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Abstract

We introduce a feature scattering-based adversarial training approach for improving
model robustness against adversarial attacks. Conventional adversarial training
approaches leverage a supervised scheme (either targeted or non-targeted) in gener-
ating attacks for training, which typically suffer from issues such as label leaking
as noted in recent works. Differently, the proposed approach generates adversarial
images for training through feature scattering in the latent space, which is unsu-
pervised in nature and avoids label leaking. More importantly, this new approach
generates perturbed images in a collaborative fashion, taking the inter-sample
relationships into consideration. We conduct analysis on model robustness and
demonstrate the effectiveness of the proposed approach through extensively exper-
iments on different datasets compared with state-of-the-art approaches. Code is
available: https://github.com/Haichao-Zhang/FeatureScatter.

1 Introduction

While breakthroughs have been made in many fields such as image classification leveraging deep
neural networks, these models could be easily fooled by the so call adversarial examples [55, 4].
In terms of the image classification, an adversarial example for a natural image is a modified
version which is visually indistinguishable from the original but causes the classifier to produce a
different label prediction [4, 55, 24]. Adversarial examples have been shown to be ubiquitous beyond
classification, ranging from object detection [64, 18] to speech recognition [11, 9].

Many encouraging progresses been made towards improving model robustness against adversarial
examples under different scenarios [58, 36, 33, 67, 72, 16, 71]. Among them, adversarial train-
ing [24, 36] is one of the most popular technique [2], which conducts model training using the
adversarially perturbed images in place of the original ones. However, several challenges remain to
be addressed. Firstly, some adverse effects such as label leaking is still an issue hindering adversarial
training [32]. Currently available remedies either increase the number of iterations for generating the
attacks [36] or use classes other than the ground-truth for attack generation [32, 65, 61]. Increasing
the attack iterations will increase the training time proportionally while using non-ground-truth
targeted approach cannot fully eliminate label leaking. Secondly, previous approaches for both
standard and adversarial training treat each training sample individually and in isolation w.r.t.other
samples. Manipulating each sample individually this way neglects the inter-sample relationships and
does not fully leverage the potential for attacking and defending, thus limiting the performance.

Manifold and neighborhood structure have been proven to be effective in capturing the inter-sample
relationships [51, 22]. Natural images live on a low-dimensional manifold, with the training and
testing images as samples from it [26, 51, 44, 56]. Modern classifiers are over-complete in terms of
parameterizations and different local minima have been shown to be equally effective under the clean
image setting [14]. However, different solution points might leverage different set of features for
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prediction. For learning a well-performing classifier on natural images, it suffices to simply adjust
the classification boundary to intersect with this manifold at locations with good separation between
classes on training data, as the test data will largely reside on the same manifold [28]. However,
the classification boundary that extends beyond the manifold is less constrained, contributing to
the existence of adversarial examples [56, 59]. For examples, it has been pointed out that some
clean trained models focus on some discriminative but less robust features, thus are vulnerable to
adversarial attacks [28, 29]. Therefore, the conventional supervised attack that tries to move feature
points towards this decision boundary is likely to disregard the original data manifold structure.
When the decision boundary lies close to the manifold for its out of manifold part, adversarial
perturbations lead to a tilting effect on the data manifold [56]; at places where the classification
boundary is far from the manifold for its out of manifold part, the adversarial perturbations will move
the points towards the decision boundary, effectively shrinking the data manifold. As the adversarial
examples reside in a large, contiguous region and a significant portion of the adversarial subspaces
is shared [24, 19, 59, 40], pure label-guided adversarial examples will clutter as least in the shared
adversarial subspace. In summary, while these effects encourage the model to focus more around the
current decision boundary, they also make the effective data manifold for training deviate from the
original one, potentially hindering the performance.

Motived by these observations, we propose to shift the previous focus on the decision boundary
to the inter-sample structure. The proposed approach can be intuitively understood as generating
adversarial examples by perturbing the local neighborhood structure in an unsupervised fashion and
then performing model training with the generated adversarial images. The overall framework is
shown in Figure 1. The contributions of this work are summarized as follows:
• we propose a novel feature-scattering approach for generating adversarial images for adversarial

training in a collaborative and unsupervised fashion;
• we present an adversarial training formulation which deviates from the conventional minimax

formulation and falls into a broader category of bilevel optimization;
• we analyze the proposed approach and compare it with several state-of-the-art techniques, with

extensive experiments on a number of standard benchmarks, verifying its effectiveness.

2 Background

2.1 Adversarial Attack, Defense and Adversarial Training

Adversarial examples, initially demonstrated in [4, 55], have attracted great attention recently [4,
24, 58, 36, 2, 5]. Szegedy et al. pointed out that CNNs are vulnerable to adversarial examples
and proposed an L-BFGS-based algorithm for generating them [55]. A fast gradient sign method
(FGSM) for adversarial attack generation is developed and used in adversarial training in [24]. Many
variants of attacks have been developed later [41, 8, 54, 62, 7, 6]. In the mean time, many efforts
have been devoted to defending against adversarial examples [38, 37, 63, 25, 33, 50, 53, 46, 35].
Recently, [2] showed that many existing defence methods suffer from a false sense of robustness
against adversarial attacks due to gradient masking, and adversarial training [24, 32, 58, 36] is one of
the effective defense method against adversarial attacks. It improves model robustness by solving a
minimax problem as [24, 36]:

min
θ

[
max
x′∈Sx

L(x′, y;θ)
]

(1)

where the inner maximization essentially generates attacks while the outer minimization corresponds
to minimizing the “adversarial loss” induced by the inner attacks [36]. The inner maximization can
be solved approximately, using for example a one-step approach such as FGSM [24], or a multi-step
projected gradient descent (PGD) method [36]

xt+1 = PSx
(
xt + α · sign

(
∇xL(xt, y;θ)

))
, (2)

where PSx(·) is a projection operator projecting the input into the feasible region Sx. In the PGD
approach, the original image x is randomly perturbed to some point x0 within B(x, ε), the ε-cube
around x, and then goes through several PGD steps with a step size of α as shown in Eqn.(2).

Label leaking [32] and gradient masking [43, 58, 2] are some well-known issues that hinder the
adversarial training [32]. Label leaking occurs when the additive perturbation is highly correlated with
the ground-truth label. Therefore, when it is added to the image, the network can directly tell the class
label by decoding the additive perturbation without relying on the real content of the image, leading
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Figure 1: Feature Scattering-based Adversarial Training Pipeline. The adversarial perturbations
are generated collectively by feature scattering, i.e., maximizing the feature matching distance
between the clean samples {xi} and the perturbed samples {x′j}. The model parameters are updated
by minimizing the cross-entropy loss using the perturbed images {x′j} as the training samples.

to higher adversarial accuracy than the clean image during training. Gradient masking [43, 58, 2]
refers to the effect that the adversarially trained model learns to “improve” robustness by generating
less useful gradients for adversarial attacks, which could be by-passed with a substitute model for
generating attacks, thus giving a false sense of robustness [2].

2.2 Different Distances for Feature and Distribution Matching

Euclidean distance is arguably one of the most commonly used metric for measuring the distance
between a pair of points. When it comes to two sets of points, it is natural to accumulate the individual
pairwise distance as a measure of distance between the two sets, given the proper correspondence.
Alternatively, we can view each set as an empirical distribution and measure the distance between
them using Kullback-Leibler (KL) or Jensen-Shannon (JS) divergence. The challenge for learning
with KL or JS divergence is that no useful gradient is provided when the two empirical distributions
have disjoint supports or have a non-empty intersection contained in a set of measure zero [1, 49].
The optimal transport (OT) distance is an alternative measure of the distance between distributions
with advantages over KL and JS in the scenarios mentioned earlier. The OT distance between two
probability measures µ and ν is defined as:

D(µ, ν) = inf
γ∈Π(µ,ν)

E(x,y)∼γ c(x, y) , (3)

where Π(µ, ν) denotes the set of all joint distributions γ(x, y) with marginals µ(x) and ν(y), and
c(x, y) is the cost function (Euclidean or cosine distance). Intuitively, D(µ, ν) is the minimum cost
that γ has to transport from µ to ν. It provides a weaker topology than many other measures, which
is important for applications where the data typically resides on a low dimensional manifold of the
input embedding space [1, 49], which is the case for natural images. It has been widely applied
to many tasks, such as generative modeling [21, 1, 49, 20, 10], auto-encoding [57] and dictionary
learning [47]. For comprehensive historical and computational perspective of OT, we refer to [60, 45].

3 Feature Scattering-based Adversarial Training
3.1 Feature Matching and Feature Scattering

Feature Matching. Conventional training treats training data as i.i.d samples from a data distribution,
overlooking the connections between samples. The same assumption is used when generating
adversarial examples for training, with the direction for perturbing a sample purely based on the
direction from the current data point to the decision boundary, regardless of other samples. While
effective, it disregards the inter-relationship between different feature points, as the adversarial
perturbation is computed individually for each sample, neglecting any collective distributional
property. Furthermore, the supervised generation of the attacks makes the generated perturbations
highly biases towards the decision boundary, as shown in Figure 2. This is less desirable as it might
neglect other directions that are crucial for learning robust models [28, 17] and leads to label leaking
due to high correlation between the perturbation and the decision boundary.
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Figure 2: Illustration Example of Different Perturbation Schemes. (a) Original data. Perturbed
data using (b) supervised adversarial generation method and (c) the proposed feature scattering,
which is an unsupervised method. The overlaid boundary is from the model trained on clean data.

The idea of leveraging inter-sample relationship for learning dates back to the seminal work of [51, 22,
48]. This type of local structure is also exploited in this work, but for adversarial perturbation. The
quest of local structure utilization and seamless integration with the end-to-end-training framework
naturally motivates an OT-based soft matching scheme, using the OT-distance as in Eqn.(3). We
consider OT between discrete distributions hereafter as we mainly focus on applying the OT distance
on image features. Specifically, consider two discrete distributions µ,ν ∈ P(X), which can be
written as µ =

∑n
i=1 uiδxi

and ν =
∑n
i=1 viδx′

i
, with δx the Dirac function centered on x.2 The

weight vectors µ={ui}ni=1∈∆n and ν={vi}ni=1∈∆n belong to the n-dimensional simplex, i.e.,∑
i ui=

∑
i vi=1, as both µ and ν are probability distributions. Under such a setting, computing the

OT distance as defined in Eqn.(3) is equivalent to solving the following network-flow problem

D(µ,ν) = min
T∈Π(u,v)

n∑
i=1

n∑
j=1

Tij · c(xi,x′j) = min
T∈Π(u,v)

〈T,C〉 (4)

where Π(u,v) = {T ∈ Rn×n+ |T1n = u,T>1n = v}. 1n is an n-dimensional all-one vector. 〈·, ·〉
represents the Frobenius dot-product. C is the transport cost matrix such that Cij = c(xi,x

′
j). In

this work, the transport cost is defined as the cosine distance between image features:

c(xi,x
′
j) = 1−

fθ(xi)
>fθ(x

′
j)

‖fθ(xi)‖2‖fθ(x′j)‖2
= 1−

f>i f ′j
‖fi‖2‖f ′j‖2

(5)

where fθ(·) denotes the feature extractor with parameter θ. We implement fθ(·) as the deep neural
network upto the softmax layer. We can now formally define the feature matching distance as follows.
Definition 1. (Feature Matching Distance) The feature matching distance between two set of images
is defined as D(µ,ν), the OT distance between empirical distributions µ and ν for the two sets.

Note that the feature-matching distance is also a function of θ (i.e. Dθ) when fθ(·) is used for
extracting the features in the computation of the ground distance as in Eqn.(5). We will simply use
the notation D in the following when there is no danger of confusion to minimize notional clutter .

Feature Scattering. Based on the feature matching distance defined above, we can formulate
proposed feature scattering method as follows:

ν̂ = arg max
ν∈Sµ

D(µ,ν), µ =

n∑
i=1

uiδxi , ν =

n∑
i=1

viδx′
i
. (6)

This can be intuitively interpreted as maximizing the feature matching distance between the original
and perturbed empirical distributions with respect to the inputs subject to domain constraints Sµ

Sµ = {
∑

i
viδzi

, | zi ∈ B(xi, ε) ∩ [0, 255]d},
where B(x, ε) = {z | ‖z− x‖∞ ≤ ε} denotes the `∞-cube with center x and radius ε. Formally, we
present the notion of feature scattering as follows.
Definition 2. (Feature Scattering) Given a set of clean data {xi}, which can be represented as an
empirical distribution as µ =

∑
i uiδxi

with
∑
i ui=1, the feature scattering procedure is defined as

producing a perturbed empirical distribution ν =
∑
i viδx′

i
with

∑
i vi=1 by maximizing D(µ,ν),

the feature matching distance between µ and ν, subject to domain and budget constraints.
2The two discrete distributions could be of different dimensions; here we present the exposition assuming the

same dimensionality to avoid notion clutter.
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Remark 1. As the feature scattering is performed on a batch of samples leveraging inter-sample
structure, it is more effective as adversarial attacks compared to structure-agnostic random perturba-
tion while is less constrained than supervisedly generated perturbation which is decision boundary
oriented and suffers from label leaking. Empirical comparisons will be provided in Section 5.

3.2 Adversarial Training with Feature Scattering

We leverage feature scattering for adversarial training, with the mathmatical formulation as follows

minθ
1

n

n∑
i=1

Lθ(x′i, yi) s.t. ν∗ ,
n∑
i=1

viδx′
i

= max
ν∈Sµ

D(µ,ν). (7)

The proposed formulation deviates from the conventional minimax formulation for adversarial
training [24, 36]. More specifically, it can be regarded as an instance of the more general bilevel
optimization problem [13, 3]. Feature scattering is effective for adversarial training scenario as there
is a requirements of more data [52]. Feature scattering promotes data diversity without drastically
altering the structure of the data manifold as in the conventional supervised approach, with label
leaking as one manifesting phenomenon. Secondly, the feature matching distance couples the samples
within the batch together, therefore the generated adversarial attacks are produced collaboratively by
taking the inter-sample relationship into consideration. Thirdly, feature scattering implicitly induces
a coupled regularization (detailed below) on model training, leveraging the inter-sample structure for
joint regularization.

The proposed approach is equivalent to the minimization of a loss, 1
n

∑n
i=1 Lθ(xi, yi) +

λRθ(x1, · · · ,xn), consisting of the conventional loss Lθ(xi, yi) on the original data, and a regu-
larization term Rθ coupled over the inputs. It first highlights the unique property of the proposed
feature scattering approach that it induces an effective regularization term that is coupled over all
inputs, i.e.,Rθ(x1, · · · ,xn) 6=∑iR′θ(xi). This implies that the model leverages information from
all inputs in a joint fashion for learning, offering the opportunity of collaborative regularization
leveraging inter-sample relationships. Second, the usage of a function (Dθ) different from Lθ for
inducingRθ offers more flexibilities in the effective regularization; moreover, no label information is
incorporated in Dθ , thus avoiding potential label leaking as in the conventional case when ∂Lθ(xi,yi)

∂xi

is highly correlated with yi. Finally, in the case when Dθ is separable over inputs and takes the form
of a supervised loss, e.g., Dθ≡

∑
i Lθ(xi, yi), the proposed approach reduces to the conventional

adversarial training setup [24, 36]. The overall procedure for the proposed approach is in Algorithm 1.

Algorithm 1 Feature Scattering-based Adversarial Training
Input: dataset S, training epochs K, batch size n, learning rate γ, budget ε, attack iterations T
for k = 1 to K do

for random batch {xi, yi}ni=1 ∼S do
initialization: µ =

∑
i uiδxi , ν =

∑
i viδx′

i
, x′i ∼ B(xi, ε)

feature scattering (maximizing feature matching distance D w.r.t.ν):
for t = 1 to T do
· x′i ← PSx

(
x′i + ε · sign

(
∇x′

i
D(µ,ν)

))
∀i = 1, · · · , n, ν =

∑
i viδx′

i

end for
adversarial training (updating model parameters):
· θ ← θ − γ · 1

n

∑n
i=1∇θL(x′i, yi;θ)

end for
end for
Output: model parameter θ.

4 Discussions
Manifold-based Defense [34, 37, 15, 27]. [34, 37, 27] proposed to defend by projecting the perturbed
image onto a proper manifold. [15] used a similar idea of manifold projection but approximated
this step with a nearest neighbor search against a web-scale database. Differently, we leverage the
manifold in the form of inter-sample relationship for the generation of the perturbations, which
induces an implicit regularization of the model when used in the adversarial training framework.
While defense in [34, 37, 15, 27] is achieved by shrinking the perturbed inputs towards the manifold,
we expand the manifold using feature scattering to generate perturbed inputs for adversarial training.
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Inter-sample Regularization [70, 30, 39]. Mixup [70] generates training examples by linear inter-
polation between pairs of natural examples, thus introducing an linear inductive bias in the vicinity of
training samples. Therefore, the model is expected to reduce the amount of undesirable oscillations
for off-manifold samples. Logit pairing [30] augments the original training loss with a “pairing”
loss, which measures the difference between the logits of clean and adversarial images. The idea
is to suppress spurious logits responses using the natural logits as a reference. Similarly, virtual
adversarial training [39] proposed a regularization term based on the KL divergence of the prediction
probability of original and adversarially perturbed images. In our model, the inter-sample relationship
is leveraged for generating the adversarial perturbations, which induces an implicit regularization
term in the objective function that is coupled over all input samples.
Wasserstein GAN and OT-GAN [1, 49, 10]. Generative Adversarial Networks (GAN) is a family
of techniques that learn to capture the data distribution implicitly by generating samples directly [23].
It originally suffers from the issues of instability of training and mode collapsing [23, 1]. OT-
related distances [1, 12] have been used for overcoming the difficulties encountered in the original
GAN training [1, 49]. This technique has been further extended to generating discrete data such as
texts [10]. Different from GANs, which maximizes a discrimination criteria w.r.t.the parameters of
the discriminator for better capturing the data distribution, we maximize a feature matching distance
w.r.t.the perturbed inputs for generating proper training data to improve model robustness.

5 Experiments
Baselines and Implementation Details. Our implementation is based on PyTorch and the code as
well as other related resources are available on the project page.3 We conduct extensive experiments
across several benchmark datasets including CIFAR10 [31], CIFAR100 [31] and SVHN [42]. We
use Wide ResNet (WRN-28-10) [68] as the network structure following [36]. We compare the
performance of the proposed method with a number of baseline methods, including: i) the model
trained with standard approach using clean images (Standard) [31], ii) PGD-based approach from
Madry et al. (Madry) [36], which is one of the most effective defense method [2], iii) another
recent method performs adversarial training with both image and label adversarial perturbations
(Bilateral) [61]. For training, the initial learning rate γ is 0.1 for CIFAR and 0.01 for SVHN.
We set the number of epochs the Standard and Madry methods as 100 with transition epochs as
{60, 90} as we empirically observed the performance of the trained model stabilized before 100
epochs. The training scheduling of 200 epochs similar to [61] with the same transition epochs used as
we empirically observed it helps with the model performance, possibly due to the increased variations
of data via feature scattering. We performed standard data augmentation including random crops
with 4 pixels of padding and random horizontal flips [31] during training. The perturbation budget
of ε = 8 is used in training following literature [36]. Label smoothing of 0.5, attack iteration T=1
and Sinkhorn algorithm [12] with regularization of 0.01 is used. For testing, model robustness is
evaluated by approximately computing an upper bound of robustness on the test set, by measuring the
accuracy of the model under different adversarial attacks, including white-box FGSM [24], PGD [36],
CW [8] (CW-loss [8] within the PGD framework) attacks and variants of black-box attacks.

5.1 Visual Classification Performance Under White-box Attacks

CIFAR10. We conduct experiments on CIFAR10 [31], which is a popular dataset that is widely
use in adversarial training literature [36, 61] with 10 classes, 5K training images per class and 10K
test images. We report the accuracy on the original test images (Clean) and under PGD and CW
attack with T iterations (PGDT and CWT ) [36, 8]. The evaluation results are summarized in Table 1.
It is observed Standard model fails drastically under different white-box attacks. Madry method
improves the model robustness significantly over the Standard model. Under the standard PGD20
attack, it achieves 44.9% accuracy. The Bilateral approach further boosts the performance to
57.5%. The proposed approach outperforms both methods by a large margin, improving over Madry
by 25.6%, and is 13.0% better than Bilateral, achieving 70.5% accuracy under the standard 20
steps PGD attack. Similar patten has been observed for CW metric.
We further evaluate model robustness against PGD attacker under different attack budgets with a
fixed attack step of 20, with the results shown in Figure 3 (a). It is observed that the performance
of Standard model drops quickly as the attack budget increases. The Madry model [36] improves
the model robustness significantly across a wide range of attack budgets. The Proposed approach
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Figure 3: Model performance under PGD attack with different (a) attack budgets (b) attack iterations.
Madry and Proposed models are trained with the attack iteration of 7 and 1 respectively.

Models Clean Accuracy under White-box Attack (ε = 8)
FGSM PGD10 PGD20 PGD40 PGD100 CW10 CW20 CW40 CW100

Standard 95.6 36.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Madry 85.7 54.9 45.1 44.9 44.8 44.8 45.9 45.7 45.6 45.4

Bilateral 91.2 70.7 – 57.5 – 55.2 – 56.2 – 53.8
Proposed 90.0 78.4 70.9 70.5 70.3 68.6 62.6 62.4 62.1 60.6

Table 1: Accuracy comparison of the Proposed approach with Standard, Madry [36] and
Bilateral [61] methods on CIFAR10 under different threat models.

further boosts the performance over the Madry model [36] by a large margin under different attack
budgets. We also conduct experiments using PGD attacker with different attack iterations with a
fixed attack budget of 8, with the results shown in Figure 3 (b-c) and also Table 1. It is observed that
both Madry [36] and Proposed can maintain a fairly stable performance when the number of attack
iterations is increased. Notably, the proposed approach consistently outperforms the Madry [36]
model across a wide range of attack iterations. From Table 1, it is also observed that the Proposed
approach also outperforms Bilateral [61] under all variants of PGD and CW attacks. We will use
a PGD/CW attackers with ε=8 and attack step 20 and 100 in the sequel as part of the threat models.

Models Clean White-box Attack (ε=8)
FGSM PGD20 PGD100 CW20 CW100

Standard 97.2 53.0 0.3 0.1 0.3 0.1
Madry 93.9 68.4 47.9 46.0 48.7 47.3

Bilateral 94.1 69.8 53.9 50.3 – 48.9
Proposed 96.2 83.5 62.9 52.0 61.3 50.8

Models Clean White-box Attack (ε=8)
FGSM PGD20 PGD100 CW20 CW100

Standard 79.0 10.0 0.0 0.0 0.0 0.0
Madry 59.9 28.5 22.6 22.3 23.2 23.0

Bilateral 68.2 60.8 26.7 25.3 – 22.1
Proposed 73.9 61.0 47.2 46.2 34.6 30.6

Table 2: Accuracy comparison on (a) SVHN and (b) CIFAR100.

SVHN. We further report results on the SVHN dataset [42]. SVHN is a 10-way house number
classification dataset, with 73257 training images and 26032 test images. The additional training
images are not used in experiment. The results are summarized in Table 2(a). Experimental results
show that the proposed method achieves the best clean accuracy among all three robust models and
outperforms other method with a clear margin under both PGD and CW attacks with different number
of attack iterations, demonstrating the effectiveness of the proposed approach.
CIFAR100. We also conduct experiments on CIFAR100 dataset, with 100 classes, 50K training
and 10K test images [31]. Note that this dataset is more challenging than CIFAR10 as the number
of training images per class is ten times smaller than that of CIFAR10. As shown by the results in
Table 2(b), the proposed approach outperforms all baseline methods significantly, which is about
20% better than Madry [36] and Bilateral [61] under PGD attack and about 10% better under CW
attack. The superior performance of the proposed approach on this data set further demonstrates the
importance of leveraging inter-sample structure for learning [69].

5.2 Ablation Studies
We investigate the impacts of algorithmic components and more results are in the supplementary file.
The Importance of Feature Scattering. We empirically verify the effectiveness of feature scat-
tering, by comparing the performances of models trained using different perturbation schemes:
i) Random: a natural baseline approach that randomly perturb each sample within the epsilon neigh-
borhood; ii) Supervised: perturbation generated using ground-truth label in a supervised fashion;
iii) FeaScatter: perturbation generated using the proposed feature scattering method. All other
hyper-parameters are kept exactly the same other than the perturbation scheme used. The results are
summarized in Table 3(a). It is evident that the proposed feature scattering (FeaScatter) approach
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Figure 4: Loss surface visualization in the vicinity of a natural image along adversarial direction
(da) and direction of a Rademacher vector (dr) for (a) Standard (b) Madry (c) Proposed models.

outperforms both Random and Supervised methods, demonstrating its effectiveness. Furthermore,
as it is the major component that is difference from the conventional adversarial training pipeline, this
result suggests that feature scattering is the main contributor to the improved adversarial robustness.

Perturb Clean White-box Attack (ε=8)
FGSM PGD20 PGD100 CW20 CW100

Random 95.3 75.7 29.9 18.3 34.7 26.2
Supervised 86.9 64.4 56.0 54.5 51.2 50.3
FeaScatter 90.0 78.4 70.5 68.6 62.4 60.6

Match Clean White-box Attack (ε=8)
FGSM PGD20 PGD100 CW20 CW100

Uniform 90.0 71.0 57.1 54.7 53.2 51.4
Identity 87.4 66.3 57.5 56.0 52.4 50.6

OT 90.0 78.4 70.5 68.6 62.4 60.6

Table 3: (a) Importance of feature-scattering. (b) Impacts of different matching schemes.

The Role of Matching. We further investigate the role of matching schemes within the feature
scattering component by comparing several different schemes: i) Uniform matching, which matches
each clean sample uniformly with all perturbed samples in the batch; ii) Identity matching,
which matches each clean sample to its perturbed sample only; iii) OT-matching: the proposed
approach that assigns soft matches between the clean samples and perturbed samples according to the
optimization criteria. The results are summarized in Table 3(b). It is observed all variants of matching
schemes lead to performances that are on par or better than state-of-the-art methods, implying that
the proposed framework is effective in general. Notably, OT-matching leads to the best results,
suggesting the importance of the proper matching for feature scattering.
The Impact of OT-Solvers. Exact minimization of Eqn.(4) over T is intractable in general [1, 49, 21,
12]. Here we compare two practical solvers, the Sinkhorn algorithm [12] and the Inexact Proximal
point method for Optimal Transport (IPOT) algorithm [66]. More details on them can be found in the
supplementary file and [12, 66, 45]. The results are summarized in Table 4. It is shown that different
instantiations of the proposed approach with different OT-solvers lead to comparable performances,
implying that the proposed approach is effective in general regardless of the choice of OT-solvers.

OT-solver
CIFAR10 SVHN CIFAR100

Clean FGSM PGD20 PGD100 CW20 CW100 Clean FGSM PGD20 PGD100 CW20 CW100 Clean FGSM PGD20 PGD100 CW20 CW100
Sinkhorn 90.0 78.4 70.5 68.6 62.4 60.6 96.2 83.5 62.9 52.0 61.3 50.8 73.9 61.0 47.2 46.2 34.6 30.6

IPOT 89.9 77.9 69.9 67.3 59.6 56.9 96.0 82.6 60.0 49.3 57.8 48.4 74.2 67.3 47.5 46.3 32.0 29.3

Table 4: Impacts of OT-solvers. The proposed approach performs well with different OT-solvers.
5.3 Performance under Black-box Attack

B-Attack PGD20 PGD100 CW20 CW100
Undefended 89.0 88.7 88.9 88.8
Siamese 81.6 81.0 80.3 79.8

To further verify if a degenerate minimum is obtained,
we evaluate the robustness of the model trained with the
proposed approach w.r.t.black-box attacks (B-Attack) fol-
lowing [58]. Two different models are used for generating
test time attacks: i) Undefended: undefended model trained using Standard approach, ii) Siamese:
a robust model from another training session using the proposed approach. As demonstrated by
the results in the table on the right, the model trained with the proposed approach is robust against
different types of black-box attacks, verifying that a non-degenerate solution is learned [58].
Finally, we visualize in Figure 4 the loss surfaces of different models as another level of comparison.

6 Conclusion
We present a feature scattering-based adversarial training method in this paper. The proposed
approach distinguish itself from others by using an unsupervised feature-scattering approach for
generating adversarial training images, which leverages the inter-sample relationship for collaborative
perturbation generation. We show that a coupled regularization term is induced from feature scattering
for adversarial training and empirically demonstrate the effectiveness of the proposed approach
through extensive experiments on benchmark datasets.
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