
R-MADDPG for Partially Observable Environments and Limited
Communication

Rose E. Wang 1 Michael Everett 2 Jonathan P. How 3

Abstract
There are several real-world tasks that would ben-
efit from applying multiagent reinforcement learn-
ing (MARL) algorithms, including the coordina-
tion among self-driving cars. The real world has
challenging conditions for multiagent learning
systems, such as its partial observable and nonsta-
tionary nature. Moreover, if agents must share a
limited resource (e.g. network bandwidth) they
must all learn how to coordinate resource use.
This paper introduces a deep recurrent multia-
gent actor-critic framework (R-MADDPG) for
handling multiagent coordination under partial
observable settings and limited communication.
We investigate recurrency effects on performance
and communication use of a team of agents. We
demonstrate that the resulting framework learns
time-dependencies for sharing missing observa-
tions, handling resource limitations, and devel-
oping different communication patterns among
agents.

1. Introduction
To apply reinforcement learning in real world settings, we
must develop robust frameworks that explicitly address com-
mon real world challenges. Much of current RL research
makes unrealistic assumptions, like full observability of
the environment, one agent learning in isolation, or unlim-
ited access to a communication network, none of which
exist in the real world. Therefore, RL algorithms must ad-
dress the following three challenges inherent to real-world
domains: partial observability (agents must learn concise
abstractions of history while learning to make good deci-

1Department of Electrical Engineering and Computer Science
2Department of Mechanical Engineering 3Laboratory for Informa-
tion and Decision Systems; Massachusetts Institute of Technology,
Cambridge, Massachusetts. Correspondence to: Rose E. Wang
<rewang@mit.edu>.

Reinforcement Learning for Real Life (RL4RealLife) Workshop in
the 36 th International Conference on Machine Learning, Long
Beach, California, USA, 2019. Copyright 2019 by the author(s).

sions), nonstationarity (introduced by multiple agents learn-
ing simultaneously), and limited communication between
agents (constraints on sharing of beliefs and intents). Exam-
ple applications include search and rescue scenarios with
constrained vehicle sensors (partial observability), coopera-
tion between humans and machines (nonstationarity), space
exploration missions or coordination among independent
self-driving cars (limited communication).

Common solutions to address these challenges include mul-
tiagent learning (Foerster et al., 2017; Lowe et al., 2017),
communication (Peng et al., 2017; de Freitas, 2016), and re-
source sharing. An extensive discussion on previous works
will follow in Section 2.

This work proposes a new model, the recurrent multiagent
deep deterministic policy gradient model (R-MADDPG),
for handling multiagent coordination under partially observ-
able environments using only limited communication, and
compares the proposed architecture’s performance against
alternatives. R-MADDPG learns two policies in parallel–
one for physical navigation and another for communication–
and not individually as done in previous works. This work
extends upon previous work, Multi-Agent Actor-Critic for
Mixed Cooperative-Competitive Environments (MADDPG)
(Lowe et al., 2017).

Specifically, we assume a multiagent actor-critic model and
propose a model where both the actor and the critic are
recurrent. Alternative architectures include actor-critic mod-
els with only a recurrent actor or only a recurrent critic. Our
experiments show that the fully recurrent actor-critic model
learns with less variability in mean and variance and that
the recurrent critic is the crucial component that enables
learning under real-world conditions (partial observations,
limited communication, multiagent). The experiments sug-
gest a recurrent actor is insufficient by itself for partially
observable domains.

Our contributions include: i) a demonstration of the failure
of current MARL methods in a simple partially observable
coordination task, which identifies a remaining gap between
RL research and the real world; ii) recurrent multiagent
actor-critic architectures for message passing and move-
ment, with experiments showing successful learning under
various constraints on communication and observability; iii)

empirical comparison between the proposed architectures
that highlights the importance of a recurrent critic; and iv)
an open-sourced implementation of R-MADDPG 1.

2. Related Works
Three key challenges in applying reinforcement learning
to real life are: multiagent learning in fully and partially
observable environments, multiagent learning for commu-
nication and/or communication protocols, and multiagent
resource sharing. Most works below handle these challenges
separately. This work is the first to handle all three of these
challenges in one general framework.

Multiagent learning General multiagent reinforcement
learning (MARL) methods either assume full observability
and are less applicable to real world conditions (Peng et al.,
2017; Kong et al., 2017), or handle partially observable en-
vironments by making assumptions on the types of policies
learned, such as multiple agents developing homogeneous
policies (Khan et al., 2018). Earlier works (Wu et al., 2009;
Amato et al., 2015) model the multiagent learning problem
as decentralized POMDPs (Dec-POMDPs), nonetheless the
traditional search for an optimal policy requires knowledge
about the transition function which agents typically do not
have access to in the real world.

A well-known issue in multiagent learning is nonstationarity
(Hernandez-Leal et al., 2017): Each agent simultaneously
updates its policy during training, thus making each agent’s
optimal policy a moving target. MADDPG combats nonsta-
tionarity by training the critic in a centralized manner, as in
this work2. Several single agent RL works address nonsta-
tionarity with experience replay (Mnih et al., 2015; Schaul
et al., 2015). However, experience replay in multiagent set-
ting introduces additional challenges, such as how to sample
experiences in a synchronized fashion (Omidshafiei et al.,
2017), and even conflicting information about whether ex-
perience replay helps in multiagent settings (Foerster et al.,
2016; Singh et al., 2018).

Communication and resource sharing Previous multia-
gent communication methods miss important elements of
the real world: the architectures are designed specifically
for communication (de Freitas, 2016) and assume network
parameter sharing (Foerster et al., 2016) or access to other
agents’ hidden states (Singh et al., 2018; Sukhbaatar et al.,
2016). Not only are these assumptions unrealistic for real
world conditions, enforcing a specific communication archi-
tecture can limit the diversity of emergent communication
protocols (Kottur et al., 2017).

1https://github.com/rosewang2008/rmaddpg
2This work distinguishes between centralized training (sharing ex-
periences during network parameter updates) and communication
messages (sharing observations/beliefs during task execution).

Other works model communication separately from other
task policies (like physical motion) (Khan et al., 2019) even
though it oftentimes aids those objectives and should be
learned in conjunction, or propose models for learning long-
term sequential strategies (Peng et al., 2017) but condition
on complete state information. Previously mentioned works
have used recurrence in multiagent reinforcement learning
and communication, but they do not use it for message
passing or simultaneously modelling communication and
other task policies.

MADDPG handles cooperative tasks, however does not
model explicit communication among agents and can-
not handle partially observable environments and history-
dependent decision making. (Khan et al., 2018) is similar to
MADDPG, however scales better to more agents under the
strong assumption that the agents’ policies can be approx-
imated to a single policy. (Jiang & Lu, 2018) is similar to
our learning environment, in that they want to learn how to
conservatively use communication. They propose a central
attentional unit in an actor-critic framework for learning
when communication is needed and for integrating shared
information. Nonetheless, they prioritize minimizing com-
munication as much as possible, whereas this paper demon-
strates that agents are capable of adapting to any amount of
resources.

3. Background
3.1. Reinforcement Learning

In real world settings, agents make noisy observations of
the true environment state to inform their action selection,
typically modeled as a Partially Observable Markov deci-
sion process (POMDPs) (Kaelbling et al., 1998), or in its
extended version with multiple agents, a Decentralized Par-
tially Observable Markov decision process (Dec-POMDPs)
(Bernstein et al., 2002) defined as (I,S,A, T ,Ω,O,R, γ),
where I = {1, ..., N} is the set of N agents, S is the set of
states, A = ×iAi is the set of joint actions, T is the transi-
tion probability function, Ω = ×iOi is the set of joint partial
observations, O is the observation probability function,R
is the reward function, and γ ∈ [0, 1) is the discount factor.
At each timestep t, agent i receives a partial observation oit
and takes action ait according to policy πi(hit; θ

i), where θi

is agent i’s policy parameters and hit is agent i’s observation
history. The current state of the Dec-POMDP st transitions
to st+1 according to the transition function with joint actions
of the agents at = a1t × ...× aNt , i.e. T (st+1; st, at). The
agents receive a shared team reward rt = R(st, at), and
receive a new joint observation set ot+1 = {o1t+1, ..., o

N
t+1}

after the state transition. The objective for each agent is to
maximize its expected discounted reward E[

∑
t rtγ

t].

This work focuses on using recurrent neural networks for

2

learning representations capable of estimating the true state
of the Dec-POMDP S from an agent’s local set of observa-
tions Ωi. The recurrency in the network architecture there-
fore explicitly acts as a system mechanism for gathering
partial observations so as to minimize the differences in
system behavior with and without full observability of S.

3.2. Q-learning

Q-learning and Deep Q-learning methods have been very
popular in the context of Atari game playing. Q-learning
is a model-free approach for determining the long-term
expected return of executing an action a from a state s,
where it makes use of the action-value function under a
given policy π (Sutton et al., 1998). In other words, Q is
iteratively defined as,

Qπ(s, a) = Es′ [r(s, a) + γEa′∼π[Qπ(s, a)]]. (1)
Deep Q-Learning methods approximate the Q-values by
means of a neural network parameterized by the weight θ.
It learns the values for Q∗, where Q̃∗ is the target values, by
minimizing the loss defined as:
L(θ) = Es,a,r,s′ [(Q∗(s, a|θ)− (r + γmax

a′
Q̃∗(s′, a′)))2].

(2)

Because the same network is used for generating next target
values and for updating Q∗, Deep Q-Learning demonstrates
high variance in its learning trajectory for approximating
action values. Thus, common techniques for facilitating
learning stability include using experience replay (Mnih
et al., 2015; Schaul et al., 2015) in a replay memory buffer
sampled during training, and using a separate, target network
Q̃ for generating the target values in the loss calculation.
This target network is identical to the Q∗ except that the
target network is updated to match Q∗ at a much slower
rate (e.g. every thousand iterations) so as to stabilize the
learning of Q∗.

3.3. Policy Gradient Algorithms

Policy gradient methods are another way for maximizing
expected reward for the agent by directly optimizing the
policy. The policy is parameterized by weights θ. The
objective is to maximize the score function

J(θ) = Eπθ [
∑
t

Rt] (3)

where the gradient of the policy is defined by the Policy
Gradient Theorem (Sutton et al., 2000) as:

∇θJ(θ) = Eπθ [∇θ log πθ(a|s)Qπ(s, a)]. (4)

This paper uses the actor-critic framework, where a network,
namely the critic, learns the approximation of Qπ(s, a) by
temporal difference learning. To handle nonstationarity in
the multiagent framework (Lowe et al., 2017), each agent’s
critic uses all agents’ observations and actions for training.

Thus, the loss with respect to agent i’s policy parameteriza-
tion is:
∇θiJ = Eπθi [∇θi log πθi(ai|oi)Qπi(o1, ..., oN , a1, ..., aN)].

(5)

4. Methods
This paper proposes three recurrent multiagent actor-critic
models for partially observable and limited communication
settings. The models only take in a single frame at each
timestep. Because they cannot communicate all the time,
they need a way to remember the last communication they
received from their team, when they last transmitted a mes-
sage and how their actions affect the communication budget
over time. Recurrency acts as an explicit mechanism to
do just that. Our models extend the multiagent actor-critic
framework proposed by MADDPG to enable learning in a
multiagent, partially observable, and limited communication
domain.

4.1. Recurrent Multi Agent Actor

We perform the following updates using experience sam-
pled ∼ U(D). An agent i’s replay buffer D contains tu-
ples of experiences, where an experience at time t contains:
(oi,t, ai,t, o

′
i,t+1, ri,t, h

p
i,t, h

p
i,t+1). o denotes agent i’s par-

tial observations, a its action resulting from πi,t(oi,t, hi,t),
ri,t the agent’s reward, and hp the hidden state of the ac-
tor network before and after the selected action. Let each
agent have a continuous policy µ = µθi , and a target policy
µ′ = µ′θ′i

. x ∼ U(D) and a ∼ U(D) are placeholders for
the state and action information of all agents from sampled
experiences. Then, the policy’s gradient is,
∇θiJ(µ) = EU(D)[∇θiµ(ai,t|oi,t, hpi,t)

·∇ai,tQ
µ
i (x, a)|ai,t=µi(oi,t,hpi,t)]. (6)

The action-value function Qµi is updated based on,

L(θi) = EU(D)[((ri + γQµ
′

i (x′, a′j)|a′j=µ′
j(oj ,h

p
j,t)

−Qµi (x, a))2]. (7)

4.2. Recurrent Multi Agent Critic

We perform the following updates using experience sam-
pled ∼ U(D). An agent i’s replay buffer D tuples
of experiences, where an experience at time t contains:
(oi,t, ai,t, o

′
i,t+1, ri,t, h

q
i,t, h

q
i,t+1). We assume the same no-

tation from before, where hq is the hidden state of the critic
network before and after a selected action. The policy gra-
dient is calculated as,

3

(a) (b) (c)

Figure 1. Illustration of the three recurrent models described in Section 4. 1a is the recurrent actor (actors maintain state hp over time),
1b is the recurrent critic (Q maintains hq over time), and 1c is the recurrent actor critic models used in the experiments. The top row
shows the models during training, and the bottom row shows the models during execution. Actors communicate with each other and share
information (m). If they decide not to communicate or have no communication budget left, an empty message is sent.

∇θiJ(µ) = EU(D)[∇θiµ(ai,t|oi,t)
·∇ai,tQ

µ
i (x, a, hqt)|ai,t=µi(oi,t)]. (8)

The action-value function Qµi is updated based on,

L(θi) = EU(D)[((ri + γQµ
′

i (x′, a′j , h
q
t+1)|a′j=µ′

j(oj)

−Qµi (x, a, hqt)
2]. (9)

4.3. Recurrent Multi Agent Actor and Critic

We perform the following updates using experience sam-
pled ∼ U(D). An agent i’s replay buffer D tuples
of experiences, where an experience at time t contains:
(oi,t, ai,t, o

′
i,t+1, ri,t, h

q
i,t, h

q
i,t+1, h

p
i,t, h

p
i,t+1). We assume

the same notation from before. The policy gradient is calcu-
lated as,
∇θiJ(µ) = EU(D)[∇θiµ(ai,t|oi,t, hpi,t)

·∇ai,tQ
µ
i (x, a, hqt)|ai,t=µi(oi,t,hpi,t)].

(10)

The action-value function Qµi is updated based on,

L(θi) = EU(D)[((ri + γQµ
′

i (x′, a′j , h
q
t+1)|a′j=µ′

j(oj ,h
p
j)

−Qµi (x, a, hqt)
2]. (11)

Figure 2. Simultaneous arrival task with N = 2 agents. The agents
(blue, red) start at different distances from the goal (black), and
their task is to arrive at the goal location simultaneously. A video
can be found here.

5. Experiments
This section shows that the recurrent critic is critical for
agents to learn a good policy from their partially observable
states and under limited communication settings. The re-
current actor alone is not able to discover the right policy,
however combined with the recurrent critic it reduces the
variance in the reward performance. Our experiments use
a simultaneous arrival task, where N agents must arrive

4

https://sites.google.com/view/rmaddpg/home##h.p_Iin8bLPKVOhT

(a) Team distance reward, fully observable settings (b) Team difference reward, fully observable settings.

(c) Team distance reward, partially observable settings. (d) Team difference reward, partially observable settings.

Figure 3. Reward performance in observability experiments. Under fully observable settings (top row), both MADDPG (red) and recurrent
variants (green, blue, orange) perform similarly. Under partially observable (bottom row) settings, the recurrent actor (orange) and
MADDPG (red) are unable to learn how to simultaneously arrive (d), and even how to move towards the goal (c). This demonstrates
the importance of the recurrent critic in partially observable settings. For partial observability, the communication budget is set to 20
messages, shared between 2 agents over ∼ 100 timesteps per episode.

at a goal location at the same time (extended from (Lowe
et al., 2017), see example video here). In the fully observ-
able environment, the agents know the positions of all the
agents and the goal. In the partially observable environment,
the agents only know their position and the goal; only if
an agent decides to communicate, do other agents know
its position. The partially observable domain is especially
difficult for MADDPG because it is unable to keep a history
of its previous partial observations; this renders it almost
impossible for MADDPG to estimate the underlying system
state.

This environment allows us to focus on the analysis of time-
wise coordination among agents and multi-timestep com-
munication use under different recurrent architectures. We
investigate the effects of recurrency between MADDPG and
R-MADDPG with the experiments below. For all the ex-
periments we compare among regular MADDPG and these
proposed networks from the Methods section. We both vary
the observability (between full and partial observations) for
the agents and vary the communication budget.

5.1. Experimental Setup

Let s denote an agent’s fully observable state, containing
this agent’s position, (px, py), the goal position (gx, gy),

the communication message, m, is always the other agent’s
position, and a communication budget c. A partially ob-
servable state, s′, contains the same state variables, however
the communication message, m′ is either the other agent’s
position if the other agent communicated that timestep, or
(−1,−1) otherwise. That is,

s = [px, py, gx, gy,m, c] (12)
s′ = [px, py, gx, gy,m

′, c] (13)

At each time step, each agent selects two types of discrete ac-
tions, one physical, ap ∈ {none,north, east,west, south},
and one verbal, av ∈ {communicate, silent}.

The joint team reward function,

R =
∑
i

d(pi, g)︸ ︷︷ ︸
Rdist

+
∑

pairs(i,j)

|d(pi, g)− d(pj , g)|

︸ ︷︷ ︸
Rdiff

, (14)

encourages agents to individually reach the common goal
position g = (gx, gy) through Rdist, and encourages simul-
taneity through Rdiff , where d is Euclidean distance.

Throughout this section, we refer to Rdist as the team dis-
tance and Rdiff as the difference in agents’ distances to
goal. These measurements are used in evaluating perfor-
mance respectively on the left and right hand columns of

5

https://sites.google.com/view/rmaddpg/home#h.p_Iin8bLPKVOhT

(a) Team distance to goal. (b) Team difference to goal.

Figure 4. MADDPG’s performance depends on the degree of observability. Decreasing the communication budget dramatically worsens
MADDPG’s performance in partially observable domain. These plots assume each episode is 100 timesteps. Thus, a shared communication
budget of 200 messages means that both agents are able to communicate at every timestep during an episode. Yet, even with a 200
message budget that could enable full observability, MADDPG still performs worse than R-MADDPG which uses only 10% of the budget.

(a) Team distance to goal location over communication budget. (b) Difference in agents’ distances to goal over communication
budget.

Figure 5. Execution performance over varying communication budget. The experiments assume R-MADDPG in a partially observable
domain. The numbers indicate the amount of shared communication budget the agents had. We note that with decreasing budget the
agents still learn how to move to the goal, and performance declines with decreasing budget, as expected.

Figure 3 and Figure 4.

The communication budget is shared between agents, and
a full communication budget is consider to be 1.0. If the
communication budget is set to sending x (total) messages,
then the budget decreases by 1

x with every communication
message. If no budget is given, i.e. no communication is
allowed, the budget is set to 0.0. No agent is allowed to com-
municate once the budget reaches 0.0, and their messages
are defaulted to a blank value (−1,−1).

Network architecture: The networks contain three layers
each with 64 units, where the first and last are fully con-
nected layers and the middle layer is an LSTM layer. The
first fully connected layer has an ReLU activation (Nair &
Hinton, 2010).

Hyperparameters: The experiments assume an Adam Op-
timizer with a learning rate of 0.01, τ = 0.01 for the target
network updates, and γ = 0.95. The replay buffer size
is 106. We sample after every other 100 timesteps, and
sample a batch size of 256 by episode. Training happens
with 4 random seeds for all the experiments found above.
All the hyperparameters will be set as the default in the
open-sourced implementation of R-MADDPG.

5.2. Results

5.2.1. OBSERVABILITY

This section first explores whether the models are capable
of learning in multiagent environments assuming complete
observations, then learning in multi-agent environments
assuming partial observations.

The experiments verify that both MADDPG and R-
MADDPG variants perform equivalently well under fully
observable settings in going to the goal (Figure 3a). R-
MADDPG (in green, Figure 3b) does not converge as
quickly in arriving simultaneously, and we hypothesize this
is because it takes longer to learn if backpropagating through
time in both in the actor and critic.

Under partially observable settings, the experiments illus-
trate the importance of the recurrent critic for learning a
policy from partial observations and under a limited com-
munication budget that, at minimum requirement, moves
the agents towards the goal (Figure 3c, Figure 3d). Further-
more, the figures illustrate that the recurrent actor and critic
learns more stably than only the recurrent actor model; we
define stable learning by the reward mean fluctuations and

6

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

Figure 6. Example scenarios assuming R-MADDPG and shared communication budget of 50 messages (agents can only communicate
∼ 25% of timesteps). Here is a video including these examples. Using communication, agents either hover around their location (blue
agent in Figure 6a) or move away from the goal (red agent in Figure 6b) in order to synchronously arrive at the goal with the other agent.
In cases where one agent dominates the communication (red agent in Figure 6c), the agents take longer to arrive to the goal even though
they are initialized close to one another.

the reward variance, where these experiments assumed the
same experiment stochasticity as described in section 5.1.

The experiments demonstrate that recurrent actor by itself
performs similarly to MADDPG. It is unable to learn from
a sequence of partial observations, not only how to simul-
taneously arrive at the goal (Figure 3d), but to even to go
to the goal (Figure 3c). In other words, the recurrent actor
provides insufficient information about the underlying task.

We hypothesize this is because the actor optimizes with
respect to the critic (Eq. 6). A policy gradient taken with
respect to Qµi (x, a)|a=µi(oi,hpi)), a critic that cannot cap-
ture the partial observable dynamics of the environment,
results in the actor converging to a poor policy. Thus, we
believe that the RNN plays a more important role in the
critic Qµi (x, a, hqi) than in the actor µi(oi, h

p
i).

5.2.2. COMMUNICATION BUDGET

This section investigates how well the models perform under
different resource constraints by varying the communication
budget shared by the agents. The communication budget
dictates how many messages are allowed to be sent within a
team of agents. We still assume the agents are in a partially
observable environment, thus the agents must share infor-
mation in order to arrive simultaneously at the goal. Video
examples of R-MADDPG, which illustrate the communi-
cation use and physical movements of the agents, can be

found here.

The experiments verify that the poor performance seen in
Figure 3c and Figure 3d by MADDPG is due to the insuf-
ficient communication budget which prevents MADDPG
from having complete observations over the environment at
every timestep. Figure 4 fixes the best performing model
from Figure 3c and Figure 3d, namely R-MADDPG, and
uses it as the best performing model. The graph increases the
communication budget for MADDPG up to 200 messages,
which means that every agent is allowed to communicate
at each timestep of the episode. Only when this happens
does the model’s performance closely match R-MADDPG’s
performance under partially observable conditions.

An examination of how communication is used through-
out an episode is in Figure 6, which identifies emergent
coordination-communication behaviors that do not come
across in the plotted aggregate statistics. Notably with lim-
ited communication, agents learn to either wait or move
away from the goal in order to simultaneously arrive at the
goal with the other agent (Figure 6a, Figure 6b). There
exist edges cases, for instance Figure 6c, where agents are
initialized closed to each other however one agent domi-
nates the communication and the agents take longer to get
to the goal.

The experiments also vary the communication budget on
R-MADDPG to evaluate how sensitive the model is to de-

7

https://sites.google.com/view/rmaddpg/home##h.p_J7OE3k83VXFa
https://sites.google.com/view/rmaddpg/home#h.p_Iin8bLPKVOhT

creased observability. The figures Figure 5a, Figure 5b
display the reward performance (Eq. 14) over communi-
cation budget. As expected, the figures show that with
increasing amounts of communication budget, the agents
perform better at simultaneously arriving. Additionally, the
performance variance decreases with increasing amount of
communication budget in both plots. The plot illustrates the
tradeoff between network bandwidth and team performance,
which could be used to inform system-level design decisions
in real-world applications.

6. Conclusions and Future Work
This paper proposes a recurrent multi-agent actor-critic
model for coordination in partially observable, limited com-
munication settings. This model is more applicable to real-
world conditions since real-world settings are multiagent,
partially observable and limited in communication. The
experiments showed the recurrent critic is important for
enabling R-MADDPG to handle partially observable envi-
ronments. They also showed shown that R-MADDPG is
capable of enabling coordination among agents in arriving
simultaneously while varying the communication budget.

As future work, we hope to develop create more multi-agent
coordination and communication scenarios and evaluate R-
MADDPG in more other environments, such as the environ-
ments used in (Mordatch & Abbeel, 2017) and DeepMind’s
soccer environment from (Liu et al., 2019).

We also hope to expand it to coordination among heteroge-
nous agents and explore the effects of the replay buffer
parameters/settings in the multi-agent environments.

7. Acknowledgments
The authors would like to thank Dong-Ki Kim and Macheng
Shen for their feedback on the paper’s draft and interesting
discussions. This work was supported by Lockheed Martin.

References
Amato, C., Konidaris, G., Cruz, G., Maynor, C. A., How,

J. P., and Kaelbling, L. P. Planning for decentralized con-
trol of multiple robots under uncertainty. In 2015 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 1241–1248. IEEE, 2015.

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein,
S. The complexity of decentralized control of markov
decision processes. Mathematics of operations research,
27(4):819–840, 2002.

de Freitas, N. Learning to learn and compositionality
with deep recurrent neural networks. Proceedings of the
22nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining - KDD 16, 2016. doi:
10.1145/2939672.2945358. URL http://dx.doi.
org/10.1145/2939672.2945358.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual multi-agent policy gradients,
2017.

Foerster, J. N., Assael, Y. M., de Freitas, N., and White-
son, S. Learning to communicate to solve riddles with
deep distributed recurrent q-networks. arXiv preprint
arXiv:1602.02672, 2016.

Hernandez-Leal, P., Kaisers, M., Baarslag, T., and de Cote,
E. M. A survey of learning in multiagent environments:
Dealing with non-stationarity, 2017.

Jiang, J. and Lu, Z. Learning attentional communication for
multi-agent cooperation. In Advances in Neural Informa-
tion Processing Systems, pp. 7254–7264, 2018.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial intelligence, 101(1-2):99–134, 1998.

Khan, A., Zhang, C., Lee, D. D., Kumar, V., and Ribeiro,
A. Scalable centralized deep multi-agent reinforce-
ment learning via policy gradients. arXiv preprint
arXiv:1805.08776, 2018.

Khan, A., Zhang, C., Kumar, V., and Ribeiro, A. Collabo-
rative multiagent reinforcement learning in homogenous
swarm, 2019. URL https://openreview.net/
forum?id=ByeDojRcYQ.

Kong, X., Xin, B., Liu, F., and Wang, Y. Revisiting the
master-slave architecture in multi-agent deep reinforce-
ment learning, 2017.

Kottur, S., Moura, J., Lee, S., and Batra, D. Natural
language does not emerge naturally in multi-agent di-
alog. Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, 2017. doi:
10.18653/v1/d17-1321. URL http://dx.doi.org/
10.18653/v1/d17-1321.

Liu, S., Lever, G., Merel, J., Tunyasuvunakool, S., Heess,
N., and Graepel, T. Emergent coordination through com-
petition, 2019.

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, O. P.,
and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. In Advances in
Neural Information Processing Systems, pp. 6379–6390,
2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control

8

http://dx.doi.org/10.1145/2939672.2945358
http://dx.doi.org/10.1145/2939672.2945358
https://openreview.net/forum?id=ByeDojRcYQ
https://openreview.net/forum?id=ByeDojRcYQ
http://dx.doi.org/10.18653/v1/d17-1321
http://dx.doi.org/10.18653/v1/d17-1321

through deep reinforcement learning. Nature, 518(7540):
529, 2015.

Mordatch, I. and Abbeel, P. Emergence of grounded com-
positional language in multi-agent populations. arXiv
preprint arXiv:1703.04908, 2017.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-10),
pp. 807–814, 2010.

Omidshafiei, S., Pazis, J., Amato, C., How, J. P., and Vian, J.
Deep decentralized multi-task multi-agent reinforcement
learning under partial observability. In Proceedings of
the 34th International Conference on Machine Learning-
Volume 70, pp. 2681–2690. JMLR. org, 2017.

Peng, P., Wen, Y., Yang, Y., Yuan, Q., Tang, Z., Long, H.,
and Wang, J. Multiagent bidirectionally-coordinated nets:
Emergence of human-level coordination in learning to
play starcraft combat games, 2017.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay, 2015.

Singh, A., Jain, T., and Sukhbaatar, S. Learning when to
communicate at scale in multiagent cooperative and com-
petitive tasks. arXiv preprint arXiv:1812.09755, 2018.

Sukhbaatar, S., Szlam, A., and Fergus, R. Learning multia-
gent communication with backpropagation, 2016.

Sutton, R. S., Barto, A. G., et al. Introduction to reinforce-
ment learning, volume 135. MIT press Cambridge, 1998.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour,
Y. Policy gradient methods for reinforcement learning
with function approximation. In Advances in neural in-
formation processing systems, pp. 1057–1063, 2000.

Wu, F., Zilberstein, S., and Chen, X. Multi-agent online
planning with communication. In Nineteenth Interna-
tional Conference on Automated Planning and Schedul-
ing, 2009.

9

