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ABSTRACT

Canonical Polyadic Decomposition (CPD) is a fundamental technique for tensor
analysis, discovering underlying multi-linear structures represented as rank-one
tensors (components). The simplicity of the rank-one tensors facilitates the inter-
pretation of hidden structures within tensors compared to other types of conven-
tional tensor decomposition models. However, CPD has limitations in modeling
nonlinear structures present in real-world tensors. Recent tensor decomposition
models combined with neural networks have shown superior performance in ten-
sor completion tasks compared to multi-linear tensor models. Nevertheless, one
drawback of those nonlinear tensor models is the lack of interpretability since their
black-box approaches entangle all interactions between latent components, unlike
CPD, which handles the components individually as rank-one tensors.
To overcome this major limitation and bridge the gap between CPD and various
state-of-the-art neural tensor models, we propose NEURAL ADDITIVE TENSOR
DECOMPOSITION (NEAT) to accurately capture non-linear interactions in sparse
tensors while respecting the separation of distinct components in a similar vein
as CPD. The main idea is to neuralize each component to model non-linear inter-
actions within each component separately. This not only captures the non-linear
interactions but also makes the decomposition results easy to interpret by being as
close to the CPD model as possible. Extensive experiments with six large-scale
real-world datasets demonstrate that NEAT is more accurate than the state-of-the-
art neural tensor models and easy to interpret latent patterns. In the link prediction
task, NEAT outperforms CPD by 10% and the second-best performing neural
tensor model by 4%, in terms of AUC score. Finally, we demonstrate the inter-
pretability of NEAT by visualizing and analyzing latent components from real
data.

1 INTRODUCTION

A tensor is a natural way to represent higher-order interactions between multi-aspect data. Ten-
sor decomposition is a fundamental method for analyzing tensors by extracting latent structures as
a set of factor matrices. Among the well-known approaches, Canonical Polyadic Decomposition
(CPD) (Carroll & Chang, 1970; Harshman et al., 1970) has gained popularity due to its simplicity
and ability to uniquely identify the latent components of the tensor (Sidiropoulos & Bro, 2000; ten
Berge, 2000; Kolda & Bader, 2009) and has been central to a diverse range of applications such
as healthcare analysis (Ho et al., 2014; Afshar et al., 2021), social networks analysis (Papalexakis
et al., 2013; Al-Sayouri et al., 2020), knowledge base completion (Lacroix et al., 2018; 2020) and
recommendation (Yao et al., 2015; Chen & Li, 2020).

CPD stands out for its interpretability to facilitate understanding of latent patterns with its simple
structure among different types of tensor decomposition models (e.g., Tucker) (Kolda & Bader,
2009; Papalexakis et al., 2016). As depicted in Figure 1(a), CPD reconstructs a tensor as a sum of
rank-one tensors, where each represents a unique multi-way interaction. Importantly, these rank-one
components additively reconstruct the tensor to form a multi-linear model and do not have to depend
on each other. This allows us to identify which entities significantly influence the interactions in
each component, making it more straightforward to map those entities back to the original data and
discover hidden patterns (Ho et al., 2014; Park et al., 2016; Al-Sayouri et al., 2020). For example,
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Figure 1: Comparison of model designs of CPD, NEAT, and neural tensor models with the third
mode tensor. NEAT models r-th components separately to others with each neural network to
achieve the interpretability from the rank-one tensor in CPD while neural tensor models entangle
all the interactions between components.

movie rating data, where users rate movies at a specific time, can be represented as a tensor with
modes (movie, user, time) with rating values. We can easily discover a soft clusterings of movies,
users, and points in time by analyzing rank-one components obtained from CPD.

Even though CPD is preferred for interpretability to extract multi-linear structures, many real-world
tensors are better explained via complex non-linear structures, which are often inadequately rep-
resented by addition of rank-one tensors. This limitation can lead to performance degradation in
various practical applications. Recent tensor models for sparse tensors attempted to capture non-
linear patterns based on neural networks, have attracted attention (He et al., 2017; Liu et al., 2018;
2019; Wu et al., 2019; Chen & Li, 2020; Tillinghast et al., 2020; Fan, 2021; Qian et al., 2022).
Even though these approaches enhance the conventional tensor models with the expressive power
of neural networks, the way they are designed to use neural networks intermixes components with
each other thereby hindering the interpretability of latent components, as illustrated in Figure 1(c).

To address these challenges, we propose NEURAL ADDITIVE TENSOR DECOMPOSITION (NEAT)
that accurately models non-linear latent structures, while also preserving properties of classical lin-
ear model CPD, which allows us to easily interpret the latent components. As illustrated in Fig-
ure 1(b), NEAT learns non-linear structures present in each component by employing individually
parameterized neural networks, unlike existing neural tensor models that employ neural networks
interacting with all components. Also, NEAT designs the model leveraging the sparsity of tensors
to save significant computations by avoiding conventional tensor operations. Our contributions are
summarized as follows:

• Model. We propose a novel neural tensor model NEAT, that can accurately learn non-linear
structures while maintaining interpretability for sparse tensors.

• Performance. Extensive experiments on six real-world datasets demonstrate that NEAT shows
the state-of-the-art performance in sparse tensor completion over multi-linear and neural tensor
models and shows its ability to capture meaningful patterns in factors with downstream tasks.

• Interpretability. Finally we show how NEAT can serve as a glass-box model instead of a black
box model and provide meaningful insights into its latent factors.

The rest of this paper is organized as follows. We introduce the preliminaries and related works in
Sec. 2. We propose NEAT in Sec. 3 and present experimental results in Sec. 4. We summarize the
key points and results of our paper in Sec. 5. The source code and datasets used in this paper are
available at https://anonymous.4open.science/r/NEAT.

2 PRELIMINARIES & RELATED WORK

Tensors are defined as multi-dimensional arrays that generalize one-dimensional arrays (or vectors)
and two-dimensional arrays (or matrices) to higher dimensions. Sparse tensors indicate tensors
where majority of their entries are missing. Traditionally, the dimension of a tensor is referred to as
its order or the number of modes; the size of each mode is called “dimensionality”. We use boldface
Euler script letters (e.g., X) to denote tensors, boldface capitals (e.g., A) to denote matrices, boldface
lower cases (e.g., a) to denote vectors. We denote the i-th row vector as ai,:, r-th column vector as
ar and i, r-th entry as air.
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Canonical polyadic decomposition (CPD) (Carroll & Chang, 1970; Harshman et al., 1970) ap-
proximates an N -th order tensor X 2 RI1⇥···⇥IN as the sum of R rank-one components as:

X ⇡ JA(1), . . . ,A(N)K =
RX

r=1

a(1)1 � · · · � a(N)
R (1)

where � denotes an outer product, the nth factor matrix A(n) represents entities in the nth mode,
and a(n)r 2 RIn is the rth column vector of A(n). The rth rank-one component a(1)1 � · · · � a(N)

R
corresponds to the rth latent pattern which simultaneously clusters entities across N modes. Also,
Equation (1) is written as

x↵ ⇡ a(1)i11
a(2)i21

. . . a(N)
iN1 + · · ·+ a(1)i1R

a(2)i2R
. . . a(N)

iNR =
RX

r=1

NY

n=1

a(n)inr
(2)

where x↵ indicates the ↵ = (i1, · · · , iN )th entry of X and a(n)inr
indicates (in, r)-th element of A(n),

respectively. CPD reconstructs a given entry of a tensor with a sum of products of rth components
of each row vector a(n)in,:

, which is also known as an embedding for inth entity in the nth mode.

Additive Models. CPD can be thought of as a multi-linear extension of Generalized additive models
(GAMs) (Hastie & Tibshirani, 1990) where each additive component is the product of embedding
values for that respective latent factor. More recently, works like Neural additive models (NAM)
(Agarwal et al., 2021) extend GAMs to capture non-linear behavior in an additive manner. The
formulation of NEAT shown in Equation (3) makes it a multi-modal extension of NAMs.

Interpretability in Tensor Models. In the realm of tensor decomposition, interpretability involves
discovering hidden patterns in latent components related to original data more readily while inter-
pretability generally refers to the ability to explain decisions made by a model in machine learn-
ing (Molnar, 2020). To discover hidden patterns with CPD, we identify the most influential entities
in each component and treat them as a soft-clustering of the original tensor data (co-cluster). To
further facilitate the interpretation of latent components, various methods make factor matrices non-
negative and sparse (Ho et al., 2014; Afshar et al., 2021).

Neural Tensor Models. Traditionally, CPD and Tucker are good at fitting low-rank linear structures
while they often fails to fit tensors including non-linear latent structures (Liu et al., 2019). Thus, nu-
merous methods replace multi-linear operations with neural networks to capture complex structures.
NCF (He et al., 2017) is a matrix factorization model that employs a Multi-layer perceptron (MLP)
to learn multi-linear and non-linear interactions between users and items. NEURALCP (Liu et al.,
2018) is a Bayesian tensor decomposition learning MLPs where its input is a long concatenation of
row factors. NTF (Liu et al., 2018) exploits a Long short-term memory (LSTM) network for tempo-
ral interactions and MLP to model non-linear interactions between components for predictive tasks
in dynamic relational data. COSTCO (Liu et al., 2019) leverages two Convolutional neural networks
(CNNs) to capture nonlinear interaction across modes and ranks and uses MLPs for aggregating the
output of CNNs. It claimed and showed that MLP-based tensor models are prone to overfit to sparse
tensors due to its dense connections while CNNs avoids this problem. NTM (Chen & Li, 2020)
combines two neural networks to learn multi-linear and non-linear relations considering the inner
and outer products for recommendation tasks. POND (Tillinghast et al., 2020) is a probabilistic
tensor decomposition leveraging Gaussian processes for capturing complex interactions and CNN
to complete a given entry. M2DMTF (Fan, 2021) is a multi-mode nonlinear deep tensor factoriza-
tion where each factor matrix is modeled with two-mode non-linear deep matrix factorization for
tensor completion. JULIA (Qian et al., 2022) is a framework for a tensor decomposition model to
jointly capture linear and non-linear interactions in the tensors by combining multi-linear and neural
tensor models. However, the way these models rely on the interaction of different latent dimensions,
makes it complicated to identify co-clusters in those dimensions. Additionally, interactions between
components are more likely to learn spurious correlations between them, where components are un-
correlated but these false correlations are trained to fit tensors. In contrast, NEAT not only simplifies
the discovery of patterns in its latent dimensions as CPD does but is also less likely to learn spurious
correlations between components because each component does not rely on others. Furthermore,
we show that, via NEAT, even using MLPs produces the best generalization if an appropriate design
and training approach is used in contrast to this study Liu et al. (2019).
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Figure 2: Illustration of a model architecture of NEAT for link prediction. NEAT reconstructs ob-
served entries by summing outputs of individually parameterized networks, jointly capturing various
patterns in factors and learning complex interactions between them with neural networks.

3 PROPOSED METHOD

We propose NEURAL ADDITIVE TENSOR DECOMPOSITION (NEAT) to accurately learn non-linear
structures present in sparse tensors and to make those easy to interpret. We describe the details of
the model in the following sections.

3.1 MODEL

A key challenge in designing our model arises from the question: How can we efficiently neuralize
each component? In other words, how can we efficiently apply neural networks to each component?
Given an N -mode tensor with the size I1 ⇥ · · · ⇥ IN , processing all entries of components with
neural networks equals to dealing with computations associated to the size of the given tensor. This
is especially impractical for real-world sparse tensors that have high dimensionality, as presented
in Table 1. To address this, NEAT leverages the sparsity of the tensor, considering only observed
entries instead of the entire tensor. This approach is scalable to large tensors since it is irrelevant of
tensor size and more accurate than the one of treating unobserved entries as 0 (Acar et al., 2011; Shin
et al., 2016). As illustrated in Figure 2, NEAT gathers N embeddings of dimension R corresponding
to an index ↵, given a tensor entry x↵=(i1,··· ,iN ). Then rth neural network uses only rth entries of
embeddings and captures non-linear interactions between them. NEAT reconstructs the tensor entry
by summing all outputs from neural networks. Thus, neural networks operate on an input size N for
all observed entries rather than the entire entries, which significantly reduces computational cost.

Given an N th order tensor X 2 RI1⇥···⇥IN with the observed entries and a rank R, NEAT aims
to learn a set of factor matrices {A(n) 2 RIn⇥R | 1  n  N} and a set of neural networks
{f✓r | 1  r  R}, by reconstructing observed tensor entries x↵(8↵ 2 ⌦) as follows:

x↵ ⇡ f✓1(z
(1)
↵ ) + · · · f✓r (z(r)↵ ) + · · · f✓R(z(R)

↵ ) (3)

where ⌦ denotes the set of the observed indices, z(r)↵ =
⇥
a(1)i1r

, a(2)i2r
, . . . , a(N)

iNr

⇤
2 R1⇥N is a con-

catenation of the rth element a(n)inr
of embeddings corresponding to the ↵ , and f✓r indicates the rth

neural network. Each individual neural network operates on rth latent components z(r)↵ , returns rth
contribution to a given entry x↵, and their all outputs are then aggregated to reconstruct to x↵.

It is important to note that each f✓r is individually parameterized and does not share parameters with
each other. This allows each component act as an individual model, capturing distinct patterns and
interactions and thereby accurately reconstructing a tensor. Interestingly, this design choice naturally
introduces an ensemble-like characteristics, which capture different aspects of latent patterns in data
and mitigate the impact of individual model errors, such that the collective prediction performance
of ensembles is superior to that of a single model (Sagi & Rokach, 2018).

We employ MLPs to capture non-linear interactions between r-th components, defined as:

f✓r (z
(r)
↵ ) = h(l�1)

r W(L)
r + b(L)

r (4)

where W(L)
r 2 RdL�1⇥1 and b(L)

r 2 R1⇥1 are a weight and bias of the last Lth layer. In the first
layer, h(1)

r 2 R1⇥d1 is computed as:

h(1)
r = g(z(r)↵ W(0)

r + b(0)
r ) (5)

where W(0)
r 2 RN⇥d1 and b(0)

r 2 R1⇥d1 . For the subsequent layers (l � 2), we have:

h(l�1)
r = g(h(l�2)

r W(l�1)
r + b(l�1)

r ) (6)
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where W(l�1)
r 2 Rdl�1⇥dl and R1⇥dl . Note that g, l (1  l  L), and dl denote an activation

function, a depth of layers, and the dimension size of a layer, respectively. We use the Rectified
Linear Unit (ReLU) as an activation function for each internal layer, except for the last layer.

In Section 4, we show that NEAT with 2-layer MLPs excels compared to all the baselines; however
we note that other types of neural networks can possibly replace the MLPs to further improve the
accuracy, and we leave it as a future work. Further, if we replace f✓r as the function that returns the
product of all entries in a vector, NEAT in Equation (3) is exactly the same as CPD in Equation (2),
therefore making NEAT a generalizable extension of CPD. NEAT is able to express non-linear in-
teractions by employing neural networks while CPD is able to only capture multi-linear interactions
by computing an outer product between factor matrices.

3.2 TRAINING

In our experiments, we primarily focus on the completion of binary tensors, also known as a link
prediction, and as a result, we opt for a binary cross-entropy loss function:

L (⇥) = � 1

|⌦|
X

8↵2⌦

(x↵ log x̃↵ + (1� x↵) log(1� x̃↵)) + �R(⇥) (7)

where x↵ and x̃↵ indicates a observed entry and reconstruction corresponding to ↵, respectively. We
apply the Sigmoid function to a reconstructed entry x̃↵ to predict the probability of observed entries
for the link prediction task. �R(⇥) is a regularization term for all parameters followed as:

R(⇥) =
NX

n=1

kA(n)k2F +
RX

r=1

X

W(l)
r 2✓r

kW(l)
r k2F (8)

where � indicates a weight decay, A(n) indicates the nth factor matrix, and W(l)
r indicates lth

weights in each rth neural network. In the case of real-valued tensors, we would accordingly mod-
ify our loss such as least squares, however, for simplicity of demonstrating the main point of the
proposed method we defer to future work.

We optimize Equation (7) of NEAT based on Adam (Kingma & Ba, 2014) using backpropagation
and jointly train factor matrices and MLPs. Although in principle a joint model like ours should
be easier to train with backpropagation, we observe that only specific components are in utilization
for loss minimization while others are not, resulting in poor performance. To avoid this, we apply
Dropout (Srivastava et al., 2014) to all final outputs f✓r (z

(r)
↵ ) of MLPs. Dropout helps components

to be trained appropriately by randomly selecting different subsets of components to reconstruct a
tensor. Also, Figure 5(b) in Section 4.4 exhibits that applying Dropout is highly effective in better
generalization. We further normalize inputs for MLPs and apply Dropout to each layer inside neural
networks, excluding the final one for further stable training.

3.3 COMPLEXITY ANALYSIS

We analyze space and time complexities of our model and summarize the complexities of all base-
lines in Table 3 in Appendix A.1. The total dimensionality of an N -mode tensor is denoted as
I = I1 + · · · IN , where In represents the size of the nth mode, and the rank size is denoted as
R. The depth of a neural network and maximum size of a dimension in neural networks is denoted
as L and D where max(d1, · · · , dl) = D, respectively. NEAT has IR number of parameters for
factor matrices and approximately RLD2 for neural networks such that each rth neural network has
approximately equal to LD2 parameters (Nd1 + d1d2 + · · ·+ dl�1dl + dl). Consequently, the total
number of parameters in our model can be O(IR+RLD2). The time complexity of NEAT is linear
with regard to the number of observed entries and irrelevant to the size of a given tensor. When
forwarding a single tensor entry through each neural network, it takes RLD2 computational cost.
When considering all observed entries, the overall computational complexity is O(|⌦|RLD2).

As shown in Section 4.4, we employ shallow networks (e.g., two layers) for most of experiments,
showing the best link prediction performance. With the two-layer MLPs, computational costs for
processing each entry becomes much smaller such as O(RD). Also, the parameters of neural net-
works are much less than the factors O(IR) since I is much larger than D.
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Table 1: Summary of six real-world sparse tensors.

Name Dimensionality Nonzeros Name Dimensionality Nonzeros

DBLP 4,057 ⇥ 14,328 ⇥ 7,723 94,022 MovieLens 610 ⇥ 9,724 ⇥ 4,110 100,836
FS-NYC 1,084 ⇥ 38,334 ⇥ 7,641 225,701 YELP 70,818 ⇥ 15,580 ⇥ 109 335,022
FS-TKY 2,294 ⇥ 61,859 ⇥ 7,641 570,743 Yahoo-M 82,309 ⇥ 82,308 ⇥ 168 785,749

4 EXPERIMENTS

We conduct experiments to answer the following questions.

Q1 Performance (Section 4.2). How accurately does NEAT perform in link prediction?
Q2 Pattern Discovery (Section 4.3). Can NEAT learn meaningful patterns in components?
Q3 Hyper-parameter Study (Section 4.4). How do hyper-parameter settings affect perfor-

mance?

4.1 EXPERIMENTAL SETTING

We conduct experiments on a machine equipped with an AMD Ryzen CPU and an NVIDIA RTX
A6000 and describe the experimental setup in the following paragraphs.

Datasets. We use six real-world sparse tensors to evaluate the performance of the proposed method
to the baselines. The datasets are summarized in Table 1 and details are provided in Table 4 in
Appendix A.2. MovieLens (Harper & Konstan, 2015), YELP, and Yahoo-M are movie, business,
and music rating datasets consisting of (user, item, timestamp). FS-NYC (Yang et al., 2015) and
FS-TKY (Yang et al., 2015) are check-in datasets consisting of (user, venue, timestamp), collected
by Foursquare in New York and Tokyo, respectively. Each entry xi,j,k of each tensor is binary
indicating if a user i is associated with an item j (e.g., movie, venue) at the timestamp k. DBLP is
a computer science bibliography network consisting of (author, paper, terminology) , representing
whether an author i published a paper j including a terminology k. We split a tensor into training,
validation, and test datasets with an 8:1:1 ratio. We randomly sample negative samples with the
same number of observed entries as in the split dataset.

Baselines. We compare NEAT to five baselines which consist of multi-linear and neural tensor
decomposition methods. CPD is a standard tensor model with an L2 regularization optimized by
gradient descent. TUCKER (Balažević et al., 2019)1 is a Tucker decomposition method for knowl-
edge graph completion. NCF (He et al., 2017)2 is a neural collaborative filtering model extended for
tensors. COSTCO (Liu et al., 2019)3 is a tensor completion model learning non-linear interactions
with two 1-d CNNs and 2-layer MLPs. NTM (Chen & Li, 2020) is a tensor decomposition model
that combines the inner product and the neuralized outer product via neural networks.

Training. We employ Adam to optimize all models and train all baselines except for CPD with a
binary cross entropy as specified in Equation (7). We select all hyper-parameters via a combination
of grid search and bayesian optimization based on early stopping. We find learning rates from
{10�2, 10�3, 10�4}, weight decays from {10�3, 10�4, 10�5}, and ranks from {8, 16, 32, 64, 128}
for all models. We also find dimension sizes of layers from {8, 16, 32, 64, 128}, and layer depths
from two to four, and batch sizes from {512, 1024} for all neural tensor models.

4.2 LINK PREDICTION

We evaluate NEAT and baselines on the link prediction task in terms of accuracy with six real-world
sparse tensors across different rank or embedding sizes. For all models, we repeat experimental re-
sults averaged over three runs with optimal hyper-parameters and report the total number of trained
parameters used in Table 5 in Appendix A.3. We further evaluate the performance of NEAT and
baselines on the link prediction with extremely sparse tensors in Tables 6 to 8 in Appendix A.4.
Table 2 describes that NEAT consistently demonstrates superior accuracy compared to all baselines

1
https://github.com/ibalazevic/TuckER

2
https://github.com/guoyang9/NCF

3
https://github.com/USC-Melady/KDD19-CoSTCo
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Table 2: Accuracy of NEAT and baselines in link prediction. NEAT is superior to all baselines
in six real-world sparse tensors across different rank sizes. Note that the best-performing method:
bold, multi-linear tensor model: ~, neural tensor model: }, and additive tensor model: |.

DBLP MovieLens YELP

Model \ Rank 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

CPD~,| 0.918 0.926 0.925 0.917 0.903 0.911 0.918 0.923 0.923 0.916 0.781 0.772 0.765 0.761 0.760
TUCKER~ 0.834 0.837 0.946 0.966 0.965 0.902 0.919 0.934 0.941 0.944 0.829 0.831 0.831 0.833 0.826
NCF} 0.834 0.836 0.821 0.937 0.879 0.981 0.985 0.987 0.989 0.988 0.840 0.846 0.849 0.849 0.852
COSTCO} 0.933 0.948 0.956 0.939 0.932 0.978 0.983 0.986 0.989 0.990 0.838 0.846 0.849 0.857 0.858
NTM} 0.885 0.911 0.887 0.882 0.828 0.953 0.948 0.954 0.958 0.959 0.796 0.798 0.807 0.827 0.830
NEAT},|

0.942 0.960 0.969 0.973 0.976 0.981 0.984 0.988 0.990 0.991 0.835 0.836 0.854 0.857 0.864

FS-NYC FS-TKY Yahoo-M

Model \ Rank 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

CPD~,| 0.803 0.816 0.824 0.821 0.787 0.869 0.876 0.870 0.863 0.809 0.802 0.794 0.820 0.811 0.804
TUCKER~ 0.805 0.811 0.816 0.829 0.838 0.852 0.854 0.870 0.876 0.881 0.866 0.879 0.886 0.891 0.908
NCF} 0.794 0.796 0.817 0.818 0.825 0.854 0.860 0.859 0.861 0.875 0.826 0.851 0.845 0.870 0.888
COSTCO} 0.806 0.816 0.824 0.833 0.833 0.862 0.869 0.875 0.876 0.878 0.841 0.806 0.819 0.845 0.838
NTM} 0.762 0.776 0.778 0.796 0.805 0.833 0.834 0.839 0.843 0.844 0.836 0.833 0.828 0.846 0.857
NEAT},|

0.811 0.830 0.845 0.851 0.849 0.861 0.873 0.881 0.887 0.887 0.917 0.927 0.925 0.918 0.915

including multi-linear and neural tensor models across all six datasets. Especially, NEAT trained
with rank eight shows the biggest performance gap between competitors for Yahoo-M, the most
sparse and largest tensor we used; it achieves 5% and 7% points higher accuracy than the second-
best multi-linear and neural tensor model, TUCKER and COSTCO trained with the same rank,
respectively. Also, NEAT consistently shows a stable and increasing trend in performance when the
rank size increases. This indicates that individually parameterized components capture more diverse
hidden structures by using more components. The performance of multi-linear models, CPD and
TUCKER, improves as the rank increases. However, the performance of CPD declines at larger
ranks (e.g., 64 or 128); it tends to overfit the data when the rank increases, capturing noises rather
than meaningful multi-linear patterns. Also, TUCKER requires a significant amount of parameters
(RN ) due to a core tensor when the rank size is higher, still, it does not achieve the best perfor-
mance. For MovieLens and YELP, neural tensor models, NCF, COSTCO, and NTM, show better
accuracy over multi-linear tensor models even at lower ranks (e.g., 8 or 16) and NEAT achieves
the best accuracy with higher ranks. This indicates that there exist various complex latent patterns
in those two datasets, thus conventional multi-linear models fail to fit complex tensors. For DBLP
and FS-TKY, CPD performs well at lower ranks, indicating that these two datasets include linear
patterns dominantly. Thus, neural tensor models trained with even higher ranks show marginal im-
provements in performance over multi-linear models. However, NEAT achieves better performance
for all rank sizes, which means that NeAT captures latent structures accurately even if the tensor
includes little non-linear patterns. For FS-NYC and Yahoo-M, neural tensor models and multi-
linear tensor models show competitive performance to each other. These two tensors are highly
sparse among all the datasets we had, which indicates their little information seems to be noisy
and makes it difficult for tensor models to capture non-linear or linear patterns. Also, neural tensor
models may capture spurious correlations between latent dimensions to accurately fit sparse tensors.
Especially, COSTCO generally performs better than NCF and NTM due to CNNs, which learn in-
formative patterns using convolutional filters, which are much smaller than heavily parameterized
MLPs. According to the study (Liu et al., 2019), MLP-based neural tensor models are prone to
overfitting sparse tensors due to MLP’s excessive over-parameterization in the form of redundant
connections. NEAT avoids the issue of overparameterization of learning spurious correlations be-
tween latent dimensions, via additive components with shallow MLPs, and in doing so achieves the
best generalization performance over all baselines for sparse tensors.

4.3 PATTERN DISCOVERY

We conduct an experiment to show if NEAT is able to capture meaningful patterns in components
in Section 4.3.1 and also visualize discovered patterns from learned factors in Section 4.3.2. Thanks
to simplicity of NEAT, we are able to easily visualize and analyze patterns.
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4.3.1 DOWNSTREAM TASK

We evaluate NEAT and baselines on a downstream task using DBLP dataset consisting of (author,
paper, conference). The task is to classify the research area of authors with author embeddings ob-
tained from tensor models. There are two settings: a transductive and inductive setting. Under the
transductive setting, an input tensor includes both training and test author samples. We simultane-
ously obtain training and test embeddings from tensor models. In the inductive setting, we train
tensor models with only a training tensor, consisting of training authors, and inference test embed-
dings for new authors with the trained models. To produce test embeddings, we freeze all parameters
in tensor models except for test author embeddings. We train test embeddings with frozen tensor
models by reconstructing a test tensor until they converge. Note that the parameters of multi linear
and neural tensor models indicate factor matrices and a core tensor, and the factor matrix and all
weights of neural networks, respectively. To focus on evaluating the embeddings themselves, we
employ a linear classifier rather than advanced classifiers.

Figure 3(a) exhibits stable classification performance with embeddings obtained from NEAT in
transductive setting, indicating that the embeddings are able to capture meaningful patterns. Fig-
ure 3(b) shows that NEAT and neural tensor models better classification performance than multi-
linear tensor models in inductive setting. This indicates that trained neural networks accurately learn
complex interactions between latent patterns. Therefore, NEAT and neural tensor models are able to
capture both meaningful patterns and complex interactions by jointly training neural networks and
factor matrices. They are advantageous for both transductive and inductive settings.

(a) Transductive (b) Inductive

Figure 3: Comparison of NEAT and baselines in terms of Micro-F1 for the downstream task. NEAT
presents better generalization compared to multi-linear models for both inductive and transductive
settings since it captures meaningful patterns in factors and complex interactions with MLPs.

4.3.2 VISUALIZATION

We visualize discovered latent patterns from factor matrices obtained from NEAT with a rank of
eight. Thanks to simplicity of NEAT, we are able to easily explore factor matrices to discover pat-
terns by considering only each column (component) of factor matrices without interactions between
components. To explore latent patterns, we consider the top-k highest valued factors in each factor
matrix. We use Inverse document frequency (IDF) scores (Park et al., 2016) to consider top-k en-
tities that appear in only a few columns. Each author and conference entity is labeled with one of
four areas of study: Information Retrieval (IR), Database (DB), Data Mining (DM), and Artificial
Intelligence (AI). Figure 4 present coherent pattern discoveries. For example, Figures 4(a) and 4(b)
reveal that the second and fourth components are softly clustered based on DB and IR labels, re-
spectively. Figure 4(c) highlights that DB and IR have higher values in each component. Further, by
examining the top-k authors in each component, we observe that each component is homogeneous
with respect to its main label. We display the entire conference factor matrix and label distribution
for all components are in Figures 9 and 10.

4.4 HYPER-PARAMETERS STUDY

We study major hyper-parameters in NEAT: rank, dimensions of layers, and Dropout ratio. We ex-
plore the effect of the number of trainable parameters for the performance with regard to rank and
the dimension size of neural networks. Note that the white color in the heatmap indicates the blank

8
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(a) Label dist. of top-k authors

(b) Label dist. of top-k conferences (c) Conference factor matrix (d) Top-k authors

Figure 4: Pattern discoveries obtained from NEAT exhibit coherent results. (a) and (b) indicates
the label distributions of top-k authors and conferences. (c) indicates the second and fourth columns
of the conference factor matrix where its y-axis is sorted in the order of AI, DB, DM, and IR labels.
(d) highlights the top-k authors in the second and the fourth components.

since bayesian optimization did not visit those hyper-parameter combinations. We increase the rank
and dimension size ranging from 8, 16, 32, 64, 128 and use the 2-layer MLPs, and evaluate link pre-
diction accuracy for all datasets as shown in Figure 5(a). Also, Figure 8 indicates that using shallow
MLPs generally shows the best performance than using deeper networks. Note that increasing the
rank size and dimension size improves accuracy for all datasets except for FS-TKY. This indicates
that NEAT is able to capture various patterns in factors while learning complex interactions between
them with even shallow MLPs. Additionally, we investigate the impact of Dropout ratio p on the
final outputs for the performance. We vary the dropout ratio ranging from 0 to 0.9 and evaluate
accuracy in Figure 5(b). The sensitivity of NEAT on rank and Dropout ratio shows similar patterns
for all datasets; applying Dropout provides significant improvements even at lower ranks; higher
Dropout ratio is more suitable for the larger ranks. This indicates that Dropout can lead to better
generalization by giving a chance to all components be trained evenly.

(a) Rank v.s. Dimension

(b) Rank v.s. Dropout ratio p

Figure 5: Effect of rank, dimension size, and dropout in NEAT. NEAT improves performance with
larger ranks and dimension, and higher Dropout ratio.

5 CONCLUSION

We propose a neural tensor model that neuralizes each latent component in an additive fashion,
which captures various patterns and complex interactions in real-world sparse tensors and lends
themselves to direct and intuitive interpretations. Experiment results demonstrate the effective-
ness of our proposed method for tensor analysis and can be applied to a downstream task. One
limitation of the paper is lack of theoretical analysis in effectiveness of additive components over
non-additive components. Interestingly, the design and training approach of NEAT resembles an
ensemble learning. In the future work, we will analyze the both generalization and optimization of
additive components with a connection to ensemble learning.

9
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REPRODUCIBILITY

We recognize the critical importance of reproducibility in advancing scientific knowledge. To en-
hance the replicability of our work, we have taken several measures. We provide datasets and
the implementation of the proposed method in anonymously downloadable source code https:

//anonymous.4open.science/r/NEAT. We also provide the link to downloadable source
code for baselines and the link to download the original datasets we used. Furthermore, to facilitate
the replication of our experiments, we provide a comprehensive description of the data processing
steps for the used datasets and hyper-parameter settings in the paper. We believe that these efforts
contribute to the transparency and reliability of our research.
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