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Abstract

Removing algorithmic bias to create ‘fair’ learning models has become a pressing1

topic in recent years. It has been shown that despite our best efforts to remove bias,2

under some conditions, such as dataset shift, ‘fair’ models actually exacerbate the3

problem and introduce more bias into our models. We consider the case where the4

training set is a severely biased sub-population of a dataset but unbiased unlabeled5

data is available. We develop a semi-supervised approach uses invertible neural6

networks to combat the problem. We leverage the invertibility of the network7

for exact density estimation in order keep as much non-sensitive information as8

possible. We demonstrate the effectiveness of our approach on a colorized MNIST9

dataset and datasets with tabular data.10

1 Introduction11

It is often difficult to control the relationships a machine learning (ML) system finds. Recent work [1]12

has shown that even state-of-the-art ML systems strongly rely on textures and not shapes when,13

e.g., classifying images of animals. This is not merely a theoretical problem, because it limits the14

generalisation of these systems in practice. If a human has never seen a black dog, they can still15

recognise it as a dog but an ML system may fail to do so.16

The cause of the problem is that the ML system relies on spurious correlations that may exist in the17

training set, but not in the real world. What we would want the network to learn are the true relations18

that are invariant to these spurious features. However, if the training set contains spurious correlations,19

then an ML system cannot learn the true relations just from that dataset. We either need to supply an20

inductive bias (as recently investigated by Locatello et al. [2]) or give additional information.21

A concrete dataset that allows us to investigate this problem in detail is the coloured MNIST dataset.22

In coloured MNIST, either the background or the digits are coloured and the relation between23

digit class and colour differs between training and test set. In the training set, there is a 1-to-124

correspondence between digit class and colour, but in the test set this correspondence does not exist.25

This can be understood as an extreme form of sampling bias where the training set only contains those26

samples that have very specific combinations of digit class and colour. The task with this dataset is to27

predict the correct digits in the test set. However, an ML system trained on the training set, learns the28

spurious correlation between colour and training label, because it is easier than learning to recognise29

the shape. In other words, the classifier is taking a shortcut that it shouldn’t take. An ideal classifier30

would learn to recognise digits and be invariant to colour changes.31

The concept of invariance is also important in the closely related field of algorithmic fairness. There,32

the goal is usually to make predictions that are invariant to sensitive attributes like gender and race.33

Furthermore, sampling bias has also been considered to be a problem of fairness. For example, Kallus34

and Zhou [3] found that the Stop, Question and Frisk dataset that was collected in New York City had35

very different demographics that New York City. This has been termed ‘residual unfairness’[3]; even36
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a classifier explicitly conditioned for fairness can yield grossly unfair predictions within the compass37

of the broader population, should the underlying training data be only an unrepresentative subset of it.38

Our solution to the coloured MNIST problem is also applicable to these fairness problems. The39

approach is based on the idea of producing a representations of the inputs that is invariant to the40

spurious correlations. To this end, we assume the existence of unlabelled data which is ‘fair’ having41

minimal spurious correlation. We argue that this is a realistic assumption: while labelled data is42

relatively limited, given the resources needed to produce it, unlabelled data is abundant (census data,43

electoral rolls). The invariant representation is learned from this data. As we do not have labels for44

this data and cannot know which parts of the input are the most important for predicting the labels,45

we are using invertible neural networks to ensure that no information is lost that could be relevant for46

classification.47

2 Background48

2.1 Coloured MNIST49

Coloured MNIST is a dataset with very strong spurious correlations. A standard classifier trained on50

the training set will not generalize to the test set. We present some previous works on this topic.51

Adversarial approaches. This same problem of learning from biased data was tackled by [4]52

who a regularization loss that aims ot penalise mutual information between the feature embedding53

the spurious variable and thereby enforce their independence. This is realised with an adversarial54

training process, borrowing the gradient reversal technique showcased in Ganin et al. [5]. The authors55

construct the coloured MNIST dataset in two steps. First, 10 distinct colours are assigned to each digit56

uniquely; these colours are parameterize the means of 10 corresponding Normal distributions from57

which color samples are drawn. The standard deviation σ of the Normal distribution controls how58

close the sampled colours are to the mean colours. During training the colors are sampled abiding by59

this one-to-one colour mapping; at test time there is no such designation and colours are sampled60

randomly and unrestrictedly from the complete palette. As such a classifier that lazily minimises61

its loss by treating the pixel values as a lookup table falls flats at inference owing to a shift in the62

distribution of the spurious variables away that of the target.63

For their training strategy, they train a neural network to predict the digit class y and have another64

network take one of the intermediate layers as input to predict the colour from it. The first network65

tries to prevent the adversary from making correct predictions. Thus, it has to discard the colour66

information.67

For this approach to work, the adversary needs to distinguish between the digit class and the colour.68

To do this, the adversary gets to see the actual colour and not just the mean. As the sampled colour69

varies according to the Normal distribution, the actual colour and the digit class are not as strongly70

correlated as the mean colour and the digit class, which allows the network to disentangle the two.71

This works better, the larger σ is. A limitation is that this approach does not work at all when σ = 0.72

We address this limitation in our work.73

Unsupervised approaches. There is a large literature on unsupervised disentangled representations;74

we only highlight one of the more recent ones. Locatello et al. [2] provide a theorem which states75

that the unsupervised learning of disentangled representations is impossible without inductive biases76

on both the data set and the models. Thus, such methods can usually only be used for one task or77

only for one kind of data.78

2.2 Literature on Fair Representations79

As mentioned in the introduction, the goal of producing invariant representations is similar to that80

of producing fair representations. In fairness problems, there is usually a sensitive attribute s (for81

example, gender or race), that should not be used to make decisions. A fair representation z is then82

one for which Z ⊥ S holds and which is predictive of the class label y. The methods are often based83

on variational autoencoders (VAEs) [6–8].84

The achieved fairness can be measured with one of several fairness metrics. These are however85

usually defined with respect to predictions and not representations. The two most important ones86
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are Demographic Parity and Equality of Opportunity. It is not entirely clear which metric should87

be used to judge invariant (or fair) representations, but usually Demographic Parity is used [6–8].88

Demographic Parity demands Ŷ ⊥ S where Ŷ refers to the predictions of the classifier.89

A central aspect of all fairness methods is the accuracy-fairness trade-off. As mentioned, the fair90

representation should be invariant to s (→ fairness) but still be predictive of y (→ accuracy). These91

desiderata cannot, in general, be satisfied simultaneously if s and y are correlated (Oliver, do we have92

a reference for this?). We explore this trade-off with our method as well.93

The methods for fair representations can in theory be used in an unsupervised fashion (without94

knowledge of y), but rarely are in practice. As Louizos et al. [6] state, the reason is that when s is95

removed from the representation, the representation can become degenerate with respect to y. For96

this reason, y usually is supplied during training and the representation is encouraged to be predictive97

of it. Our approach avoids this problem.98

2.3 Invertible Neural Networks99

Invertible neural networks are a class of neural network architectures that are characterized by three100

properties:101

the following list has been copied from another paper102

(i) The mapping from inputs to outputs is bijective103

(ii) both forward and inverse mapping are efficiently computable104

(iii) both mappings have a tractable Jacobian, which allows explicit computation of posterior (not105

posterior) probabilities.106

Such flow-based models cachieve exact maximum likliehood estimation [9], warping a known base107

density with a series of invertible transformations by computing the resulting, highly-model, but still108

normalised, density, by leveraging the change of variable theorem.109

Flow-GAN [10] combines the exact log-likelihood estimation of the invertible network with the110

adversarial training of a GAN.111

logP (z) = logP (x)−
∑

log

∣∣∣∣det( dhi
dhi−1

)∣∣∣∣ (1)

Invertible Networks are restricted to using transformations that are invertible and for which the112

determinant of the Jacobian can be tractably computed, most often by choosing transformations that113

ensure its lower or upper triangularity [11][12]. This rules out the use of most conventional Neural114

Network layers, but the set of known practical invertible transformations has grown steadily over115

recent years. Dinh et al. [13] proposed the use of invertible batch normalization while Kingma and116

Dhariwal [12] introduced Actnorm, that performs an affine (scale and shift) transformation akin to117

batch normalisation, and invertible 1x1 convolutions which generalise the permutation operation118

proposed in Dinh et al. [11] Finally, Dinh et al. [11] proposed Coupling Layers which split the input119

into two parts, apply a non-invertible transformation to one of the parts and then recombine them120

such that the whole operation is invertible.121

That is, input vector u is split into two evenly sized vectors: u = [u1,u1]. The output of the122

Coupling Layer is then a concatenation of vectors v1 and v2, where v1 = u1 + f(u2) and v2 = u2;123

and f is a non-invertible function.124

2.3.1 Mutual Information125

The cascade of homeomorphic layers allow us to preserve the mutual information between input and126

hidden representation127

From InfoGAN “If A and B are related by a deterministic, invertible function, then maximal mutual128

information is attained”.129
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3 Using Invertible Networks to Create Fair Representations130

3.1 General idea131

x

Squeeze

Invertible Block

1

1x1 Conv

k

zs zy GRL s

z

1x1 Conv

ActNorm

Affine Coupling

Figure 1: Architecture of our invertible net-
work. We used the same normalising flow
steps used in [12], which are repeated to depth
k, with a final 1x1 Convolution to engender
further mixing of the output dimensions. The
network produces a bipartite latent encoding,
z, with partitions distinguished by the inde-
pendence enforced by means of a Gradient
Reversal Layer (GRL) [5] between zy and the
nuisance variable, while zs is unconstrained
in the information it may contain.

For the task that we are considering, we assume that132

we have inputs x ∈ X and corresponding labels133

yx ∈ Y . Furthermore, there is a nuisance label sx ∈134

S associated with each input x which we do not want135

to predict. Let X , S and Y be random variables that136

take on the values x, s and y, respectively.137

Both y and s are predictive of x. So,138

I(X;Y ), I(X;S) > 0, where I(·; ·) is the mutual139

information. Note, however, that the conditional en-140

tropy is non-zero: H(S|X) 6= 0, i.e., S is not com-141

pletely determined by X .142

The difficulty emerges in the construction of the fully-143

supervised training dataset in which correspondence144

between S and Y is exaggerated compared to the145

test set. While demonstrably contrived, analogous146

scenarios arise naturally in a number of settings in147

which we only have access to the labels of a biasedly148

sampled subpopulation; since the nuisance variable149

is undesirably indicative of the class label, learning150

a model naïvely using this dataset would incur sim-151

ilar bias when deployed to a superpopulation devoid152

of it. Failure to account for this distributional shift153

can have dire consequences, especially when data is154

sparse; if our training and test distributions are not155

sufficiently well-matched, then the problem is not156

ignorable and the effects of the pathological variable157

need to be weeded out in order for us to achieve158

good generalization. Let (Xtr , Str , Y tr ) then be the159

random variables sampled for the training set and160

(Xte , Ste , Y te) be the random variables for the test161

set. The training and test sets thus induce the follow-162

ing inequality of on the mutual information:163

I(Str ;Y tr )� I(Ste ;Y te) ≈ 0 . (2)

We leverage recent advancements in flow-based modelling in the form of an invertible network f ,164

which maps the inputs x to a representation z: f(x) = z. z is a vector in which each element165

follows an isotropic Gaussian, N (z; 0, I). We interpret the vector z as being the concatenation of166

two smaller vectors: z = [zs, zy]. (The choice of indices will soon be clarified.) The lengths of zs167

and zy are a free parameter. As f is invertible, x can be recovered in the following manner:168

x = f−1([zs, zy]) (3)

We call the corresponding random variables Zs and Zy .169

Our goal then is to make zy not predictive of s:170

I(Zy;S)
!
= 0 (4)

zs is not needed for our purposes but as we use an invertible network, the output dimension has to171

be equal to the input dimension. So we cannot just output zy, but have to output zs as well. In an172

analogy from thermodynamics, zs can be thought of as the place to dump the waste heat from the173

network.174

To accomplish the objective in Eq (4), we introduce an additional regularisation term which pushes175

the network to minimise the mutual information term. Our complete objective function is then given176
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as:177

min
θ

Ex∼X [− logPθ(x)] + λI(Zy;S) (5)

where θ refers to the trainable parameters of the invertible network f . We get Pθ(x) from Eq (1).178

In the fashion of a GAN, we optimise this loss by playing a min max game, in which our invertible179

network serves as the generative component. The adversary is an auxiliary classifier g, which receives180

zy as input and attempts to predict the shortcut label s.We denote the parameters of the adversary181

as φ; for the parameters of the invertible network we use θ as before. Furthermore, let b(·) be the182

function that maps z to zy: b(z) = zy . The objective from Eq (5) is then realised as183

min
θ∈Θ

max
φ∈Φ

Ex∼X [logPθ(x)− λLc(gφ(b(fθ(x))); s)] . (6)

However, the complication is that we want zy to still be predictive of y, which precludes us from di-184

rectly training on the target-labelled dataset (Xtr , Str , Y tr ), where y and s are so strongly correlated185

that removing the information about s also removes the information about y, since the loss offers no186

distinction in this respect. We therefore need another source of information that allows us to learn187

how to disentangle s and y. For this, we assume the existence of another dataset that follows a similar188

distribution to the test set, but for which we do not have access to the class labels. In practice, this189

is not an unreasonable assumption, as, while rigorously-annotated data is relatively hard to come190

by, unlabelled data, on the other hand, is a near-inexhaustible resource (e.g. census data, electoral191

rolls), and we are only restricted only in the sense that the spurious correlations we hope to prune are192

immanent in the features. y. We call this dataset ‘meta dataset’ and it consists of Xme and Sme . It193

fulfils I(Sme ;Y me) ≈ 0 (or rather, it would, if the class labels Y me were available).194

justify the existence of such a dataset195

The concrete procedure is then as follows. First, the invertible network f is trained on (Xme , Sme ).196

Then, the weights of f are frozen and f is used to encode the training set by taking in x and returning197

zy. Finally, any classifier can be trained on the produced zy. As all information about s has been198

purged from zy , no spurious correlations between s and y are left. Thus, the classifier cannot take the199

shortcut of learning s and actually has to learn how to predict y.200

How can we be sure that zy contains enough information about y? This is where the strength of the201

invertible architecture comes into play. Due to the invertibility of the network, and homeomorphic202

mapping between layers, no information about the input is discarded. We know that it is always203

possible to recover x from z because f−1 exists and can do just that. So, as long as zs does not204

contain the information about y, zy must contain it. We can influence how much information zs can205

hold by changing the size of zs. A size should be chosen that is enough to contain all information206

about s, but not any more than that.207

we should do experiments to show what effect the size of zs has208

For more advantages of the invertible architecture, see Section 3.2.209

3.1.1 Preimages210

For the CMNIT dataset, we found less success training on the representations zy compared to the211

preimage obtained by performing an inverse pass after zeroing all elements of zs. Eq (3) defines how212

to obtain x. In order to reconstruct only the part that is characterised by zy , we perform null-sampling:213

all elements of zs are zeroed out, i.e. to the mean of the prior density imposed on z: N (z; 0, I).214

Thus, xzy = f−1([0, zy]).215

3.2 Advantages of an invertible encoder216

Using an INN to gneerate our encodings zy carries a number of advantages over, other than circum-217

venting the need for invoking a lower bound on the log-likelihood. The invertibile property of the218

network guarantees the preservation of all semantically-meaningful information, y, regardless of219

how it is allocated in readout layer. Secondly, we conjecture that the encodings are more robust to220

out-of-distribution data. Whereas a normal autoencoder could map a previously seen input and a221

previously unseen input to the same representation, an invertible network cannot do this without222

violation of network’s the bijective property. This ensures that no relevant information can be lost.223
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Related to that, invertible networks should not be susceptible to ‘posterior collapse’ [14].224

Apart from these, there is another, more subtle, advantage. When considering fairness problems, it is225

actually an advantage to not make use of the class labels y when learning the fair representation. This226

is because the class labels can also be a source of bias [15, 16]. Our approach avoids this problem for227

the encodings, but the classifier that is trained on these encodings with the dataset labels can still be228

susceptible to this bias.229

3.3 Network architecture230

We use a downscaled version of GLOW [12] with an additional invertible 1x1 convolution before the231

final readout to conduce further mixing of the dimensions, finding this to slightly b The architecture232

of the network is similar to RealNVP [13], with the addition of the invertible 1 × 1 convolution from233

Glow [12] and the invertible batch normaliation layer from [11]234

4 Experiments235

Experiments on 3 datasets.236

UCI Adult Dataset. Data from the 1994 U.S. Census with 12 features such as hours worked237

per week, age, work class and relationship status. The binary classification task is to predict an238

individual’s earnings per annum. A positive class label denotes an income greater than 50, 000USD,239

and a negative label denotes an income less than or equal 50, 000USD. We use the binary label ‘sex’240

as the sensitive attribute, where s =M and s = F describe a male and female respectively.241

Coloured MNIST. We follow the general procedure outlined in [4] to create an augmented version242

of the MNIST handwritten digits dataset [17]. The augmentation scheme differs between the datasets243

we designate as spuriously correlated (task-dataset) and uncorrelated (pure-learning and task datasets)244

datasets. In both cases the digit samples are binarised and the digits coloured with an RGB value245

sampled from a univariate Gaussian distribution with mean specified by ten maximally dispersed246

colours (see ??) for the specific values of our palette). The manner in which the mean values247

are prescribed to samples distinguishes the two dataset archetypes. In order to implant spurious248

correlation, mean values are bijectively mapped to a corresponding digit, such that the class and249

spurious variable become synonymous. Adjusting the standard deviation of the distribution is250

tantamount to scaling the bias of the dataset: when the parameter is small, there is minimal overlap251

between colours and, consequently, tight-coupling between the spurious and target variables, whereas252

large values have a decoupling effect as the former ceases to become a reliable, but misleading,253

indicator of the latter.254

As such, we construct three variations of the same dataset. The pure-learning dataset and task datasets255

are constructed with the view to minimise correlations between the spurious and target variables.256

Our approach is premised on not having the target labels during the first-stage of training as if they257

were the problem would be trivially soluble. Conversely, such correlations are pronounced in the258

target-labelled data, such that there is a mismatch between the training and test distributions bridged259

by the INN. This labelled dataset is imagined to represent a biased subpopulation.260

Experimental procedure.261

We split the test set into two creating a third dataset, which we cal the meta-set.262

1) we train a model to distinguish between the features related to s and those which are not. We263

refer to this as a (pure-learning). In this stage we follow work from domain adaptation and fairness264

literature and transform the input into a new representation that is partitioned so that one part is265

domain, or s invariant, and to ensure that no information is lost, the second partition contains all266

information that is related to s. In this stage the model is trained on the meta-set.267

Conceptually we can think of this as following a similar decomposition to Quadrianto et al Discovering268

Fair Representations in the Data Domain. However, Quadrianto et al. required both X̃ and X̂ to be in269

the same space, seeing this as additive decomposition. We do not require x̃ and x̂ to be in the same270

space, or require them to be the same number of dimensions. Because of this we assume a more271

complex decomposition.272
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Table 1: Performance Inv Disc False
Adult CMNIST

Majority Classifier 10%
Classifier on X 57.64%

Classifier on X&S 20.35%
Classifier on Z¬S

Classifier on ZS
Classifier on f−1(Zy, Z

0
¬S,N , Z

0
S , Z

0
S,N )

Classifier on f−1(Z0
y , Z

0
¬S,N , ZS , Z

0
S,N )

X

X̃

X̂
273

We now have a decomposer, a model that takes X and returns two parts that together perfectly274

reconstruct X . X̃ represents the decomposition that is invariant to S and X̂ the decomposition that is275

correlated with s.276

We then feed our training data through the decomposer and obtain the two parts for our training set.277

We train a new classifier on this representation f(x̃)→ y.278

To judge the performance of the model we train a classifier on the original training set, and judge the279

performance on the withheld test set.280

We then re-train the same model on the reconstruction, but with Zs set to all 0. Repeat for increasingly281

random.282

283

Figure 2: Preimage samples from the meta-train set. Left: Preimages obtained by setting all elements
other than those in ztrue to the mean of their prior distribution (null-sampling), demonstrating the
success of our approach in successfully winnowing out spurious colour-information from ztrue.
Middle: Preimages obtained by null-sampling zspurious . Right: Original samples.

We really need to show the grayscale images, and the images from task-train where colour = class.284

5 Conclusion285

blahblahblahblah286
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Figure 3: Comparison of our model against a number of baselines on the UCI Adult dataset. The
balancing scale is denoted by η. Our model mostly outperforms the closest approach, VFAE across a
range of values, removing more information about the sensitive label according to the Inv. measure.
Our approach is particularly well suited to extreme cases where the labelled dataset is equivalent to
the class label (η = 0 and η = 1) which fairness specific classification models (Kamiran&Calders
and FairLearn.) cannot solve
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Figure 4: Comparison of our model against a number of baselines on the UCI Adult dataset. The
balancing scale is denoted by η. Our model mostly outperforms the closest approach, VFAE across a
range of values, removing more information about the sensitive label according to the Inv. measure.
Our approach is particularly well suited to extreme cases where the labelled dataset is equivalent to
the class label (η = 0 and η = 1) which fairness specific classification models (Kamiran&Calders
and FairLearn.) cannot solve
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