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Abstract

Forensic age estimation is the medical assessment of age in individuals for legal purposes.
In current practice, medical experts use scoring-based methods to assess the most probable
age and provide a minimum age estimate, which requires expensive training and is known
to have poor inter-rater reliability. As an initial step towards a more objective, quantitative
age estimation system, we use Bayesian convolutional neural networks to perform age and
uncertainty estimation using a large data set of 12, 000 panoramic radiographs of the upper
and lower jaws, orthopantomograms (OPTs), one of the most accurate indicators of age
in subadults. Our system achieves a concordance correlation coefficient ccc = 0.91 on
the validation set. Importantly, our method provides quantitative estimation of prediction
uncertainty, which is imperative within a legal context.

1. Introduction

Medical assessment of age can be requested by courts and governmental agencies in legal
procedures when an individual’s age is unknown, especially in cases where there is doubt
about legal majority (Schmeling et al., 2016). The age is evaluated by a panel of experts
based on a medical examination, typically involving radiographic imaging of the hand and
wrist bones and panoramic X-rays of the jaws, orthopantomograms (OPTs). OPTs are
used to assess the dental mineralization status which is widely considered the most accurate
indicator for age in sub-adults. Evaluation of OPTs are based on written or pictorial scoring
systems such as Demirjian’s method (Demirjian et al., 1973) that are time-consuming,
suffer from subjectivity and lack quantitative measures of uncertainty. In an effort to
automate, standardize and objectify forensic age estimation, we developed a deep learning
based system for dental age estimation based on Bayesian convolutional neural networks
(CNN). While previous studies have used deep learning for pediatric age estimation based on
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hand and wrist bone radiographs (Spampinato et al., 2017; Halabi et al., 2018), predicting
age from dental X-ray images has not received much attention. In addition, since we
focus on application in a legal rather than pediatric context, here, we concentrate on the
quantification of predictive uncertainty using Bayesian CNNs.

2. Methods

Image data We collected > 12, 000 anonymized orthopantomograms (OPTs) of patients
in the age 5-25 years old, imaged at the dental medicine center (UZM) at the University
Hospital Dresden (UKD) over the past 15 years. Images were annotated with the patient’s
chronological age in month at the time of acquisition. All images were scaled down 4-fold
to a size of (h,w) = (320, 610) and the intensities normalized to [0, 1]. We used 25% of the
data for validation.

Bayesian CNN We formulated the age estimation problem as a regression task and
designed a CNN in which we used the InceptionV3 architecture (Szegedy et al., 2016) as a
feature extractor, followed by two fully connected layers (with 1024 and 512 neurons with
ReLU activation, resp.) after the global average pooling layer. Following (Kendall and
Gal, 2017), we used two output heads to predict the most probable age and its associated
aleatoric uncertainty (using resp. linear and softplus activation) for which we assumed a
Gaussian likelihood with the loss function L(θ) =

∑
i

1
2e

−s ‖yi − ŷi‖2 + 1
2si where θ are

the model parameters, ŷi and si = log σ̂2 are the predicted age and its log variance for
sample i predicted by the network. To estimate epistemic uncertainty, we use inference-
time dropout as a practical tools for approximate inference using T = 20 stochastic forward
passes to sample from the posterior distribution.
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Figure 1: (A) Correlation between true and predicted age. (B) Absolute error, black points
indicate MAE in various age groups. (C,D) Aleatoric and epistemic uncertanties.
(E-G) Saliency maps for three different age groups.
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Training The model was trained over 80 epochs using stochastic gradient descent with
a batch size of 16 images under the adaptive moments estimator (Adam) optimizer, with
horizontal mirroring as the only data augmentation strategy.

3. Results

After training, we obtained a concordance correlation coefficient ccc = 0.910 on the valida-
tion set consisting of 2, 400 images covering the whole age range (Figure 1A), representing a
considerable agreement between predicted and true chronological age. However, the mean
absolute error over the whole validation set was MAE = 21.0 months, almost two years,
which is an unacceptable range for legal purposes. The MAE differed significantly between
age groups, with lowest errors for the youngest group MAE50−75 = 12.8 and largest errors
for the young adults MAE275−300 = 28.6 (Fig. 1B).
Our Bayesian CNN allows us to quantify the predictive uncertainty in terms of aleatoric
and epistemic uncertainties. Both types of uncertainty showed a non-monotonic behav-
ior and are minimized around 180 months (15 years old) (Fig. 1C and D). The fact that
uncertainty increases for older subjects may be related to the human lifespan of human
dentition: less markers are available to indicate dental development near adulthood. The
increased epistemic uncertainty observed in the low age range can be related to relatively
low amount of training images in this range, as shown in the inset of Fig. 1D. The outliers
in aleatoric uncertainty in the lower age range are due to imaging artifacts, as indicated by
visual inspection of the respective images.
To explore what regions of the input image are important for the age regression, we gen-
erated saliency maps for different age ranges. Specifically, we used DeepLIFT (Shrikumar
et al., 2017; Ancona et al., 2017) to construct maps for 50 randomly chosen images within
different age groups and visualized the mean of these saliency maps. As shown in Fig. 1E-F,
the most informative regions for the model prediction are localized around the molars, in
line with our expectations. However, in the youngest age range (Fig. 1E), we see the model
takes, apart from the teeth, also e.g. the maxillary sinus into account. Also unexpectedly,
we observe that the nasal septum seems to be used as a marker for the oldest age range
(Fig. 1G).

4. Conclusion

We provide a proof-of-concept for the use of Bayesian CNNs as an automated age estimation
system for panoramic dental radiographs. Our system not only provides age estimates but
also quantitative measures of uncertainty as well as explanatory saliency maps. Initial
results are encouraging although the accuracy is not yet at the level that warrants routine
application. To improve accuracy and reduce epistemic uncertainty, we next intend to
use multi-task learning or curriculum learning, combining classification and regression, and
employ ideas from active learning such as uncertainty-based acquisition functions. The
intriguing patterns in the saliency maps are worth exploring further and could point to new
potential markers for age estimation from OPTs.
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