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Abstract

A contingent plan can be encoded as a rooted graph where
branching occurs due to sensing. In many applications it is
desirable to limit this branching; either to reduce the com-
plexity of the plan (e.g. for subsequent execution by a hu-
man), or because sensing itself is deemed to be too expensive.
This leads to an established planning problem that we refer to
as branching-bounded contingent planning. In this paper, we
formalise solutions to such problems in the context of his-
tory-, and belief-based policies: under noisy sensing, these
policies exhibit differing notions of sensor actions. We also
propose a new algorithm, called BAO*, that is able to find op-
timal solutions via belief space search. This work subsumes
both conformant and contingent planning frameworks, and
represents the first practical treatment of branching-bounded
contingent planning that is valid under partial observability.

1 Introduction
In planning under uncertainty, a contingent plan is the most
general solution form. A typical encoding of a contingent
plan is a rooted graph (or tree) that exhibits branching. This
branching occurs because a contingent plan must account
for all possible feedback that might be received during plan
execution in response to sensing. However, in many ap-
plications it is desirable to limit this branching; either to
reduce the complexity of the plan, or because sensing it-
self is deemed to be too expensive. This leads to an estab-
lished planning problem (Baral, Kreinovich, and Trejo 2000;
Meuleau and Smith 2002; Bonet 2010) that we will refer to
as branching-bounded contingent planning.1

Our intuition is that there exists a positive correlation be-
tween the complexity of a contingent plan (e.g. how dif-
ficult it is for a human to comprehend or execute), and
the amount of branching that it contains. Conversely, stud-
ies have shown that humans are demonstrably bad at fol-
lowing complex plans (Dodson et al. 2013). In this sense,
branching-bounded contingent planning provides a means to
ensure that plans are sufficiently simple so as to be under-
stood by humans. This idea has previously been referred to
as the “cognitive simplicity” of a plan (Meuleau and Smith

1Also known as limited contingency planning (Meuleau and
Smith 2002). Not to be confused with other forms of planning with
bounded parameters (e.g. see Section 4 for a discussion).

2002), and is an important consideration in numerous ex-
plainable AI planning (XAIP) applications, including where
humans are required to verify plans generated by automated
planners (Meuleau and Smith 2002), and where humans are
required to execute such plans (Green et al. 2011).

Considerations around plan complexity also extend to the
field of autonomous agents. For example, if agents have lim-
ited computational resources, then it may not be feasible to
maintain the agent’s belief state online, which precludes the
direct use of functional plan representations such as belief-
based policies (Kaelbling, Littman, and Cassandra 1998;
Meuleau and Smith 2002). This is true of recent work on
augmenting belief-desire-intention (BDI) agents with auto-
mated planners and reusable plans (Meneguzzi and De Silva
2015), where it is important to limit the complexity of new
plans so as to maintain the agent’s reactiveness: the greater
the amount of branching in the plan, the greater the increase
in the size of the agent’s plan library, and the greater the
computational cost associated with future plan selection.

A related approach to contingent planning is the field of
conformant planning, which deals with domains that are
non-observable (i.e. that have no sensing). Although such
domains are sometimes dismissed as having little practical
interest (Taig and Brafman 2015), a common motivation
for conformant planning is in applications where sensing
is deemed to be too expensive (Domshlak and Hoffmann
2006). This suggests that such applications are not truly
non-observable, but rather that the use of sensing should
be bounded (and potentially avoided altogether). In fact,
branching-bounded contingent planning can be seen as a
generalisation of both conformant and contingent planning.

The only practical treatment of branching-bounded con-
tingent planning appears to be the work of Meuleau and
Smith (2002) in the context of partially observable Markov
decision processes (POMDPs). Informally, their method re-
stricts sensing to a special observe-and-branch action, and
then bounds the number of times that this action will be
included in the solution plan. Unfortunately, the method is
only valid under the assumption of full observability (Bonet
2010), and limits the generality of contingent planning by
prohibiting richer forms of sensing. As far as we are aware,
the only other work on bounded branching has been theo-
retical analyses of the complexity of various planning prob-
lems (Baral, Kreinovich, and Trejo 2000; Bonet 2010).
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Figure 1: Belief state update procedure.

In this paper, we propose the first practical treatment of
branching-bounded contingent planning that is valid un-
der partial observability. We account for uncertainty over
the initial state, action-effects, and observations. The main
contributions are as follows: (i) we propose a definition
of branching-bounded contingent plans in the context of
history-based policies; (ii) we explore the implications of
bounded branching in the context of belief-based policies;
(iii) we propose a definition of branching-bounded contin-
gent plans as generalised belief-based policies that track
sensing; and (iv) we propose a variant of the AO* search
algorithm for AND/OR graphs, called BAO*, that is able
to find optimal solutions via belief space search. We will
rely on the partially observable non-deterministic (POND)
model of contingent planning, where a belief state is a set
of states, but our ideas can likely extend to other models
(e.g. goal-POMDPs, where a belief state is a probability dis-
tribution over the state space). We focus on offline planning
(i.e. where a complete plan is generated and then executed in
full) and will not consider online planning (i.e. where plan-
ning and plan execution are interleaved).

The remainder of the paper is organised as follows: in
Section 2, we recall preliminaries on contingent planning
and AND/OR graphs; in Section 3, we describe our solution
to branching-bounded contingent planning; in Section 4, we
discuss related work; and, in Section 5, we conclude.

2 Preliminaries
In this section, we recall necessary preliminaries on contin-
gent planning and AND/OR graphs. We rely on some stan-
dard mathematical notation: |S| is the cardinality of set S,
2S is the powerset of S, R+ is the set of positive real num-
bers (0 6∈ R+), and N is the set of natural numbers (0 ∈ N).

2.1 Contingent Planning
A contingent planning domain is a tuple (S,A, P,C, T,O)
where S is a set of states (called the state space) with
B = 2S \{∅} the set of belief states (called the belief space),
A is a set of actions with A(s) ⊆ A the set of applicable ac-
tions in state s ∈ S, P is a set of percepts with ∅P ∈ P the
null percept,C : A→ R+ is a cost function, T : S×A→ B
is a transition function, and O : A×S → 2P \ {∅} is an ob-
servation function. We say that T (resp. O) is deterministic
if T (s, a) (resp. O(a, s)) is a singleton for each s ∈ S and

each a ∈ A, otherwise T (resp. O) is non-deterministic. We
assume that a percept will be observed after every action-
execution (see Figure 1), but if it is possible to observe noth-
ing in state s, then this is encoded simply as the null per-
cept ∅P ∈ O(s). Finally, a contingent planning task is a tu-
ple (M, b1, SG) where M is a contingent planning domain,
b1 ∈ B is an initial belief state, and SG ⊆ S is a goal. We
say that a belief state b ∈ B satisfies the goal iff b ⊆ SG, i.e.
when the agent is guaranteed to be in a goal state.

The notion of applicable actions is extended to a belief
state b ∈ B as A(b) = A(s1) ∩ · · · ∩ A(sn) such that b =
{s1, . . . , sn}, meaning that an action is applicable in b iff it
is applicable in each state s ∈ b.2 The transition function
T is extended as a function T : B × A → B defined as
T (b, a) = {s ∈ T (s′, a) | s′ ∈ b}. The observation function
O is extended as a function O : A×B → 2P \ {∅} defined
as O(a, b) = {p ∈ O(a, s) | s ∈ b}. Finally, an update
function U : A×B × P → B is defined as:

U(a, b, p) =

{
{s ∈ b | p ∈ O(a, s)} if non-empty
undefined otherwise

Evidently, U(a, b, p) = undefined iff p 6∈ O(a, b). We say
that b′ = T (b, a) is a predicted belief state and U(a, b′, p) ⊆
b′ is a successor belief state (again, see Figure 1).

In practice, contingent planning problems typically re-
quire a factorised representation in order to express prob-
lems of any meaningful complexity. For example, S can be
defined by a set of (independent) state variables, A(s) (resp.
T and O) can be defined by a set of action schema precon-
ditions (resp. effects and observations) associated with A,
and b1 (resp. SG) can be defined by a logical formula over
the set of state variables. We refer the interested reader to
a planning language capable of expressing contingent plan-
ning problems, such as NuPDDL3 or PO-PPDDL4.

2.2 AND/OR Graphs
A (directed) graph is a tuple (N,E) where N is a set of
nodes and E ⊆ N ×N is a set of (directed) edges. A multi-
graph is a tuple (N, I,E′) where I is a set of identifiers and
E′ ⊆ N × I × N is a set of multiedges such that for each
i ∈ I we have that (N, {(n, n′) | (n, i, n′) ∈ E′}) is a
graph. Given nodes n, n′ ∈ N in a multigraph, then n is said
to be a parent of n′ (resp. n′ is a child of n) iff (n, i, n′) ∈ E′
for some i ∈ I . A node n ∈ N is said to be a branch point if
n has more than one child. Given nodes n1, nm+1 ∈ N in a
multigraph, then a sequence of nodes and identifiers (n1, i1,
. . . , nm, im, nm+1) is a path from n1 to nm+1 iff each nj is
unique and (nj , ij , nj+1) ∈ E′ for j = 1, . . . ,m. A multi-
graph is acyclic if, for each n ∈ N , there does not exist a
path from n to itself. A rooted (and connected) multigraph
is a tuple (N, I,E′, n) where (N, I,E′) is a multigraph and
n ∈ N is a root node such that, for each n′ ∈ N , there exists
a path from n to n′.

2This is the cautious approach to applicable actions; its dual
A(s1) ∪ · · · ∪A(sn) is possible but complicates later definitions.

3http://mbp.fbk.eu/NuPDDL.html
4http://users.cecs.anu.edu.au/∼ssanner/IPPC 2011
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Figure 2: AND/OR graph.

An AND/OR graph (N∨ ∪ N∧, I∨ ∪ I∧, E∨ ∪ E∧, n) is
a rooted multigraph where N∨ (resp. N∧) is a set of OR-
nodes (resp. AND-nodes), I∨ (resp. I∧) is a set of OR-
identifiers (resp. AND-identifiers), E∨ ⊆ N∨ × I∨ × N∧
(resp. E∧ ⊆ N∧ × I∧ × N∨) is a set of OR-edges (resp.
AND-edges), and n ∈ N∨ is a root node. An AND/OR
graph is typically used to reduce problems into decompos-
able sub-problems. Intuitively, an AND-node is a solution if
each of its child nodes is a solution, while an OR-node is a
solution if it is a primitive solution, or at least one of its child
nodes is a solution (e.g. see Figure 2). In the next section, we
will demonstrate how branching-bounded contingent plan-
ning can be cast as a search problem over AND/OR graphs.

3 Framework
In this section, we formalise branching-bounded contingent
planning in the context of history-, and belief-based policies,
and propose a new solution that relies on belief space search.

3.1 History-Based Policies
An execution is a possibly infinite sequence (a1, p1, a2, p2,
. . . ) where ai ∈ A and pi ∈ P . A finite execution is also
called a history, withH the set of histories (called the history
space). The length of history hi+1 = (a1, p1, . . . , ai, pi) is
defined as |hi+1| = i. A history-based policy is a function
πh : H ′ → A where H ′ ⊆ H . The executions that are pos-
sible with respect to b1 and πh are defined inductively along
with their associated belief states as follows: the empty exe-
cution h1 is possible and b1 is its belief state; if hi is possible
and bi is its belief state, then hi+1 = (hi, ai, pi) is possi-
ble and bi+1 = U(ai, b

′
i, pi) is its belief state iff hi ∈ H ′

such that ai = πh(hi), pi ∈ O(ai, b
′
i), and b′i = T (bi, ai)

. An execution h that is possible with respect to b1 and πh
is said to be complete if h 6∈ H ′ or if h is infinite. Finally,
πh is said to be a strong solution to a contingent planning
task (M, b1, SG) if each complete execution hi is finite and
bi ⊆ SG.
Definition 1. A history-based contingent plan is a history-
based policy πh that is a strong solution to a contingent
planning task (M, b1, SG).

A history-based policy πh can be encoded as a rooted
acyclic multigraph over histories (called a history-based pol-
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a ∈ AO(b)

Figure 3: History-based k-branching-bounded plan, k ≥ 2.

icy graph) where πh is a node label function and where each
multiedge identifier is a percept (Kaelbling, Littman, and
Cassandra 1998).5 More precisely, a history-based policy
graph is a rooted tree. To execute the plan, an agent simply
needs to execute the actions specified by node labels, while
tracing a single path in line with observed percepts. In this
way, branch points are those nodes where no single percept
is guaranteed to occur after executing the specified action,
while the actions themselves can be thought of as informa-
tion gathering actions, called sensor actions.

Definition 2. The set of history-based sensor actions in be-
lief state b ∈ B, denoted AO(b), is defined as:

AO(b) = {a ∈ A(b) | b′ = T (b, a),

∃p, p′ ∈ O(a, b′), p 6= p′}

Definition 3. The number of history-based sensor actions in
execution h, denoted ΨO(h), is defined as:

ΨO(h) = |{i = 1, 2, · · · | ai ∈ AO(bi)}|

where h = (a1, p1, a2, p2, . . . ).

Definition 4. A history-based contingent plan πh is a
history-based k-branching-bounded contingent plan with
k ∈ N ∪ {∞} iff πh satisfies:

max
h∈H∗

ΨO(h) ≤ k

where H∗ is the set of complete executions of πh.

Definition 4 says that a history-based k-branching-
bounded contingent plan is a history-based contingent plan
where, in the corresponding history-based policy graph,
there is at most k branch points on any path from the root
node to a leaf node (e.g. as in Figure 3). If k = 0 (resp.
k = ∞), then a history-based k-branching-bounded con-
tingent plan is a conformant plan (resp. contingent plan).
This definition is similar to the definition of balanced k-
contingency plans from (Meuleau and Smith 2002). As we
will see in subsequent sections, however, this definition is
too strong in the context of a special type of history-based
policy known as a belief-based policy.

3.2 Belief-Based Policies
A history-based policy πh is called a belief-based policy if
πh(hi) = πh(hj) for any hi, hj ∈ H ′ such that bi = bj
and |hi| = |hj |. For this reason, a belief-based policy can

5An equivalent definition is a rooted acyclic graph over histories
where each edge is labelled with a percept.



be defined as a function π : X → A where X ⊆ B × D
with D ⊆ N the set of time steps. We say that π is sta-
tionary if π(b, t) = π(b, t′) for all t, t′ ∈ D such that
t 6= t′, otherwise π is non-stationary. A stationary belief-
based policy can be defined as a function π : B′ → A
where B′ ⊆ B. Belief-based policies are typically easier to
find than their history-based counterparts: the belief space is
large but bounded, whereas the history space is unbounded.
Analogous to history-based policy graphs, a belief-based
policy can be encoded as a rooted multigraph over (time-
indexed) belief states, called a belief-based policy graph. Im-
portantly, while history-based policies lead to policy graphs
that are trees, belief-based policy graphs can be more com-
pact, since it is possible to arrive at the same node via dif-
ferent executions. In fact, if the policy is stationary, then a
belief-based policy graph may exhibit cycles, because it is
also possible to return to a previously visited node.

The notion of a strong solution for (acyclic) history-based
policies is extended to (potentially cyclic) belief-based poli-
cies through the notion of a strong-cyclic solution (Cimatti et
al. 2003). Intuitively, cycles in a belief-based policy can lead
to infinite executions, but such executions are only permit-
ted when they are unfair. Formally, an infinite execution h is
said to be fair if, when action a is executed an infinite num-
ber of times in belief state b, then every percept p ∈ O(a, b′)
with b′ = T (b, a) is also observed an infinite number of
times, otherwise h is unfair. A belief-based policy π is said
to be a strong-cyclic solution to a contingent planning task
(M, b1, SG) if, for each complete execution hi, either: (i) hi
is finite and bi ⊆ SG, or (ii) hi is infinite and unfair. It fol-
lows that a strong solution is a strong-cyclic solution where
every complete execution is finite.

Definition 5. A belief-based contingent plan is a belief-
based policy π that is a strong-cyclic solution to a contingent
planning task (M, b1, SG).

In the context of history-based policies, branching actions
are those action-executions that can lead to distinct succes-
sor histories (i.e. distinct nodes in the policy graph). How-
ever, the fact that it is possible to arrive at the same (time-
indexed) belief state via different executions suggests that
Definition 2 is not valid in the context of belief-based pol-
icy graphs. Thus, in order to better understand branching in
belief-based policies, let us now explore the relationship be-
tween possible percepts and successor belief states:

Lemma 1. 1 ≤ |{U(a, b, p) | p ∈ O(a, b)}| ≤ |O(a, b)|.

Proof. By definition, O(a, b) ⊆ P such that O(a, b) 6=
∅. Thus, |O(a, b)| ≥ 1. Similarly, if p ∈ O(a, b), then
U(a, b, p) ∈ B, otherwise U(a, b, p) = undefined. Thus,
|{U(a, b, p) | p ∈ O(a, b)}| ≥ 1 and |{U(a, b, p) | p ∈
O(a, b)}| ≤ |O(a, b)|.

Lemma 2. It is guaranteed that |O(a, b)| = |{U(a, b, p) |
p ∈ O(a, b)}| iff O is deterministic.

Proof. Given Lemma 1, we just need to prove (i) that there
exists a bijection (i.e. a one-to-one correspondence) f :

O(a, b) → {U(a, b, p) | p ∈ O(a, b)} when O is deter-
ministic, and (ii) that such a bijection is not guaranteed to
exist when O is non-deterministic.

(i) Suppose O is deterministic. By Definition, O(a, s) is
a singleton for each s ∈ b. Similarly, if s ∈ b and
p ∈ O(a, s), then s ∈ U(a, b, p). Conversely, if s ∈ b
and p 6∈ O(a, s), then s 6∈ U(a, b, p). It follows that, if
O(a, b) = {p1, . . . , pn}, then {f(p1), . . . , f(pn)} forms
a partition6 of b with f(pi) = U(a, b, pi), which satisfies
the definition of a bijection.

(ii) Suppose O is non-deterministic such that O(a, s) = P
for each a ∈ A and each s ∈ b with |P | > 1. By defini-
tion, we have that O(a, b) = P . Moreover, U(a, b, p) = b
for each p ∈ P , since s ∈ U(a, b, p) iff s ∈ b. It follows
that |O(a, b)| > |{U(a, b, p) | p ∈ O(a, b)}| ⇔ |P | >
|{b}|, which contradicts the definition of a bijection.

Corollary 1. U(a, b, p) = b if O(a, b) = {p}.

Proof. This follows from proof (i) of Lemma 2 and the fact
that O(a, b) = {p} is a deterministic observation, regardless
whether O is itself a deterministic function.

Lemma 1 says, firstly, that every action-execution is guar-
anteed to result in at least one possible percept and one suc-
cessor belief state and, secondly, that the number of possible
percepts is an upper bound on the number of possible suc-
cessor belief states. Lemma 2 then says that, if O is deter-
ministic, there exists a unique successor belief state for each
possible percept, but that this is not guaranteed if O is non-
deterministic. Finally, Corollary 1 says that, if there is only
one possible percept (whether p = ∅P or otherwise), then
the (single) successor belief state will be the same as the pre-
dicted belief state. Given these properties, we can now pro-
pose a definition of branching actions in the context belief-
based policies that remains valid for both deterministic and
non-deterministic observations:

Definition 6. The set of belief-based sensor actions in belief
state b ∈ B, denoted AU (b), is defined as:

AU (b) = {a ∈ A(b) | b′ = T (b, a),∃p, p′ ∈ O(a, b′),

U(a, b′, p) 6= U(a, b′, p′)}

Proposition 1. AU (b) ⊆ AO(b).

Proof. By definition, a ∈ AO(b) iff O(a, b′) is not a sin-
gleton with b′ = T (b, a). Conversely, a ∈ AU (b) iff
{U(a, b, p) | p ∈ O(a, b′)} is not a singleton. Thus, it fol-
lows from Lemma 1 that, if a ∈ AU (b), then it must also be
that a ∈ AO(b).

Proposition 2. It is guaranteed that AU (b) = AO(b) iff O
is deterministic.

Proof. This follows directly from Lemma 2 and Proposi-
tion 1, in that a bijection f : O(a, b) → {U(a, b, p) | p ∈
O(a, b)} is guaranteed to exist iff O is deterministic.

6This observation has been made previously (Russell and
Norvig 2009, Chapter 4).



Definition 7. The number of belief-based sensor actions in
execution h, denoted ΨU (h), is defined as:

ΨU (h) = |{i = 1, 2, · · · | ai ∈ AU (bi)}|
where h = (a1, p1, a2, p2, . . . ).
Definition 8. A belief-based contingent plan π is a belief-
based k-branching-bounded contingent plan with k ∈ N ∪
{∞} iff π satisfies:

max
h∈H∗

ΨU (h) ≤ k

where H∗ is the set of complete executions of π.
The problem with Definition 8 is that, in the context of

bounded branching, a (time-indexed) belief state is not a suf-
ficient statistic (Striebel 1965) for a history. Specifically, we
know it is possible to arrive at the same (time-indexed) be-
lief state via different executions, but this also means that
those executions may contain different numbers of sensor
actions; this may have implications for the choice of action,
and may even preclude further sensing. For example, sup-
pose there are two executions hi and hj such that bi = bj
and |hi| = |hj |. If Ψ(hi) = k − 1, then the best action (to
reach the goal) in hi might be to execute a sensor action, but
if Ψ(hj) = k, then executing a sensor action in hj is not
an option, although the goal may still be reachable from bj
via some other non-sensor action. This suggests that belief-
based policies (whether stationary or not) are too restrictive
to properly capture bounded branching. In the next section,
we will solve this problem by proposing a generalisation of
belief-based policies, called tracking-based policies.

3.3 Tracking-Based Policies
A history-based policy πh is called a tracking-based policy
with k ∈ N ∪ {∞} if πh satisfies the following: (i) h 6∈ H ′
if ΨU (h) > k; (ii) πh(hi) 6∈ AU (bi) if ΨU (hi) = k;
and (iii) πh(hi) = πh(hj) for any hi, hj ∈ H ′ such that
bi = bj and k−ΨU (hi) = k−ΨU (hj). As such, a tracking-
based policy can be defined as a function πk : X → A
where X ⊆ B × D with D = {t ∈ N | t < k} ∪ {k}
the set of decision steps. Intuitively, a tracking-based pol-
icy generalises a belief-based policy where πk(b, t) denotes
the action to execute in belief state b with t remaining sen-
sor actions.7 This is similar to belief-based policies in fault-
tolerant planning, where actions may depend on the num-
ber of “failures so far” (Domshlak 2013). Conversely, while
non-stationary belief-based policies are typical in finite hori-
zon planning problems (Geffner and Bonet 2013, Chapter 6),
it is worth emphasising that branching-bounded contingent
planning problems do not technically have a finite horizon
(e.g. if k =∞, or if the domain is non-observable).
Definition 9. A tracking-based contingent plan is a
tracking-based policy πh that is a strong-cyclic solution to a
contingent planning task (M, b1, SG).

As with belief-based policies, a tracking-based policy can
be encoded as a rooted multigraph over (step-indexed) be-
lief states, called a tracking-based policy graph. As such,
tracking-based policy graphs are generally more compact
than history-based policy graphs, and may contain cycles.

7Time-dependent tracking-based policies are also possible.
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Figure 4: Tracking-based k-branching-bounded plan, k ≥ 2.

Proposition 3. Let πk be a tracking-based contingent plan
with H∗ its set of complete executions. Then πk satisfies:

max
h∈H∗

ΨU (h) ≤ k

Proof. By definition, if πk is a tracking-based policy and
ΨU (h) > k, then h 6∈ H ′. If h 6∈ H ′, then by definition
(h, a, p) cannot be a possible execution of πk for any a ∈ A
and any p ∈ P . Conversely, if ΨU (hi) = k and hi ∈ H ′,
then by definition (hi, a, p) cannot be a possible execution of
πk with a = πk(bi, 0) for any p ∈ P if a ∈ AU (bi). Finally,
if h is not a possible execution of πk, then by definition h
cannot be a complete execution of πk. Thus, it must be that
ΨU (h) ≤ k if h is a complete execution of πk.

Definition 10. A tracking-based contingent plan πk is also
called a tracking-based k-branching-bounded contingent
plan.

Proposition 3 says that tracking-based contingent plans
directly encode the intuition of belief-based k-branching-
bounded contingent plans. Once again, Definition 10 is sim-
ilar to balanced k-contingency plans from (Meuleau and
Smith 2002), and if k = 0 (resp. k = ∞), then a tracking-
based k-branching-bounded contingent plan is a conformant
plan (resp. contingent plan). Finally, Figure 4 demonstrates
how tracking-based contingent plans can be less sensitive
to bounded branching than their history-based counterparts
(e.g. the plan is a history-based k-branching-bounded con-
tingent plan iff k ≥ 3).

Theorem 1. It is guaranteed that a tracking-based k-
branching-bounded contingent plan πk is a strong solution
iff k <∞.

Proof. We need to prove: (i) that a strong-cyclic solution
may not be a strong solution when k =∞, and (ii) that every
strong-cyclic solution is also a strong solution if k <∞.

(i) Suppose k = ∞. By definition, πk reduces to a station-
ary belief-based policy π where π(b) = πk(b,∞) for any
(b,∞) ∈ X . Thus, πk may not be a strong solution, since
this is true of any stationary belief-based policy.

(ii) Suppose k < ∞. By definition, if πk(b, t) ∈ AU (b) for
some (b, t) ∈ X , then belief state b can only be revisited
as part of a distinct step-indexed belief state (b, t′) such
that t′ < t. Conversely, if πk(b, t) 6∈ AU (b) for some
(b, t) ∈ X , then (b, t) can only be revisited as part of



an infinite loop with a deterministic sequence of succes-
sor belief states (i.e. no branching) leading back to (b, t).
Infinite loops correspond to fair executions. Thus, there
cannot be an unfair infinite execution of πk, which means
that all complete executions of πk must be finite.

Theorem 1 guarantees that, if k < ∞, then a tracking-
based k-branching-bounded contingent plan will be acyclic.
Combined with our observation that (time-indexed) belief
states are not a sufficient statistic for bounded branch-
ing, this theorem solves an open question about defining
branching-bounded contingent plans in the context of (po-
tentially cyclic) belief-based policies (Bonet 2010). More
importantly, this theorem implies that certain types of algo-
rithms (i.e. those for acyclic plans) may be more convenient
than others for branching-bounded contingent planning.

3.4 Algorithm
In this section, we propose a variant of the AO* optimal
top-down heuristic search algorithm for acyclic AND/OR
graphs (Nilsson 1971, Chapter 3; Martelli and Montanari
1973). AO* itself is the search algorithm employed by nu-
merous existing contingent planners (Bonet and Geffner
2000; Hoffmann and Brafman 2005; Bryce, Kambhampati,
and Smith 2006), where it is typically used to construct opti-
mal history-based policies incrementally (Geffner and Bonet
2013, Chapter 5). However, AO* can also be used to con-
struct optimal acyclic belief-based policies via belief space
search. In a similar way, our algorithm (called Bounded
AO*, or BAO* for short) is able to find optimal history-
and tracking-based k-branching-bounded contingent plans.
BAO* is sound and complete when k < ∞, but may be in-
complete when k =∞where strong-cyclic solutions are not
guaranteed to be strong solutions (see Theorem 1).

We first need to formalise what we mean by optimality.
Let Π be the set of history-based policies. The cost function
C is extended to Π as a function C : Π→ R+ defined as:

C(πh) =

max
h∈H∗

|h|∑
i=1

C(ai) if H∗ 6= ∅

∞ otherwise

where h = (a1, p1, a2, p2, . . . ) and H∗ is the set of com-
plete executions of πh. Note that C(πh) = ∞ if πh has an
infinite execution. Of course, if πh is a tracking-based k-
branching-bounded contingent plan with k < ∞, then The-
orem 1 guarantees that all executions will be finite.

Definition 11. Let Π′ ⊆ Π be the set of history- (resp.
tracking-based) k-branching-bounded contingent plans. The
set of optimal history- (resp. tracking-based) k-branching-
bounded contingent plans Π∗ ⊆ Π′ is defined as:

Π∗ = argmin
πh∈Π′

C(πh)

Definition 11 says that an optimal k-branching-bounded
contingent plan minimizes cost in the worst case (that is, the
maximum cost for any complete execution). Next, we can
formalise the search space of BAO* as follows:

b1, k

a1, b2, k a2, b3, k

b4, k − 1 b5, k − 1 b6, k − 1

a1 a2

p1 p2 p3 p4

dead(n)
¬explored(n)
solved(n)

Figure 5: BAO* search graph.

Definition 12. A belief space search graph is an acyclic
AND/OR graph (N∨∪N∧, A∪P,E∨∪E∧, n) whereN∨ ⊆
X ,N∧ ⊆ A×X ,E∨ ⊆ N∨×A×N∧,E∧ ⊆ N∧×P×N∨,
and n ∈ N∨ is the root node.

Intuitively, nodes in a belief space search graph are (step-
indexed) belief states such that OR-edges link belief states
via actions, and AND-edges link belief states via percepts
(see Figure 5). The step-index in each node provides the
mechanism by which we track the number of sensor actions
on a given path. Notice also that AND-nodes are further aug-
mented with an action. The reason for this follows from the
fact that the set of possible percepts for a given belief state
depends on the action that lead to that belief state, and thus
it is necessary to track those actions.

Before describing BAO* in detail, let us introduce the
notion of a heuristic function in the context of BAO*. Let
V : N∨ ∪ N∧ → R+ ∪ {∞} be a heuristic function. We
say that V is admissible if it never overestimates the cost
(with respect to cost function C) of reaching the goal. A bi-
nary relation over nodes, denoted �V , is defined for nodes
n, n′ ∈ N∨ ∪N∧ as follows:

n �V n′ ⇔ V (n) ≤ V (n′)

Moreover, n 'V n′ if n �V n′ and n′ �V n. Also, n ≺V n′

if n �V n′ and n′ 6�V n. Finally, min(N,�V ) denotes the
single most preferred node in N ⊆ N∨∪N∧ with respect to
V , with ties broken arbitrarily. As input, BAO* takes a con-
tingent planning task (M, b1, SG), an admissible heuristic
function V ∗, and a bound k ∈ N∪{∞}. Importantly, the ad-
missible heuristic function V ∗ should satisfy the following:
V ∗(b, t) = V ∗(b, t′) for all t, t′ ∈ D; V ∗(a, b, t) = V ∗(b, t)
for each a ∈ A; and V ∗(a, b, t) = V ∗(a′, b, t′) for all
a, a′ ∈ A and all t, t′ ∈ D. In other words, V ∗ is inde-
pendent of the step-index and action.

An outline of BAO* is provided in Algorithm 1, and sup-
plementary definitions (which are identical to AO*) are pro-
vided in Table 1. In particular, Table 1b describes how an-
other heuristic function V is derived from the cost function
C and the input heuristic function V ∗. The heuristic func-
tion V represents a revised cost estimate and is computed
by BAO* during the search. Therefore, V is the heuristic
function that actually guides the search, and is admissible if
V ∗ is admissible. Of course, AO* does not typically com-
pute V at each step; instead it maintains a single heuristic
value for each node, which it then updates during the search
via a back-propagation procedure. We omit these details for
conciseness. The main changes to AO* can be found in Al-
gorithm 1, and relate to the tracking of sensor actions on a



Algorithm 1: BAO*
Input: Contingent planning task (M, b1, SG), admissible

heuristic V ∗, bound k ∈ N ∪ {∞}
Output: πk = extract(root)

1 root← (b1, k)
2 while ¬solved(root) ∧ V (root) 6=∞ do
3 leaf← choose(root)
4 expand(leaf)

5 return extract(root)
6 function choose(n) /* OR-node */
7 if ¬expanded(n) then
8 return n
9 n′ ← min({n′′′ | (n, a, n′′′) ∈ E∨},�V )

10 N ′∨ ← {n′′′ | (n′, p, n′′′) ∈ E∧,¬solved(n′′′)}
11 n′′ ← min(N ′∨,�V )
12 return choose(n′′)

13 procedure expand(n) /* OR-node */
14 (b, t)← n
15 for each a ∈ A(b) do
16 b′ ← T (b, a)
17 n′ ← (a, b′, t)
18 if ¬path(n′, n) then
19 E′∧ ← expand(n′)
20 if E′∧ 6= ∅ then
21 E∨ ← E∨ ∪ {(n, a, n′)}
22 E∧ ← E∧ ∪ E′∧

23 function expand(n) /* AND-node */
24 (a, b, t)← n
25 X ← ∅
26 for each p ∈ O(a, b) do
27 b′ ← U(a, b, p)
28 X ← X ∪ {(p, b′)}
29 if |{b′ | (p, b′) ∈ X}| > 1 then
30 if t = 0 then
31 return ∅
32 t← t− 1

33 E′∧ ← ∅
34 for each (p, b′) ∈ X do
35 n′ ← (b′, t)
36 if path(n′, n) then
37 return ∅
38 E′∧ ← E′∧ ∪ {(n, p, n′)}
39 return E′∧

given path, as well as the avoidance of cycles. We can sum-
marise the algorithm as follows:

Lines 3–4 In each iteration, we select an OR-node n =
(b, t) for expansion in the current best partial solution.

Lines 14–16 For each applicable action a ∈ A(b), we gen-
erate the predicted belief state b′ = T (b, a).

Lines 17–19, 24–28 If possible to add an OR-edge from n
to AND-node n′ = (a, b′, t) without creating a cycle, then
for each possible percept p ∈ O(a, b) we generate the
successor belief state b′′ = U(a, b′, p).

Predicate Value

expanded(n) true after execution of expand(n), oth-
erwise false

path(n, n′) true if there is a path from n to n′ in the
current belief space search graph, other-
wise false

goal(n) true if n ∈ N∨ and b ⊆ SG with n =
(i, b), otherwise false

dead(n) true if expanded(n) and n has no chil-
dren, otherwise false

solved(n) true if goal(n), or n ∈ N∨ and
solved(n′) for some child n′ of n, or
n ∈ N∧ and solved(n′) for each child
n′ of n, otherwise false

(a) Predicates in BAO*.

V (n) Condition

0 If goal(n)
∞ If dead(n)
min
n′∈N

C(a) + V (n′) If n ∈ N∨ and expanded(n) such
that N is the set of children of n and
n′ = (a, b)

max
n′∈N

V (n′) If n ∈ N∧ and expanded(n) such
that N is the set of children of n

V ∗(n) Otherwise

(b) Heuristic function V in BAO*.

Table 1: Supplementary details for BAO*.

Lines 29–32 We record the remaining number of sensor ac-
tions as t′ = t− 1 if a ∈ AU (b), or t′ = t otherwise.

Lines 33–39, 20–22 If possible to add an AND-edge from
n′ to OR-node n′′ = (b′′, t′) without creating a cycle, then
we add n′ as a child of n and each n′′ as a child of n′.

Line 2 The search terminates when the root node is solved,
or is deemed to be unsolvable via V (n) =∞.

Line 5 A tracking-based k-branching-bounded contingent
plan is returned, if found, via extract(n).

Notice that a negative result at line 18 or line 36 does not
mean that no solution exists from n involving n′ or n′′, but
simply that no acyclic solution exists (Russell and Norvig
2009, Chapter 4). Specifically, the admissible heuristic func-
tion V in (B)AO* ensures that, if n′ or n′′ are part of the
optimal solution, then they will be part of the solution at the
point that they were originally expanded. Of course, while
Definition 12 and Algorithm 1 focus on tracking-based poli-
cies, a simpler variant (i.e. tree-based search, omitted due to
space considerations) can also be used to incrementally con-
struct history-based k-branching-bounded contingent plans.

4 Related Work
The only other practical treatment of branching-bounded
contingent planning appears to be the work of Meuleau and
Smith (2002), whose method is known to be valid only un-
der full observability (Bonet 2010). Thus, our work rep-
resents the first practical treatment of this problem that



is valid in the general case (i.e. partial observability). As
far as we are aware, the only other work that deals with
branching-bounded contingent plans has been theoretical
analyses of computational complexity in planning (Baral,
Kreinovich, and Trejo 2000; Bonet 2010). Bounded branch-
ing is a subclass of the broader problem of planning with
bounded parameters. In this broader class, finite-horizon
planning is perhaps the best known instance, requiring that
plans have some bounded execution length (e.g. Rintanen
2007). Another example is conformant probabilistic plan-
ning, where satisficing plans guarantee some lower bound
on the probability of goal achievement under an indefinite
horizon (Domshlak and Hoffmann 2006). In fault-tolerant
planning, partial plans are permitted under the assumption
that only a bounded number of non-primary effects will
occur during execution (Domshlak 2013). Recent work on
compact plans requires that π(·) be defined only for some
bounded number of controller states (Geffner and Geffner
2018) or memory states (Chatterjee, Chmelı́k, and Davies
2018; Pandey and Rintanen 2018). Of course, while all
these works belong to the broad class of bounded plan-
ning problems, they do not share the same characteristics as
branching-bounded contingent planning: they do not reduce
branching, and do not generalise conformant planning.

Contingent planners that rely on belief space search can
be classified in terms of: (i) their underlying search al-
gorithm for AND/OR graphs; (ii) their belief state repre-
sentation; and (iii) their heuristics. Our method is agnostic
to (ii) and (iii). The best-known algorithm for (i) is prob-
ably AO* (Nilsson 1971, Chapter 3; Martelli and Mon-
tanari 1973), but other examples include LAO* (Hansen
and Zilberstein 2001), LDFS (Bonet and Geffner 2005),
and A*LD (Felzenszwalb and McAllester 2007). Contingent
planners based on AO* include GPT (Bonet and Geffner
2000), Contingent-FF (Hoffmann and Brafman 2005), and
POND (Bryce, Kambhampati, and Smith 2006). To the best
of our knowledge, belief space search remains state-of-the-
art in general8 contingent planning (e.g. Contingent-FF can
be regarded as state-of-the-art). That being said, alterna-
tive techniques include plan space search (Weld, Anderson,
and Smith 1998), answer set programming (Tu, Son, and
Baral 2007), and compilation (Muise, Belle, and McIlraith
2014). We expect that branching-bounded contingent plan-
ning could be achieved with many of these techniques.

5 Conclusion
An implementation of this work is available online.9 From a
practical perspective, we hope to further develop this im-
plementation into a planner that is competitive with (but
subsumes) existing state-of-the-art conformant and contin-
gent planners. This could be achieved, for example, by the
use of better heuristics (Bryce, Kambhampati, and Smith
2006), or compact belief state representations (Darwiche
2011). Subsequently, we hope to experimentally validate
this work using benchmarks that permit different types of

8That is, where there range of solvable problems is not re-
stricted a priori by the underlying planning technique.

9https://github.com/kevinmcareavey/bcp

branching-bounded contingent plans (e.g. conformant and
non-conformant plans). Finally, it is worth mentioning that
this work was motivated by an XAIP application involving
the recommendation of plans for execution by humans, so
it would be interesting to evaluate the effect of bounded
branching on human comprehension.

From a theoretical perspective, there are many interest-
ing directions for future work. For example, we have de-
fined branching-bounded contingent plans in terms of a lo-
cal bound (i.e. where branching is bound only on complete
paths of the policy graph), but a global bound may also be
desirable (i.e. where branching is bound across the entire
policy graph). The latter would be comparable to the notion
of a general k-contingency plans from (Meuleau and Smith
2002). Such plans might be found by maintaining an explicit
partial solution during the search, then discarding when the
bound is exceeded. However, this would likely complicate
backtracking. Another example is that, while we bound the
number of branch points, we do not bound the number of
branches (i.e. child nodes). Doing so could help to further
reduce the complexity of the plan. Finding complete plans
would certainly require an online partitioning of O(a, b)
such that successor belief states could be defined for sets of
percepts in that partition, e.g. whereU(a, b, {p1, . . . , pn}) =
U(a, b, p1) ∪ . . . ∪ U(a, b, pn). However, optimally choos-
ing that partition is not straightfoward, and there would be
no guarantees on the optimality of the resulting plan. As
an alternative, fault-tolerant planning techniques (Domshlak
2013) could be used to find partial plans that only account
for a bounded number of “most significant” branches.
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