformed by oracle algorithms. Future works
include incorporating the knowledge of localization in these
adaptive algorithms.
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