
Incremental Learning of Discrete Planning Domains from Continuous Perceptions

Luciano Serafini , Paolo Traverso
Fondazione Bruno Kessler

{serafini,traverso}@fbk.eu

paper adhering to the theme on model acquisition

Abstract

We propose a framework for learning discrete de-
terministic planning domains. In this framework,
an agent learns the domain by observing the action
effects through continuous features that describe
the state of the environment after the execution of
each action. Besides, the agent learns its percep-
tion function, i.e., a probabilistic mapping between
state variables and sensor data represented as a vec-
tor of continuous random variables called percep-
tion variables. We define an algorithm that updates
the planning domain and the perception function by
(i) introducing new states, either by extending the
possible values of state variables, or by weakening
their constraints; (ii) adapts the perception function
to fit the observed data (iii) adapts the transition
function on the basis of the executed actions and the
effects observed via the perception function. The
framework is able to deal with exogenous events
that happen in the environment.

1 Introduction and Motivations
Automated Planning methods and techniques rely on models
of the world, usually called Planning Domains. The (auto-
mated) acquisition of these models is widely recognised as
a challenging bottleneck, see, e.g., the KEPS workshops and
the ICKEPS competition.1 The automated learning of plan-
ning domains is a way to address this challenge. Indeed, most
often, it is impossible to specify a complete and correct model
of the world. Moreover, most of the times a model needs to
be updated and adapted to a changing environment.

Several and different learning approaches have been pro-
posed so far. Some works on domain model acquisition focus
on the problem of learning action schema, see, e.g. [Gre-
gory and Cresswell, 2016; McCluskey et al., 2009; Cress-
well et al., 2013; Mourão et al., 2012; Mehta et al., 2011;
Zhuo and Yang, 2014]. Learning planning operators and do-
main models from plan examples and solution traces [Yang et
al., 2007; Zhuo et al., 2010; Zhuo and Kambhampati, 2013;

1The Knowledge Engineering for Planinng and Scheduling
(KEPS) Workshop and Competition (ICKEPS)

Henaff et al., 2017] and learning probabilistic planning op-
erators have also been investigated [Pasula et al., 2004;
Zettlemoyer et al., 2005; Pasula et al., 2007].

We propose a framework in which a discrete deterministic
planning domain is extended with a perception function, i.e.,
a probabilistic mapping between state variables and obser-
vations from the real world represented by continuous vari-
ables, called perception variables. The perception function
is represented by a conditional probability distribution that
computes the likelihood of observing some values of the per-
ception variables given an assignment to state variables.

We define an algorithm that builds an abstract determinis-
tic finite planning domain and a perception function by ex-
ecuting actions and observing the effects through perception
variables. The only information about the real world that is
available to the learning algorithm is provided by the percep-
tions variables. The algorithm does not have access to a con-
tinuous model of the dynamics of the world. In several cases,
such model is not available or is too difficult to provide.

The learning algorithm can start either “from scratch”
(i.e., with an “empty planning domain”), or from some prior
knowledge expressed with an initial discrete planning domain
and perception function. The algorithm incrementally learns
the values of the state variables, the description of the transi-
tion function, the constraints on state variables, and the per-
ception function. The framework provides the ability to learn
and adapt to unexpected situations, i.e., some constraints on
state variables have been violated, or the domain of some state
variables should be extended with new values.

The paper is structured as follows. Section 2 formalises
the planning domain, including the perception function. Sec-
tion 3 defines the incremental learning algorithm. In Section 4
we show how the algorithm works with an explanatory exam-
ple that shows the potentialities of the framework. We finally
discuss related work, conclusions, and future work.

2 Perceived Planning Domains
A (deterministic) planning domain is a triple D “ 〈S,A, γ〉,
composed of a finite non empty set of states S, a finite
non empty set of actions A, and a state transition function
γ : S ˆ A Ñ S. Each state s P S is represented with
a vector of state variables ranging over a finite set of val-
ues. Let VVV “ 〈V1, . . . , Vm〉 be a vector of m state variables.
Let DDD “ tD1, . . . , Dku be a set of non empty finite sets,

called domains. Let DomDomDom be a function that assigns a do-
main DomDomDompV q to each variable V of VVV. The set DomDomDompV q
is the set of values that can be assigned to the variable V .
For every WWW Ď VVV, we use DomDomDompWWW q to denote the cross
product of the domains of all the variables in WWW , namely
DomDomDompWWW q “

Ś

V PWWW

DomDomDompV q. For every www P DomDomDompWWW q, we

use WWW “ www to denote the (partial) assignment to each vari-
able V P WWW to v P DomDomDompV q. If WWW is the entire set of
variables VVV then VVV “ vvv is a total assignment. A state s P S
is a total assignment, i.e., a set of assignments that assigns
a value v P DomDomDompV q to every state variable V . We use
srV s to denote the value assigned by s to V . Not every to-
tal assignment necessarily corresponds to a state. The set of
states S of a planning domain is a subset of the total assign-
ments. S can be specified with a set of constraints between
values of state variables. For instance, the fact that V and
V 1 must take different values can be represented by the con-
straint V ‰ V 1. In this paper we suppose that constraints are
expressed using propositional combination (via ^, _ and)
of the atomic proposition V “ v, and V “ V 1, for V, V 1 P VVV
and v PDomDomDompV q.

We assume that the transition function γ is specified with
action language, resulting in a compact representation. In this
paper we adopt a simple action language, which specifies γ
through a set of rules of the form

r : precprq
a
ÝÑ eff prq (1)

where a P A, precprq is a propositional formula in the lan-
guage of the constraints, and eff prq is a partial assignment
VVV1 “ vvv1. For every action a and state s, s1 “ γpa, sq is the
state obtained after the execution of a in s, and is defined as

s1rV s “

$

&

%

v if Dr for a, such that s |ù precprq and
eff prq contains V “ v

srV s otherwise

In order to guarantee that γpa, sq is deterministic, we impose
that for every pair of rules r and r1, defining the action a, we
have that if precprq ^ precpr1q is consistent then eff prq Y
eff pr1q does not contain V “ v1 and V “ v2 for v1 ‰ v2.

The agent perceives the world through a vector XXX “

〈X1, . . . , Xn〉 of continuous variables ranging over real num-
bers, called perception variables. A perception function, is a
function f : RnˆDomDomDompVVVq Ñ R`, such that for everyxxx P Rn

and total assignment VVV “ vvv, fpxxx,vvvq “ ppxxx | VVV “ vvvq, where
ppxxx | VVV “ vvvq is a probability density funciton (PDF) that can
be factorised as follows:

ppxxx | VVV “ vvvq “
n

ź

i“1

pXi
pxi|VVVJi “ vvvjiq

where VVVJi is a subset of the state variables VVV.

Definition 1 (Extended planning domain) An extended
planning domain is a pair xD, fy where D is a planning
domain and f a perception function on the states of D.

Hereafter, if not explicitly specified, with “planning domain”
we will refer to extended planning domain.

Example 1 (The “Robot-Pack-Cat (RPC) Flat”) The
RPC-Flat is composed of 6 rooms (named from A to F),
see Figure 1. In this flat there are a robot, a pack, and a
cat. The robot can move from one room to adjacent rooms,
load, transport and unload the pack. The cat moves around
randomly and can also jump on top of the robot. The robot is
equipped with an RFID reader able to perceive the presence
in the room of the pack, which is equipped with a proximity
sensor tag. Suppose that the robot has only partial knowl-

A B C

D E F

R
P

A B C

D E F

R
P

A B C

D E F

RP
A B C

D E F

R P

Figure 1: Four possible situations in the RPC-flat

edge about the flat and its dynamics. It believes that there
are only 4 rooms (ignoring the room C and F), it ignores
also the presence of the cat. The robot represents its partial
knowledge with the following planning domain: The states
are represented by three state variables: locprq, locppq, and
loaded, which represent the position of the robot, the position
of the pack, and whether the robot is loaded. There are
two domains i.e., DDD “ troom, nr of carried objectsu where
room “ t0, 1, 2, 3u and nr of carried objects “ t0, 1u,
with DomDomDomplocprqq “ room, DomDomDomplocppqq “ room, and
DomDomDomploadedq “ nr of carried objects. Notice that the
robot assumes that there are only 4 rooms and 1 object to be
carried.

Not all the state variable assignments are states (in S), in-
deed, when the robot is carrying the pack, their position must
be the same. This can be formalized by the constraint:

loaded “ 1 Ñ locprq “ locppq (2)

The set A of actions include N, S, E, W (that stand for the
robot moves north, south, east, and west, respectively), L, and
U (that stand for the robot loads and unloads the pack). Ex-
amples of a specification for E and L are the following:

locprq “ 0
E
ÝÑ locprq “ 1

locprq “ 0^ loaded “ 1
E
ÝÑ locppq “ 1

locprq “ locppq
L
ÝÑ loaded “ 1

The robot has the following perception variables:
• X , Y with DomDomDompXq “ DomDomDompY q “ R are the x- and

y-coordinates of the position of the robot;
• T with DomDomDompT q “ r0, 1s is the output of RFID reader.

If the pack and the robot are is in the same room then the
value of T is close to 1, otherwise it is close to 0;
• W withDomDomDompW q “ R` is the weight currently curried

by the robot.

The perception function is factorized as follows:
ppx, y, z, w | locprq, locppq, loadedq “ pXpx | locprqq ¨

pY py | locprqq¨pT pt | locprq, locppqq¨pW pw | loadedq where:

pXpx | locprqq “ N px | µX,locprq, σq
µX,locprq “ locprq mod 2` 0.5,

pY py | locprqq “ N py | µY,locprq, σq
µY,locprq “ locprq ˜ 2` 0.5,

pT pt | locprq, locppqq “ Bpt | αlocprq,locppq, βlocprq,locppqq

αlocprq,locppq “ ¨1locprq“locppq ` 2 ¨ 1locprq‰locppq

βlocprq,locppq “ 2 ¨ 1locprq“locppq ` 1 ¨ 1locprq‰locppq

pW pw | loadedq “ Γpw | kloaded, θloadedq

kloaded “ loaded` 1, θ “ 1

3 The Incremental Learning Algorithm
The Acting and Learning Planning-domains algorithm, ALP,
described in Algorithm 1, not only learns/updates the transi-
tions of a planning domain, but it can also learn/update the
perception function, and extend the set of states, either by
weakening some constraints, or by extending the domains of
some state variables. ALP can start “from scratch”, i.e., from
the simplest planning domain, where each variable domain
D P DDD is equal to t0u, without constraints, and an empty γ.
Alternatively, ALP can start from any non empty planning
domain corresponding to some “prior knowledge” about the
world.

Given a planning domain with a set of state variables
in input, ALP requires the perception function fpxxx,vvvq “
śn
i“1 pXi

p¨|VVVJi “ vvvJiqq to be defined for all variable as-
signments VVV “ vvv. Furthermore, since ALP introduces new
values in the domain of state variables when the perception
function of a perceived value xxx is too low, we need a method
to intialise the perception function for these new values. For
this reason ALP requires in input also an initialiser pinit,Xi ,
for every perception variable Xi, that returns a PDF for any
observation xxx. Moreover, ALP requires in input some addi-
tional update parameters, α, β, γ, and δ, all in [0,1], which
determine how much the agent trusts in the various compo-
nents of the model. In this section, we will explain the mean-
ing of each parameter.

ALP iteratively refines the current planning domainD with
the associated perception function f , by executing the actions
proposed by EXPLORE (line 4),2 and by observing the action
effects through the perception variables xxx (line 5). In order
to determine the next state s10 (from line 6 to line 15), ALP
firstly computes ABOVETHRESHOLDpxxx, Sq for the observa-
tion xxx, which corresponds to the set of states such that the
likelihood of observing each xi is above the threshold p1´εq¨
max pXi . Formally: ABOVETHRESHOLDpxxx, Sq returns the
set ts P S | @i, pXipxi | srVVVJisq ě p1´ εq ¨max pXi

u. In-
tuitively, ABOVETHRESHOLD selects a set of states that are

2 A naı́ve implementation of EXPLORE can be a random gener-
ator of actions. A smarter strategy can take into account how much
has the agent already learned, which portion of the domain has been
already explored, and the part that still requires more learning.

Algorithm 1 ALP
Require: D “ 〈S,A, γ〉 {Initial planning domain}
Require: f “

ś

pXi {Initial perception function}
Require: s0 {Initial state}
Require: α, β, δ, ε {Update parameters}
Require: pinit,Xi {Perception initialization for Xi}
Require: MAXITER {Maximum number of exploration steps}
1: T Ð 〈〉{The empty history of transitions}
2: O Ð 〈〉{The empty history of observations}
3: for ITER Ð 1 to MAXITER do
4: aÐ EXPLOREpD, s0q
5: xxxÐ ACTpaq
6: S10 Ð ABOVETHRESHOLDpxxx, Sq
7: if S10 “ H then
8: S10 Ð ABOVETHRESHOLDpxxx,DomDomDompVVVqzSq
9: if S10 “ H then

10: DDD Ð EXTENDDOMpDDD, f,xxxq
11: f Ð EXTENDFpDDD, f,xxxq
12: S10 Ð ABOVETHRESHOLDpxxx,DomDomDomnewpVVVqq
13: end if
14: end if
15: s10 Ð ONEOFpargmaxsPS1

0
fpxxx, sq ¨ simps, γps0, aq | δqq

16: if s10 R S then
17: S Ð S Y ts10u
18: end if
19: T Ð APPENDpT, 〈s0, πps0q, s10〉q {extend the transition his-

tory with the last one}
20: O Ð APPENDpO, 〈s10,xxx〉) {extend the observation history

with the last one}
21: γ Ð UPDATETRANSpγ, T | αq
22: f Ð UPDATEPERCpf,O | βq
23: s0 Ð s10
24: end for

the candidates to be the next state, i.e., those states for which
the likelihood of observing xi is higher than a certain thresh-
old defined by the parameter ε P r0, 1s. At one extreme, when
ε “ 1, ABOVETHRESHOLDpxxx, Sq selects all states in S. On
the other extreme, if ε “ 0, ABOVETHRESHOLDpxxx, Sq se-
lects only those states in which fpxxx, sq reaches its maximum
value. The lower ε, the higher chance to introduce new states.
Intuitively, ε expresses how much we believe that the set of
states learned so far are sufficient for the planning domain to
model the real world.

At line 7, if there are no assignments among the current
states that pass the threshold, then ALP considers the as-
signments which are not in the set of states, i.e., DomDomDompVVVqzS
(line 8). If, even in this case, ABOVETHRESHOLD returns
the emtpy set (line 9), then we need to extend the possible
assignments to variable by extending their domain. This is
performed by EXTENDDOM (line 10), which extends the do-
main of one or more state variable.

EXTENDDOM (see Algorithm 2) takes in input the set DDD
of current state variables domains, the perception function
f , and the current observation xxx. It starts by selecting one
assignment s that maximises the likelihood of observing xxx.
Then it computes the set XXXălik of perception variables Xi

where the likelihood of the perceived value xi w.r.t. the state
s is below the threshold (line 2). For every variable Xi in
XXXălik, EXTENDDOM selects a domain inDDDJi “ tDomDomDompV q |

Algorithm 2 EXTENDDOM

Require: DDD {The set of domain of state variables}
Require: f “

ś

pXi {Perception function}
Require: xxx {The result of a perception}
1: sÐ ONEOFpargmaxsPDomDomDompVVVq fpxxx, sqq

2: XXXălik Ð tXi | pXipxi | srVVVJi sq ă p1´ εq ¨max pXiu

3: DDDH Ð minimal hitting set of tDDDJiuXiPXXXălik

4: for D PDDDH do
5: D Ð D Y t|D|u
6: end for
7: return DDD

Algorithm 3 EXTENDF

Require: DDD {The set of domain of state variables}
Require: xxx {The result of a perception}
Require: pinit,Xi

{Perception initializator for Xi}
1: for vvv PDomDomDompVVVq do
2: for Xi PXXX do
3: if pXip¨ | VVVJi “ vvvJiq is not defined then
4: pXip¨ | VVVJi “ vvvJiq “ pinit,Xipxiq
5: end if
6: end for
7: end for

V P VVVJiu to be extended with a new value. Since we want
to minimize the number of values introduced, we choose to
extend the set of domains DDDH that is a minimal hitting set3
for tDDDJiuXiPXXXălik

. (line 3). Each domain in D P DDDH is
extended with a new value, resulting in the set of |D| ` 1
elements t0, 1, 2, . . . , |D|u (line 5).

After executing EXTENDDOM, ALP calls EXTENDF (line
11) to initialise the perception function for the newly intro-
duced states. EXTENDF (see Algorithm 3) does this for all
the variables without perception function (line 4). The in-
troduction of the new values for state variables, and the ini-
tialisation guarantees that ABOVETHRESHOLD returns a non
empty set S10 of assignments. Then ALP selects the next state
s10 among the elements of S10 (line 15). The next state is one
among the states that maximize the product of the likelihood
of observing xxx and the similarity with the state predicted by
the transition function learned so far, i.e., γpa, s0q. Ideally
the next state will be the one that maximises the likelihood of
the perceived values, and the closest to the state predicted by
the model. These two sources of information however could
be contradictory, therefore we have to jointly maximize their
product.

The similarity/distance measure, simps, s1 | δq for s, s1 P
DomDomDompVVVq is defined as

m
ź

i“1

1` δ ¨ p1srVis“s1pViq ¨ p|DomDomDompViq| ´ 1q ´ 1srVis‰s1pViqq

1` δp|DomDomDompViq| ´ 1q

The parameter δ P r0, 1s allows us to adjust the similarity
measure between states. At one extreme, if δ “ 0, then every

3A set of A is an hitting set of a family of sets tBiu
n
i“1 if

AXBi ‰ H for every i. A is a minimal hitting set if there is no
hitting set A1 for tBiu

n
i“1 with |A1| ă |A|.

state is similar to every other state, i.e., simps, s1 | δq “ 1,
and the similarity does not play any role in the maximisa-
tion. If δ “ 1, sim coincides with the equality relation, i.e.,
simps, s1 | δq “ 1s“s1 , which implies that the maximiza-
tion will always return γpa, s0q. The interesting case is when
δ P p0, 1q. The lower δ, the more we trust in the perceptions
of the agent’s sensors. The higher δ, the more we trust in the
model learned so far.

If s10 is not part of the current set of states S, we have to
include it by weakening the constraints. Let C1, . . . , Ck be
the set of constraints defining S. To specify S Y ts10u, we
have to weaken each Ci as follows

Ci _
Ź

V PVVV V “ s10rV s (3)

and if the new values vnew is introduced we have to add the
following constraint:

V “ vnew Ñ
Ź

V 1‰V V
1 “ s10rV

1s (4)

for every variable V for which the domainDomDomDompV q has been
extended with the new value vnew.

Proposition 3.1 Let tC 1iu
h
i“1 be the set of constraints result-

ing from the revision of tCiuki“1 according to the rules (3)
and (4), then s |ù

Źh
i“1 C

1
i if and only if s P S Y ts10u.

ALP then extends the sequence of transitions T and of ob-
servations O, and learn the new transition function γ and the
new perception function f . The functions UPDATETRANS
and UPDATEPERC update the transition function γ and the
perception function f , respectively, depending on the data
available in T and O. The update functions take into ac-
count (i) the current model, (ii) what has been observed in the
past, i.e., T and O, and (iii) what has been just observed, i.e.,
〈s0, a, s10〉 and 〈s10,xxx〉. The update functions can be defined
in several different ways, depending on whether we follow
a cautious strategy, where changes are made only if there is
a certain number of evidences from acting and perceiving the
real world, or a more impulsive reaction to what the agent has
just observed. In the following, we describe in detail how we
create/update transitions, and how we create/update percep-
tion functions.
Updating transitions. UPDATETRANS decides whether and
how to update the transition function. If s10 is the state that
maximises the product of the perception function and of the
similarity, and s10 is different from the state predicted by
the planning domain, i.e., s10 ‰ γpa, s0q, then γ may need
to be revised to take into account this discrepancy. Since
our domain is deterministic (the transition γ must lead to a
single state), if the execution of an action leads to an un-
expected state, we have only two options: either change
γ with the new transition or not. We propose the follow-
ing transition update function that depends on α: We define
UPDATETRANSpγ, T qps, aq “ s1 where s1 is a state that max-
imizes

α ¨ 1s1“γps,aq ` p1´ αq ¨ |ti | Ti “
〈
s, a, s1

〉
u| (5)

where Ti is the i-th element of T , and α P r0, 1s. Notice
that, if α “ 1, we are extremely cautious, we strongly believe
in our model of the world, and we never change the transi-
tion γ. Conversely, if α “ 0, we are extremely impulsive,

we do not trust our model, and just one evidence makes us to
change the model. In the intermediate cases, α P p0, 1q, de-
pending on the value of α, we need more or less evidence
to change the planning domain. In order to update γ, we
have to revise the action specifications. We replace every rule
r about a of the form r : precprq

a
ÝÑ eff prq, such that

s |ù precprq and not s |ù eff prq with the following rules for
every Vi

r1i : premprq ^ Vi ‰ srVis
a
ÝÑ eff prq

and the following rule for all j, such that srVjs ‰ s1rVjs

r2j :
Źm
j“1 Vj “ srVjs

a
ÝÑ Vj “ s1rVjs

Notice that this method might generate a proliferation of very
specific rules. Therefore after this step it is convenient to ap-
ply some algorithm for rule factorisation. Examples of fac-
torization rules are the following:

Γ, V “ v
a
ÝÑ V 1 “ v1

Γ, V ‰ v
a
ÝÑ V 1 “ v1

are merged in Γ
a
ÝÑ V 1 “ v1

Another example, is the following. Suppose thatDomDomDompV q “
t0, 1, 2u, then:

Γ, V “ 0
a
ÝÑ V 1 “ v1

Γ, V “ 1
a
ÝÑ V 1 “ v1

are merged in Γ, V ‰ 2
a
ÝÑ V 1 “ v1

A final example is the following. Suppose thatDomDomDompV q and
DomDomDompV 1q are equal to t0, 1u then

Γ, V “ 0, V 1 “ 0
a
ÝÑ V 2 “ v2

Γ, V “ 1, V 1 “ 1
a
ÝÑ V 2 “ v2

are merged in

Γ, V “ V 1
a
ÝÑ V 2 “ v2

Dealing with rule factorisation can be considered as a sepa-
rate topic and for lack of space is not treated in this paper.
However, this operation results crucial in order to generate
compact and “understandable” description of the transition
function.
Updating the perception function. The update of the per-
ception function is based on the current perception function
fpxxx, sq for s P S and the set of observations O. We sup-
pose that each function pXi composing the perception func-
tion f “

ś

i pXi
, belongs to a parametric family with param-

eters θθθXi
. For every partial assignment VVVJi “ vvvJi to the state

variables VVVJi from which Xi depends on, pXi
p¨ | vvvJiq is ob-

tained by setting the parameters θθθXi
to some value θθθXi,vvvJi

.
In Example 1, pX is a Gaussian distribution with parame-
ters θθθX “ 〈µX , σX〉. For every value r P DomDomDomplocprqq,
µX,r and σX,r are the mean and the standard deviation of
pX and pXpx | µX,r, σX,rq “ N px, µ “ µX,r, σ “ σX,rq
expresses the likelihood of observing x when the robot is
in the room r. We denote by θθθXXX all the parameters in
θθθX1 , . . . , θθθXn , and θθθXXX,vvv , for vvv P DomDomDompVVVq, their instantia-
tions θθθX1,vvvJ1

, . . . , θθθXn,vvvJn
.

Given a set of observations about the state s, Opsq “〈
xxxp0q, . . . ,xxxpkq

〉
and a new observation

〈
xxxpk`1q, s

〉
we have

to update the values of θθθXXX,s in order to maximise a combi-
nation of the current belief of the agent and the likelihood of

the entire set of observations extended with the new observa-
tion. Also in this case the agent can be more or less careful in
the revision, being more or less confident in its beliefs. The
update equation is therefore defined as:

θθθ1XXX,s “ β ¨ θθθXXX,s ` p1´ βq ¨ argmax
θθθ1

Lpθθθ1,xxxpiq, . . . ,xxxpk`1q, sq

where the parameter β P r0, 1s, expresses agents’s confidence
in its beliefs; the higher the value of β the more careful the
agent is in the revision, and

Lpθθθ,xxxp1q, . . . ,xxxpkq, sq9
k

ź

j“1

fpxxxpjq, sq

Due to the factorization of the perception function f “
ś

pXi
, we can separately update each set of parameters θθθXi

associated to the perception variable Xi, defining therefore

θθθk`1
Xi,s

“ β ¨ θθθkXi,s ` p1´ βq ¨ argmax
θθθ1
Xi

k
ź

j“1

pXi
px
pjq
i | θθθ1Xi

q

(6)

4 Explanatory Examples
Let us now show how ALP works in Example 1. In Exam-
ple 2, we first show how ALP learns new states by extending
the domain of state variables and weakening constraints. In
Example 3, we show how ALP can deal with highly unex-
pected events by adapting the planning domain.

Example 2 Let us suppose that the robot starts with the plan-
ning domain described in Example 1.

1. Suppose that the robot believes to be in the state s0
where locprq “ 0, locppq “ 1, and loaded “ 0 (shortly
written as s0 “ 010), and that the world is in the state
shown in the top-left rectangle of Figure 1. Suppose that
EXPLORE generates the action E (line 4) and the execution
of this action moves the robot of about one unit in the east
direction. The observation returned after the execution (line
5) is xxx “ 〈x, y, t, w〉 with x « 1.5, because the robot is mov-
ing east of approximately 1 unit; y « 0.5, because the robot
is moving approximately horizontally; t « 0, because, dif-
ferently from the model, the pack is not in that room; finally
w « 0, since the robot is carrying nothing.

2. ALP computes the set of states S10 Ď S that are above
the threshold (line 6). Let us suppose that ε “ 0.5, i.e., we de-
cide to balance our trust in the initial set of states and in the
perceptions after executing actions. The robot position per-
ception variables x and y indicate that the robot is in room
1 (locprq “ 1). The sensor tag perception variable t indi-
cates that the pack is not in the same room of the robot, i.e.,
, locppq is equal to 0, or 2, or 3. The weight perception vari-
able w indicates that the robot is not loaded, i.e., loaded “ 0.
Therefore, S10 “ t100, 120, 130u.

3. Since S10 ‰ H, ALP computes the set S10 of the states
in S10 that maximise fpx, y, t, w, sq ¨ simps, 110 | δq. (line
15). Notice that γpE, s0q “ γpE, 010q “ 110. Notice that

in all the states s P S10, fpx, y, t, w, sq is the same, and it
approximately equal to

N p1.5 | µ “ 1.5, σ “ 1q ¨N p0.5 | µ “ 0.5, σ “ 1q

¨Bp0 | α “ 1, β “ 2q ¨ Γp0 | k “ 0, θ “ 1q

i.e., the robot is unloaded and in room 1, and the pack is in a
different room. The values of the factor simps, 110 | δq is also
the same for all the elements of S10. Therefore ALP randomly
select one state of S10. Suppose that ALP selects s10 “ 130.

4. Then ALP jumps to line 19 and the transition
〈010,E, 130〉 is added to the transition log T , and the ob-
servation 〈130,xxx〉, with xxx « 〈1.5, 0.5, 0, 0〉 is added to the
observation log O (line 20).

5. Then ALP revises the transition function γ (line 21). Ac-
cording to equation (5), with a “ E and s “ 010, we have:

s1 equation (5) α “ 0 α “ 1
2

α “ 1
130 α ¨ 0` p1´ αq ¨ 1 1 1

2
0

110 α ¨ 1` p1´ αq ¨ 0 0 1
2

1
others α ¨ 0` p1´ αq ¨ 0 0 0 0

If α ą 1{2 then γ will not be changed, otherwise γp010,Eq “
130. Let us suppose that α ą 1{2.

6. The new current state s0 is set to 130 (line 23), and a
new action is generated by EXPLORE (line 4). Let’s suppose
it is again E. The values returned by the perception function
are x « 2.5 and y « 0.5, since the action E moves the robot
east of one unit (this is possible since actually there is a room
east of room 1); t « 1 (since now the pack is actually in
the same room of the robot), and w « 0 (since the robot is
unloaded).

7. Now there are no states in S that are above the threshold
(line 6), since pXp2.5 | sq is very low for all the states s P S.
Therefore S10 “ H.

8. ALP checks therefore if there are assignments to state
variables that are not states in S that have the perception
function above the threshold (line 8). Even in this case, for the
same reason, no assignment allows for a perception function
that is above the threshold. Therefore S10 is again empty.

9. ALP generates therefore a new state by extending the
domain of state variables (line 10). EXTENDDOM starts by
computing the states that maximizes the likelihood of ob-
serving 〈x, y, t, w〉 « 〈2.5, 0.5, 1, 0〉, i.e., s “ 110. No-
tice that PY p« 0.5 | locprq “ 1q is close to the maxi-
mum of PY ; similarly for PT p« 1 | locprq “ locppqq and
PW p« 0 | loaded “ 0q are also close to the maximum of PT
and PW respectively. So if ε is small enough (i.e., the robot
is enough “open” to the introduction of new states), X is the
only variable for which PXp« 2.5 | locprq “ 1q is below the
threshold. ThereforeXXXďlik “ tXu, andDDDH “ troomu (line
3 of algorithm EXTENDDOM).

10. The domain room is therefore extended with a new
value, obtaining room “ t0, 1, 2, 3, 4u. Notice that, since
room is also the domain of the variable locppq, this implies
that we also extend the domain of this variable. With this ex-
tension we pass from 4 ¨ 4 ¨ 2 “ 32 possible assignments to
5 ¨ 5 ¨ 2 “ 50 possible assignments.

11. EXTENDF (line 11) extends the perception function for
the new assignments: pXpx | locprq “ 4q “ N px |

µlocprq“4 « 2.5, σ “ 1q, and pY py | locprq “ 4q “ N px |
µlocprq“4 « 0.5, σq. pT pt | sq when s contains the new value
4 is already defined, and the perception function for W is
not extended since it is not related to the state variable with
domain room.
12. The s10 that maximises the new perception function is

then 440 (lines 15 and 15). ALP therefore updates the con-
straints in order to include only 440 as a new state. According
to Formula (4), ALP generates the following new constraints:

locprq “ 4 Ñ locppq “ 4^ loaded “ 0 (7)
locppq “ 4 Ñ locprq “ 4^ loaded “ 0 (8)

According to Formula (3), ALP updates the previous con-
straint as follows:

ploaded “ 1 Ñ locprq “ locppqq_

plocprq “ 4^ locppq “ 4^ loaded “ 0q

which is equivalent to loaded “ 1 Ñ locprq “ locppq. There-
fore ALP adds only the constraints (7) and (8).
13. T becomes 〈〈010,E, 130〉 , 〈130,E, 440〉〉; O be-

comes approximately the list of 〈« 〈0.5, 0.5, 0, 0〉 , 010〉,
〈« 〈1.5, 0.5, 0, 0〉 , 130〉, and 〈« 〈2.5, 0.5, 1, 0〉 , 440〉.
14. Suppose that the parameters α and β are high enough

not to affect the change of γ and that they have a minimal
effect on the perception function. The new state s0 is now set
to 440.
15. Suppose that EXPLORE returns action load, L. The

new perceived values are approximately 〈x, y, t, w〉 «

〈2.5, 0.5, 1, 1〉. None of the states in S is such that pW pw | sq
is above the threshold (line 6). ALP checks therefore if
there is some assignment that does not satisfy the constraints
with a better likelihood (line 8). Indeed the assignment
441 is such that all the likelihoods pXp2.5 | locprq “ 4q,
pY p0.5 | locprq “ 4q, pT p1 | locprq “ 4, locppq “ 4q, and
pW p1 | loaded “ 1q are above the threshold. This meas
that s10 “ 441 is the new state, and ALP adds it to S (line
17). Adding 441 to the set of states amounts to revise the con-
strains following formula (3). After some simplification, ALP
obtains the constraints

locprq “ 4 Ñ locppq “ 4 (9)
locppq “ 4 Ñ locprq “ 4 (10)

ploaded “ 1 Ñ locprq “ locppqq (11)

Example 3 We continue the previous example showing how
ALP adapts the planning domain to unexpected situations.

1. Suppose that EXPLORE returns the action W (go west)
and that while executing this action the pack unexpectedly
falls down and remains in room C, and simultaneously the
cat (with a similar weight of the pack) jumps on top of the
robot (!) (see bottom-right rectangle of Figure 1).

2. The sensors return xxx « 〈1.5, 0.5, 0, 1〉. fpxxx, sq is very
low (below the threshold) for all the states in S since w « 1
should mean that the pack is loaded, while t « 0 tells us
that the pack is not in the same room of the robot, and the
constraint (2) imposes that locprq “ locppq.

3. ALP now checks the assignments to state variables that
are not states in S (line 8). The assignment correspond-
ing to the actual situation, i.e., the robot is loaded and
in a different room from the pack, that is 141, maximises
fpxxx, sq ¨ simps, γp441,Wq | δq (with δ ă 1). To extend S
with 141 (line 17), ALP weakens the constraints according
to rules (3) and (4) obtaining:

locprq “ 4 Ñ locppq “ 4

locppq “ 4 Ñ locprq “ 4_ plocprq “ 1^ loaded “ 1q

loaded“1 Ñ locprq“ locppq _ plocprq“1^ locppq“4q

4. Finally, suppose that, while the robot is carrying the
pack, the cat jumps on top of the pack. The perception vari-
able W will return a value around 2 (1 for the pack plus 1
for the cat) and pW pw | loadedq will be below the threshold
for all the states s P S. Then ALP will extend the domain of
the Boolean variable loaded, which becomes a three-valued
variable, i.e., nr of carried objects is extended from t0, 1u to
t0, 1, 2u.

5 Related Work
As far as we know, the problem addressed in this paper is
novel, as well as the approach and the proposed solution.
Some works on domain model acquisition focus on the prob-
lem of learning action schema from collections of plans, see,
e.g. [Gregory and Cresswell, 2016; McCluskey et al., 2009;
Cresswell et al., 2013; Mourão et al., 2012; Mehta et al.,
2011; Zhuo and Yang, 2014]. They do not consider percep-
tions and the set of states is given.

Works on learning and planning in POMDP (see, e.g.,
[Ross et al., 2011; Katt et al., 2017]) learn a model of the
POMDP domain through interactions with the environment,
with the goal to do planning, e.g., by reinforcement learning
or by sampling methods. They learn the transitions, while the
set of states is given as well as the mapping through observa-
tions.

Some works on POMDP Model Learning, see, e.g., [van
Otterlo, 2009; Zheng et al., 2018], drop the assumption that
the set of states is given or the bound on the number of states
is known. Two main differences with our work still exist.
First, we do not learn a POMDP model, we learn a determin-
istic model that enables efficient planning techniques. Sec-
ond, we learn the set of states represented through state vari-
ables and constraints, which is the practical way to represent
a planning domain.

Our approach shares some similarities with the work on
planning by reinforcement learning [Kaelbling et al., 1996;
Sutton and Barto, 1998; Geffner and Bonet, 2013; Yang et
al., 2018; Parr and Russell, 1997; Ryan, 2002; Leonetti et al.,
2016], since we learn by acting in the environment. However,
these works focus on learning policies and assume the set of
states and the correspondence between continuous data from
sensors and states are fixed.

Different approaches are those followed by LatPlan and
Causal InfoGAN. Causal InfoGAN [Kurutach et al., 2018]
learns discrete or continuous models from high dimensional
sequential observations. This approach fixes a priori the size
of the discrete domain model, and performs the learning off

line. Differently from our approach their goal is to gener-
ate an execution trace in the high dimensional space. LatPlan
[Asai and Fukunaga, 2018] takes in input pairs of high dimen-
sional raw data (e.g., images) corresponding to transitions. It
also takes an offline approach. Our approach is online and
local, we can therefore deal with a dynamic environment.

A complementary approach is pursued in works that plan
and learn directly in a continuous space, see e.g., [Abbeel et
al., 2006; Mnih et al., 2015; Co-Reyes et al., 2018]. These
approaches do not require a perception function, since there is
no abstract discrete model of the world. Such approaches are
very suited to address some tasks, e.g., moving a robot arm to
a desired position or performing some manipulations. How-
ever, we believe that, in several situations, it is conceptually
appropriate and practically efficient to learn an abstract dis-
crete and deterministic model where planing is much easier
and efficient to perform.

Finally, we share the idea of a planning domain at the ab-
stract level with all the work on abstraction on MDP models,
see, e.g., [Abel et al., 2018]. However, our problem and ap-
proach is substantially different, since in the work on abstrac-
tion on MDP models the mapping between the original MDP
and the abstract states is given, while we learn it.

6 Conclusion and Future Work
We believe this work opens a new perspective in learning
planning domains and perceptions through continuous ob-
servations. The framework provides the ability to learn do-
mains represented with state variables and constraints, which
is the natural way to represent planning domains. Learning
a finite deterministic planning domain represented with state
variables opens up the possibility to use all the available ef-
ficient planners to reason at the abstract level. Learning the
perception function takes into account the fact that, while an
agent can conveniently plan at the abstract level, it perceives
the world and acts through sensors and actuators that work
in a continuous space. Learning perception functions allows
us to learn new states that represent unexpected situations of
the world. Finally, the framework allows us to learn domains
incrementally, and to adapt to a changing environment.

Still a lot of work remains to do. A proof of convergence
to coherent models should be provided, and the conditions
of convergence should be defined. The framework should be
implemented and an experimental evaluation should be per-
formed. Additional work needs to be done to support more
sophisticated action and constraint revisions on the basis of
the observed transition. Finally, the ALP algorithm should
be integrated with a state-of-the-art on-line planner and with
efficient exploration techniques.

References
[Abbeel et al., 2006] Pieter Abbeel, Morgan Quigley, and

Andrew Y. Ng. Using inaccurate models in reinforcement
learning. In ICML, 2006.

[Abel et al., 2018] David Abel, Dilip Arumugam, Lucas
Lehnert, and Michael L. Littman. State abstractions for
lifelong reinforcement learning. In ICML, 2018.

[Asai and Fukunaga, 2018] Masataro Asai and Alex Fuku-
naga. Classical planning in deep latent space: Bridging
the subsymbolic-symbolic boundary. In AAAI, 2018.

[Co-Reyes et al., 2018] J. D. Co-Reyes, Y. Liu, A. Gupta,
B. Eysenbach, P. Abbeel, and S. Levine. Self-consistent
trajectory autoencoder: Hierarchical reinforcement learn-
ing with trajectory embeddings. In ICML 2018, 2018.

[Cresswell et al., 2013] Stephen Cresswell, Thomas Leo
McCluskey, and Margaret Mary West. Acquiring planning
domain models using LOCM. Knowledge Eng. Review,
28(2):195–213, 2013.

[Geffner and Bonet, 2013] H. Geffner and B. Bonet. A Con-
cise Introduction to Models and Methods for Automated
Planning. Synthesis Lectures on Artificial Intelligence and
Machine Learning. Morgan & Claypool Publishers, 2013.

[Gregory and Cresswell, 2016] Peter Gregory and Stephen
Cresswell. Domain model acquisition in the presence of
static relations in the LOP system. In IJCAI, 2016.

[Henaff et al., 2017] Mikael Henaff, William F. Whitney,
and Yann LeCun. Model-based planning in discrete action
spaces. CoRR, abs/1705.07177, 2017.

[Kaelbling et al., 1996] Leslie Pack Kaelbling, Michael L.
Littman, and Andrew W. Moore. Reinforcement learning:
A survey. J. Artif. Intell. Res., 4:237–285, 1996.

[Katt et al., 2017] Sammie Katt, Frans A. Oliehoek, and
Christopher Amato. Learning in pomdps with monte carlo
tree search. In ICML, 2017.

[Kurutach et al., 2018] Hanard Kurutach, Aviv Tamar,
Ge Yang, Stuart Russell, and Pieter Abbeel. Learning
plannable representations with causal infogan. In NIPS,
2018.

[Leonetti et al., 2016] M. Leonetti, L. Iocchi, and P. Stone. A
synthesis of automated planning and reinforcement learn-
ing for efficient, robust decision-making. Artif. Intell.,
241:103–130, 2016.

[McCluskey et al., 2009] Thomas Leo McCluskey, Stephen
Cresswell, N. Elisabeth Richardson, and Margaret Mary
West. Automated acquisition of action knowledge. In
ICAART, 2009.

[Mehta et al., 2011] Neville Mehta, Prasad Tadepalli, and
Alan Fern. Autonomous learning of action models for
planning. In NIPS, 2011.

[Mnih et al., 2015] V. Mnih, K. Kavukcuoglu, D. Silver,
A.i A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Ku-
maran, D. Wierstra, S. Legg, and D. Hassabis. Human-
level control through deep reinforcement learning. Nature,
518(7540):529–533, 2015.

[Mourão et al., 2012] Kira Mourão, Luke S. Zettlemoyer,
Ronald P. A. Petrick, and Mark Steedman. Learning
STRIPS operators from noisy and incomplete observa-
tions. In UAI, 2012.

[Parr and Russell, 1997] R. Parr and S. J. Russell. Reinforce-
ment learning with hierarchies of machines. In NIPS,
1997.

[Pasula et al., 2004] Hanna Pasula, Luke S. Zettlemoyer, and
Leslie Pack Kaelbling. Learning probabilistic relational
planning rules. In ICAPS, 2004.

[Pasula et al., 2007] Hanna M. Pasula, Luke S. Zettlemoyer,
and Leslie Pack Kaelbling. Learning symbolic models
of stochastic domains. J. Artif. Intell. Res., 29:309–352,
2007.

[Ross et al., 2011] Stéphane Ross, Joelle Pineau, Brahim
Chaib-draa, and Pierre Kreitmann. A bayesian approach
for learning and planning in partially observable markov
decision processes. Journal of Machine Learning Re-
search, 12:1729–1770, 2011.

[Ryan, 2002] M. R. K. Ryan. Using abstract models of be-
haviours to automatically generate reinforcement learning
hierarchies. In ICML, 2002.

[Sutton and Barto, 1998] R. S. Sutton and A. G. Barto. Re-
inforcement learning - an introduction. Adaptive compu-
tation and machine learning. MIT Press, 1998.

[van Otterlo, 2009] Martijn van Otterlo. The Logic of Adap-
tive Behavior - Knowledge Representation and Algorithms
for Adaptive Sequential Decision Making under Uncer-
tainty in First-Order and Relational Domains, volume 192
of Frontiers in Artificial Intelligence and Applications.
IOS Press, 2009.

[Yang et al., 2007] Q Yang, K Wu, and Y Jang. Learning
action models from plan examples using weighted max-
sat. Artif. Intell., 171:107–143, 2007.

[Yang et al., 2018] F. Yang, D. Lyu, B. Liu, and
S. Gustafson. PEORL: integrating symbolic plan-
ning and hierarchical reinforcement learning for robust
decision-making. In IJCAI, 2018.

[Zettlemoyer et al., 2005] Luke S. Zettlemoyer, Hanna Pa-
sula, and Leslie Pack Kaelbling. Learning planning rules
in noisy stochastic worlds. In AAAI, 2005.

[Zheng et al., 2018] Wei Zheng, Bo Wu, and Hai Lin.
POMDP model learning for human robot collaboration.
In 57th IEEE Conference on Decision and Control, CDC
2018, Miami, FL, USA, December 17-19, 2018, pages
1156–1161, 2018.

[Zhuo and Kambhampati, 2013] Hankz Hankui Zhuo and
Subbarao Kambhampati. Action-model acquisition from
noisy plan traces. In IJCAI, 2013.

[Zhuo and Yang, 2014] Hankz Hankui Zhuo and Qiang
Yang. Action-model acquisition for planning via transfer
learning. Artif. Intell., 212:80–103, 2014.

[Zhuo et al., 2010] Hankz Hankui Zhuo, Qiang Yang,
Derek Hao Hu, and Lei Li. Learning complex action mod-
els with quantifiers and logical implications. Artif. Intell.,
174(18):1540–1569, 2010.

	Introduction and Motivations
	Perceived Planning Domains
	The Incremental Learning Algorithm
	Explanatory Examples
	Related Work
	Conclusion and Future Work

