
Positive-Unlabeled Compression on the Cloud

Yixing Xu†, Yunhe Wang†, Hanting Chen§, Kai Han†,
Chunjing Xu†, Dacheng Tao‡, Chang Xu‡

†Huawei Noah’s Ark Lab
§Key Laboratory of Machine Perception (MOE), CMIC,

School of EECS, Peking University, China
‡The University of Sydney, Darlington, NSW 2008, Australia

{yixing.xu, yunhe.wang, kai.han, xuchunjing}@huawei.com
htchen@pku.edu.cn, {dacheng.tao, c.xu}@sydney.edu.au

Abstract

Many attempts have been done to extend the great success of convolutional neural
networks (CNNs) achieved on high-end GPU servers to portable devices such as
smart phones. Providing compression and acceleration service of deep learning
models on the cloud is therefore of significance and is attractive for end users. How-
ever, existing network compression and acceleration approaches usually fine-tuning
the svelte model by requesting the entire original training data (e.g. ImageNet),
which could be more cumbersome than the network itself and cannot be easily
uploaded to the cloud. In this paper, we present a novel positive-unlabeled (PU)
setting for addressing this problem. In practice, only a small portion of the original
training set is required as positive examples and more useful training examples can
be obtained from the massive unlabeled data on the cloud through a PU classifier
with an attention based multi-scale feature extractor. We further introduce a robust
knowledge distillation (RKD) scheme to deal with the class imbalance problem of
these newly augmented training examples. The superiority of the proposed method
is verified through experiments conducted on the benchmark models and datasets.
We can use only 8% of uniformly selected data from the ImageNet to obtain an
efficient model with comparable performance to the baseline ResNet-34.

1 Introduction

Convolutional neural networks (CNNs) have been widely used in a variety of computer vision
applications such as image classification [14, 18, 21], object detection [5], semantic segmentation [17],
clustering [31], multi-label learning [23], etcCNNs are often over-parameterized to achieve a good
recognition performance. However, many empirical studies suggest that those redundant parameters
or filters can be eliminated without affecting the performance of the network. To be compatible with
various running environments (e.g. cell phone and autonomous driving) in real-world applications,
well trained neural networks need to be further compressed and accelerated accordingly. Considering
the scalable computation resource (e.g. GPU and RAM) offered by the cloud, it is therefore promising
to provide network compression service for end users.

Compared with the model compression service offered by the cloud, it would be much harder for
end users to compress the cumbersome network by themselves. One one hand, GPUs are essential to
doing effective deep learning. Compared with setting up their own servers, many users tend to spin
up cloud instances with GPUs by balancing the flexibility and the investment, especially when the
GPUs are only needed for several hours. One the other hand, not every user is a deep learning expert,
and a cloud service would be expected to produce efficient deep neural networks according to users’
needs.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Massive Unlabeled Data

Pre-Trained Network

Cloud

Selected Data
Desired Network

PU
Classifier

RKD

Few Training Data

Figure 1: The diagram of the proposed method for compressing deep networks on the cloud.

Existing methods like quantization approach [6], pruning approach [4] and knowledge distillation
approach [9] cannot be easily deployed on the cloud to compress the cumbersome network submitted
by end customers. The major reason is that most of these methods require users to provide the original
training data for fine-tuning the compressed network to avoid much drop of the accuracy. However,
compared with the model size of modern CNNs, the size of the entire training data would be much
larger. For example, ResNet-50 [8] only occupies an about 95MB for storing its parameters while its
training dataset (i.e. ImageNet [14]) contains more than one million images with an over 120GB file
size. Therefore, given the limitation of transmission speed (e.g. 10MB/s), users have to wait for a
long period of time before launching the compression methods, which does harm to user experience
of the service.

In this paper, we suggest a two-stage pipeline to leverage the easily accessible unlabeled data for
training compact neural networks, as shown in Fig. 1. Users are required to upload the pre-trained
deep network and a small portion (e.g. 10%) of the original training data. Taking the scarce labeled
data as ‘positive’, in the unlabeled pool (e.g. Flickr [12]) there could be ‘positive’ data that follows a
similar distribution (e.g. of the same concept), while the remaining data are treated as ‘negative’. A
binary PU classifier learned from these positive-unlabeled data can then be employed to identify the
most related unlabeled data to augment the training set for our compression task. In order to correct
the biased labels contained in the augmented dataset, we further develop a robust knowledge distiller
(RKD) to address the problem of noisy and imbalanced labels. Experimental results conducted on
several benchmark datasets and deep models demonstrate that with the help of massive unlabeled
data, the proposed method is effective for learning efficient networks with only a small proportion of
the original training data.

2 Positive-Unlabeled Classifier for More Data

Here we first present some preliminaries for learning efficient neural networks, and then develop a
novel framework to effectively utilize massive unlabeled data on the cloud for training.

2.1 Knowledge for Compressing Neural Networks

Conventional deep model compression algorithms aim to eliminate redundant weights or filters in
pre-trained deep neural networks. The resulting networks are often of specific structures such as
sparse matrices and mix-bit multiplications which need additional technical supports. In contrast,
knowledge distillation (KD) method [9] is proposed to directly learn student networks with fewer
parameters and computational complexities by inheriting feature information from the given teacher
network.

2

Denoting the pre-trained teacher network and the desired efficient student networks as Nte and Nst,
respectively, the student network is trained using the following objective function:

LKD =
1

n

∑
i

Lc(ytei ,ysti), (1)

where Lc(·, ·) is the cross-entropy loss, n is the number of samples in the training set, ytei and ysti
are the output responses corresponding to the teacher network Nte and student network Nst, of the
same input data xi, respectively. By using the KD method described in Eq. 1, the student network is
able to generalize in the same way as the teacher network, and can empirically obtain a much better
result than training it from-scratch.

However, the number of samples in the training dataset of Nte is often extremely large, e.g. there are
over 1.2 million images in the ILSVRC 2012 dataset with file size of 120GB. Differently, modern
CNN architectures are more and more lightweighted, e.g. the model size of MobileNet-v2 [22] is
only about 15MB. Thus, the time consumption of uploading such huge datasets affects the user’s
experience on the model compression service on the cloud.

2.2 Positive-Unlabeled Classifier for Selecting Data

In order to reduce the required number of samples n in the training dataset, we propose to look for
alternative data. Actually, there are massive datasets on the cloud servers for conducting different tasks
(e.g. CIFAR, ImageNet and Flickr). We can regard them as unlabeled data, and a small proportion
of the original samples as positive data. Thus, the data selection task is exactly a positive-unlabeled
(PU) learning problem [13, 30].

PU learning method focuses on learning a classifier from positive and unlabeled data. Given
xi ∈ X ⊆ Rd, yi ∈ Y = {±1} be the input samples and output labels, together with nl and nu be
the number of labeled and unlabeled samples, respectively. The training set T of the PU classifier can
be formulated as:

T = L ∪ U = {(xl,+1)}nl

l=1 ∪ {(xu, yu)}
nu
u=1, (2)

where L is the labeled set and U is the unlabeled set, respectively.

Denote the desired decision function as f : X → Y , and F : X → R is a discriminant function
that maps the input data to a real number such that f(x) = sign(F (x)), and l : X × Y → R is an
arbitrary loss function, the decision function f can be optimized by the following equation:

R̃pu(f) = πpR̂
+
p (f) + max{0, R̂x(f)− πpR̂−p (f)}, (3)

where R̂x(f) = Ex[l(F (x),−1)], R̂+
p (f) = Ep[l(F (x),+1)] and R̂−p (f) = Ep[l(F (x),−1)] are

the corresponding risk functions, and πp = p(y = +1) is the class prior. l(t, y) is an arbitrary loss
function between the target t and the ground truth label y.

For the given pre-trained teacher network Nte, we can ask the user to provide a tiny dataset Lt
consists of a small proportion (e.g. 10%) of the original training set. Then we can collect an unlabeled
dataset U on the cloud, Eq. 3 can be further utilized to select more positive data from U to construct
another training dataset for conducting the subsequent model compression task.

Since the pre-trained teacher network Nte is designed to solve the original tasks, such as an ordinary
classification, it is infeasible to directly use the same architecture on PU classification [29]. Therefore,
we introduce an attention based multi-scale feature extractor NA for extracting features of input data,
i.e. F (x). Note that the deep features transition from general to specific along the network, and the
transferability of the features drop rapidly in higher layers. Simply using the feature produced by
the last layer will produce a large transferability gap, while using combined features from layers in
different locations of the network will reduce the gap.

Specifically, let hj ∈ RHj×W j×Cj

be the features extracted in the j-th layer. Note that these outputs
cannot be directly concatenated because the size of heights and widths are different. A common way
to mitigate this problem is using global average pooling. Given hj , the global spatial information is
compressed into a channel-wise descriptor oj ∈ RCj

[10], where the c-th element of oj is calculated
by:

ojc =
1

H ×W

H∑
m=1

W∑
n=1

h(m,n, c). (4)

3

Algorithm 1 PU classifier for more data.
Require: An initialized network NA, a tiny la-

beled dataset Lt and an unlabeled dataset U .
1: Module 1: Train PU Classifier
2: repeat
3: Randomly select a batch

{
xUi
}N
i=1

from U

and
{
xL

t

i

}N
i=1

from Lt;
4: Optimize NA following Eq. 3;
5: until convergence
6: Module 2: Extend the labeled dataset
7: Obtain the positive data Up from U utilizing

PU classifier NA;
8: Unify the positive dataset Up and tiny dataset
Ll to achieve extended dataset Ll = Lt ∪ Up;

Ensure: Extended dataset Ll.

Given the compressed channel-wise descriptors,
a simplest way is to directly concatenate them
together into a single vector. However, it is not
flexible enough for the vector to reflect the im-
portance of the input signals, which represent
features from general to specific. Generally, in-
puts containing more information should have a
larger weight. Thus, we add attention on top of
these descriptors for adaptation between modal-
ities. Attention method can be viewed as a way
to allocate the input signal so that more informa-
tive component will get more attention by the
next layer, which has been widely used in CN-
N across a range of tasks [1, 11]. Specifically,
given the concatenated channel wise descriptor
o = {o1, · · ·,oj}, we opt to employ a gating
mechanism as suggested in [10]:

w = Attention(o,W) = σ(W2δ(W1o)),
(5)

in which δ is the ReLU transformation, W1 ∈ RC
r ×C and W2 ∈ RC×C

r are the parameters of two
FC layers that reduce the dimensionality of the input by a ratio r, followed by a non-linearity and
then increase the dimensionality back to origin. A sigmoid activation is used to perform the attention
weight w. The final output õj is obtained by simply re-scaling the channel wise descriptor:

õj = wjo
j . (6)

Based on the proposed feature extractor NA, we train the data from the unlabeled dataset U and
the tiny labeled dataset Lt which is randomly sampled from the original dataset L. Dataset Lt is
then expanded with the data which is classified as positive in dataset U , and finally derive a larger
positive dataset Ll with non-negative PU loss Eq. 3. Specifically, we minimize the non-negative
PU loss with stochastic gradient descent (SGD) and stochastic gradient ascent (SGA). Denoting
ti = R̂x(f(x

U
i)) − πpR̂−p (f(xL

t

i)). When ti > 0, we minimize Eq. 3 with SGD. Otherwise, the
gradient of ti is computed and we update the parameter of the network with SGA. That is, we go
along with −5θ ti, in order to alleviate the over-fitting of the current mini-batch i. A more specific
procedure is presented in Algorithm 1.

3 Robust Knowledge Distillation

The number of training examples in each class is usually balanced for a better training of deep
neural networks. However, the dataset Ll generated by PU learning may suffer from data imbalanced
problem. For example, in ImageNet dataset the number of samples in category ’dog’ is 30 times more
than that in category ’plane’, and there are no sample from category ’deer’. When Lt is randomly
sampled from CIFAR-10 and ImageNet is treated as the unlabeled dataset U , the number of ’dog’
samples will dominate the expanded dataset Ll. Therefore, it is unsuitable to directly adopt the KD
method given the imbalanced dataset Ll.

There are many works which focused on the data imbalanced problem. However, they cannot be
directly used in our problem, since the number of samples in each category is unknown in Ll. The
PU learning method only distinguish whether the images in U belong to the given dataset L, but
never deal with the specific classes of input images.

In practice, we utilize the output of the teacher network. Note that instead of treating the output class
label as the ground truth of the input sample xi, we treat the output response ytei = softmax(Zi/T)
as the pseudo ground truth vector, in which Zi is the final score output and T is the temperature
parameter which helps soften the output when the probability for one class is close to 1 and others
are close to 0 (T = 1 in the following experiments). To this end, we propose a robust knowledge
distillation (RKD) method to solve the data imbalanced problem.

Specifically, we assign weight to each category of the samples, where categories with fewer samples
will have larger weights. Based on this principle, defining y = {y1, y2, · · ·, yK} =

∑
i y

te
i , we have

4

the weight vector wkd = {wkkd}Kk=1, in which:

wkkd =
K/yk∑K
k=1 1/y

k
, k = 1, 2, · · ·,K, (7)

and K is the number of categories in the original dataset. When training the student network, the
weight of the input sample is defined as wi = wcategoryikd in which categoryi is the index of the
largest element in the ground truth vector ytei .

Algorithm 2 Robust Knowledge distillation.
Require: A given teacher network Nte, the ex-

tended dataset Ll and a hyper-parameter ε.
1: Initialize the student network Nst;
2: Calculate weight vectors wkd using Eq. 7 and

generative a set W using a random perturb ε;
3: repeat
4: Randomly select a batch

{
xL

l

i

}m
i=1

;
5: Employ the teacher and student network:

ytei ← Nte(xL
l

i); ysti ← Nst(xL
l

i)

6: Calculate the surrogate KD loss L̃KD fol-
lowing Eq. 8;

7: Update NW
st with Eq. 10;

8: until convergence
Ensure: The student network Nst.

Therefore, the surrogate KD loss can be derived
based on Eq. 1:

L̃KD =
1

n

∑
i

wiFce(ytei ,ysti). (8)

Note that the derivation of wkd is not optimal,
since the predicted output response ytei is not
optimal and is contaminated with noise. How-
ever, we assume that the teacher network is
well-trained, and there is only a slight difference
between the elements in wkd and the optimal
weight vector w∗kd:

p(|wkkd − w∗kkd| < ε) > 1− δ. (9)

Thus, we give a random perturb ε on each el-
ement of the original weight vector wkd and
get a finite set of possible weight vectors W =
{wkd_1, ···,wkd_n}, in which |wkkd_i−wkkd| < ε.
Note that this is similar to the cost-sensitive
learning with multiple cost matrices. Based on
these weight vectors, we are able to train the student network with the following equation:

NW
st = argmin

Nst∈N
max
w∈W

L̃KD(Nst,w), (10)

in whichN is the hypothesis space. This is similar to the method proposed in [27]. However, different
from the cost matrix, the weight vector in Eq. 7 is only related to the proportion of the samples in
each category and has nothing to do with the classification result, which is suitable for our learning
problem. Besides, we solve a multi-class problem rather than a binary class problem.

4 Experiments

4.1 CIFAR-10

The widely used CIFAR-10 benchmark is first selected as the original dataset, which is composed
of 32× 32 images from 10 categories. We randomly select nl samples in each class and form the
tiny labeled dataset Lt with 10nl positive samples. Benchmark dataset ImageNet contains over
1.2M images from 1000 classes, but it is treated as the unlabeled dataset U with nu = 1.2M
unlabeled samples in our experiment. In this setting, ‘positive’ indicates that the category of the input
sample belongs to one of the categories of the original dataset CIFAR-10. Recall that the class prior
πp = p(y = +1) in Eq. 3 indicates the proportion of the positive samples in U , which is assumed to
be known in the following experiments. In practice, it can be estimated with the method in [19]. In
this experiment, we manually select positive data from U based on the name of the category provided
by ImageNet 2012 classification dataset [14], and train the student network with manually selected
data using the proposed RKD method as the baseline. The total number of positive data we selected
is around 270k, thus we set the class prior πp = 0.21 ≈ 270k/1280k in the following experiment.

The model used in the first step is an attention based multi-scale feature extractor based on ResNet-34.
Specifically, the channel-wise descriptor oj in Eq. 4 is derived from the outputs of 4 groups in
ResNet-34. The network is trained for 200 epochs using SGD. We use a weight decay of 0.005 and

5

Table 1: Classification results on CIFAR-10 dataset. The best results are bold in the table.

Method nl nt Data source FLOPs #params Acc(%)
Teacher - 50,000 Original Data 1.16G 21M 95.61
KD [9] - 50,000 Original Data 557M 11M 94.40

Baseline-1 - 269,427 Manually selected data 557M 11M 93.44
Baseline-2 - 50,000 Randomly selected data 557M 11M 87.02

PU-s1
100 110,608

PU data 557M 11M
93.75

50 94,803 93.02
20 74,663 92.23

PU-s2
100 50,000

PU data 557M 11M
91.56

50 50,000 91.33
20 50,000 91.27

momentum of 0.9. We start with a learning rate of 0.001 and divide it by 10 every 50 epochs. Data in
ImageNet is resized to 32× 32 rather than 224× 224 in our experiment. Random flipping, random
crop and zero-padding are used for data augmentation. In the second step, the teacher network is a
pre-trained ResNet-34, and ResNet-18 is used as the student network. A weight decay of 0.0005 and
momentum of 0.9 is used. We optimized the student network using SGD by starting with a learning
rate of 0.1 and divide it by 10 every 50 epochs. πp = 0.21 is used in the following experiments.

Note that in the first step in our algorithm, the positive samples are automatically selected by the
PU method. Thus, the number of training samples for the second step is unfixed, and could be
influenced by the architecture of the network, the hyper-parameter used in the experiment, etc. In this
circumstances, it is difficult to judge whether a good result is benefit from the quality or the number
of the training data. Therefore, there are two settings in our experiment. The first setting is to feed all
the positive data selected by the PU method to the second step to train the student network. Another
setting is to randomly select a bunch of data which has the same number as the original training
dataset (50k for CIFAR-10).

The experimental results are shown in Tab. 1. Wherein, ‘Baseline-1’ method directly feeding manually
selected positive data to the second step. ‘Baseline-2’ method randomly select 50000 data and then
fed to the second step, which inevitably contains many negative data and should results in a bad
performance. ‘PU-s1’ is the setting of feeding all the positive data selected by the PU method to
the second step, and ‘PU-s2’ is the setting of randomly feeding 50000 positive data to conduct the
second step. In addition, nl is the number of samples selected from each class in CIFAR-10, nt is the
number of training samples used to train the student network. Suppose that nup positive samples are
selected from U by PU method, then we have nt = nup + 10nl.

The result shows that the performance of the proposed method is even better than the baseline method.
With 1000 samples in CIFAR-10 and about 110k training samples selected from ImageNet, it achieves
a higher accuracy than the baseline method with 270k manually selected training data. It shows the
priority of the proposed method of selecting high quality positive samples from unlabeled dataset.
In fact, manually selecting positive samples from ImageNet requires a huge effort, and the way we
select are not carefully enough to exclude all the negative data in the manually selected dataset.

In the previous experiments the class prior πp is assumed to be known. In practice we may suffer
from the error of estimating πp. Thus, a number of different π′p are given to the proposed algorithm
in order to test the robustness of the proposed method on the class prior. All the experimental settings
are exactly the same except for the change from πp to π′p. Fig. 2 shows the classification accuracies
of using different π′p. 50k training samples are randomly selected in the second step to alleviate
the influence of the number of training samples. The same experiments are conducted on both
ResNet-34 and the attention based multi-scale feature extractor with traditional KD and RKD method
to show the superiority of the proposed architecture and RKD method. The result shows that the
proposed architecture with RKD method behaves the best, and is more robust on the under-estimate
and over-estimate of the true class prior πp.

The experimental results show that although there are many negative data in the Imagenet dataset, the
PU classifier can successfully pick a large amount of positive data whose categories is the same as
that of given data. Therefore, the extended dataset with given data and selective data can be used to
train a portable student network.

6

Figure 2: Classification accuracies on CIFAR-10
dataset with different π′p.

Figure 3: Relationship between the number of
samples selected from each category in ImageNet
and the resulting accuracy.

Table 2: Classification results on ImageNet dataset. “KD-all” utilizes the entire ImageNet training
dataset to train the student network. “KD-500k” randomly selects 500k training data from ImageNet
for learning the student network.

Algorithm nt Data source FLOPs #params top-1 acc(%) top-5 acc(%)
Teacher 1,281,167 Original Data 3.67G 22M 73.27 91.26
KD-all 1,281,167 Original Data 1.82G 12M 68.67 88.76

KD-500k 500,000 Original Data 1.82G 12M 63.90 85.88
PU-s1 690,978 PU data 1.82G 12M 61.92 86.00
PU-s2 500,000 PU data 1.82G 12M 61.21 85.33

4.2 ImageNet

Then, we conduct experiment on ImageNet dataset, which is treated as the original dataset. Flicker1M
dataset is used as the unlabeled dataset1. The experimental setting is the same as those in the CIFAR-
10 experiments, except that we train 110 epochs in both steps and divide the learning rate by 10 every
30 epochs. The class prior πp is set to 0.7 in the following experiments. Experimental result is shown
in Tabel 2.

In order to make a fair comparison, we randomly select 500k samples from ImageNet and treat
KD-500k as the baseline method. In the proposed method, we randomly select 100 samples from
each category in ImageNet and form a tiny labeled dataset Lt, and then PU method is used to select
positive data from Flicker1M dataset. The result shows that when feeding all the positive samples to
the second step, the top-5 accuracy is even better than the baseline method. The reason that top-1
accuracy is worse than the baseline while top-5 is better is that we do not distinguish the specific
category when using the PU method. Thus, the proposed method is better at learning meta knowledge
than the specific label. When using a same number of training samples, the proposed method has
only 0.5% top-5 accuracy drop compared to the baseline method while using only 8% of the samples
in the original dataset.

Fig. 3 shows the relationship between the number of samples selected from each category in ImageNet
and the accuracy of the proposed method. It is obvious that our method still achieves a promising
result when using only about 0.8% samples of the original dataset.

4.3 MNIST

Since most of experiments in existing methods are conducted on the MNIST dataset, we further
conduct the experiments on this dataset in order to compare our method to the state-of-the-art methods

1http://press.liacs.nl/mirflickr/mirdownload.html

7

Table 3: Comparsion on the state-of-the-art methods on the MNIST dataset.

1 2 5 10 20 all-meta-data
data-free KD [16] - - - - - 92.5

FitNet [20] 90.3 94.2 96.1 96.7 97.3 -
FSKD [15] 95.5 97.2 97.6 98.0 98.1 -

PU-s1 98.5 98.7 98.7 98.8 98.9 -
PU-s2 98.3 98.5 98.5 98.6 98.6 -

including FitNet [20], FSKD [15] and data-free KD method [16]. The EMNIST dataset2 is used
as the unlabeled dataset, which contains 814K hand-written letters and digits. We randomly select
1,2,5,10 and 20 samples from each category in MNIST to form the tiny set Lt. We use a standard
LeNet-5 as the teacher network and the student network is ‘half-size’ to that of the corresponding
teacher network in terms of the number of feature map channels per conv-layers. The class prior πp
is set to 0.47 in the following experiments.

Detailed classification results are shown in Tab. 3. It is clear that the proposed method outperforms
FitNet and FSKD with a notable margin and is more robust when the number of labeled samples in
each category is extremely rare (< 5).

5 Related Works

In this section, we give a brief introduction about the related works of model compression.

There is a bunch of algorithms designed for learning efficient neural networks with fewer memory
usage and computational complexity [7, 28]. For example, Gong et.al. [6] investigated the vector
quantization approach for representing similar weights for smaller CNNs. Denton et.al. [4] exploited
the redundancy within convolutional filters to derive approximations and significantly reduced the
required computational costs. Chen et.al. [3] compressed the weights in neural networks using the
hashing trick [24, 25]. Hinton et.al. [9] presents the knowledge distillation approach for transferring
information from the pre-trained teacher network to a compressed student network.

Nowadays, there are only a few attempts to learn efficient neural networks with some meta-data
of the training set or without using the original training data. For instance, Srinivas and Babu [26]
directly removed the redundant similar neurons in a systematic way. Based on knowledge distillation,
Lopes et.al. [16] used some extra meta-data to learning smaller deep neural networks. However, the
performance of the resulting networks learned through these methods are often much worse than that
of the baseline network. This is because the amount of available data and information is extremely
small. More recently, Chen et.al. [2] designed a generator for generating data of the similar properties
as those of the original dataset, which obtained promising performance but lacked efficiency for
generating images.

6 Conclusion

Most of existing network compression methods require the original dataset to achieve acceptable
performance. However, the huge size of the training dataset leads to unacceptable transmission cost
from end-user to the cloud. Therefore, we propose a two-step framework to compress the given neural
network using only a small portion of the training data. Firstly, a PU classifier with an attention based
multi-scale feature extractor is trained with the given labeled data and massive unlabeled data on the
cloud. Then, a new dataset is conducted by combining the given data and the ’positive’ data selected
by PU classifier. Secondly, we develop a robust knowledge distillation (RKD) method to address
the class imbalanced problem with noise in the augmented dataset. Experiments on the MNIST,
CIFAR-10 and ImageNet datasets demonstrate that the proposed method can successfully dig more
useful training samples using only a small amount of original data, and achieve the state-of-the-art
performance comparing to other few-shot learning model-compression methods.

2https://www.westernsydney.edu.au/bens/home/reproducible_research/emnist

8

Acknowledgments

We thank anonymous area chair and reviewers for their helpful comments. Chang Xu was supported
by the Australian Research Council under Project DE180101438.

References
[1] C. Cao, X. Liu, Y. Yang, Y. Yu, J. Wang, Z. Wang, Y. Huang, L. Wang, C. Huang, W. Xu, et al.

Look and think twice: Capturing top-down visual attention with feedback convolutional neural
networks. In Proceedings of the IEEE International Conference on Computer Vision, pages
2956–2964, 2015.

[2] H. Chen, Y. Wang, C. Xu, Z. Yang, C. Liu, B. Shi, C. Xu, C. Xu, and Q. Tian. Data-free learning
of student networks. arXiv preprint arXiv:1904.01186, 2019.

[3] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen. Compressing neural networks with
the hashing trick. In International Conference on Machine Learning, pages 2285–2294, 2015.

[4] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure within
convolutional networks for efficient evaluation. In Advances in neural information processing
systems, pages 1269–1277, 2014.

[5] R. Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448, 2015.

[6] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing deep convolutional networks using
vector quantization. arXiv preprint arXiv:1412.6115, 2014.

[7] K. Han, Y. Wang, Y. Xu, C. Xu, D. Tao, and C. Xu. Full-stack filters to build minimum viable
cnns. arXiv preprint arXiv:1908.02023, 2019.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[9] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[10] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 7132–7141, 2018.

[11] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial transformer networks. In Advances in
neural information processing systems, pages 2017–2025, 2015.

[12] H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for
large scale image search. In European conference on computer vision, pages 304–317, 2008.

[13] R. Kiryo, G. Niu, M. C. du Plessis, and M. Sugiyama. Positive-unlabeled learning with non-
negative risk estimator. In Advances in neural information processing systems, pages 1675–1685,
2017.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105.

[15] T. Li, J. Li, Z. Liu, and C. Zhang. Knowledge distillation from few samples. arXiv preprint
arXiv:1812.01839, 2018.

[16] R. G. Lopes, S. Fenu, and T. Starner. Data-free knowledge distillation for deep neural networks.
arXiv preprint arXiv:1710.07535, 2017.

[17] H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In
Proceedings of the IEEE international conference on computer vision, pages 1520–1528, 2015.

[18] I. Oguntola, S. Olubeko, and C. Sweeney. Slimnets: An exploration of deep model compression
and acceleration. In 2018 IEEE High Performance extreme Computing Conference (HPEC),
pages 1–6. IEEE, 2018.

[19] H. Ramaswamy, C. Scott, and A. Tewari. Mixture proportion estimation via kernel embeddings
of distributions. In International Conference on Machine Learning, pages 2052–2060, 2016.

[20] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets: Hints for
thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[21] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image classification with the fisher vector:
Theory and practice. International journal of computer vision, 105(3):222–245, 2013.

[22] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4510–4520, 2018.

9

[23] X. Shen, W. Liu, I. W. Tsang, Q.-S. Sun, and Y.-S. Ong. Multilabel prediction via cross-view
search. IEEE transactions on neural networks and learning systems, 29(9):4324–4338, 2017.

[24] X. Shen, F. Shen, L. Liu, Y.-H. Yuan, W. Liu, and Q.-S. Sun. Multiview discrete hashing for
scalable multimedia search. ACM Transactions on Intelligent Systems and Technology (TIST),
9(5):53, 2018.

[25] X. Shen, F. Shen, Q.-S. Sun, Y. Yang, Y.-H. Yuan, and H. T. Shen. Semi-paired discrete
hashing: Learning latent hash codes for semi-paired cross-view retrieval. IEEE transactions on
cybernetics, 47(12):4275–4288, 2016.

[26] S. Srinivas and R. V. Babu. Data-free parameter pruning for deep neural networks. arXiv
preprint arXiv:1507.06149, 2015.

[27] R. Wang and K. Tang. Minimax classifier for uncertain costs. arXiv preprint arXiv:1205.0406,
2012.

[28] Y. Wang, C. Xu, J. Qiu, C. Xu, and D. Tao. Towards evolutionary compression. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 2476–2485. ACM, 2018.

[29] M. Xu, B. Li, G. Niu, B. Han, and M. Sugiyama. Revisiting sample selection approach to
positive-unlabeled learning: Turning unlabeled data into positive rather than negative. arXiv
preprint arXiv:1901.10155, 2019.

[30] Y. Xu, C. Xu, C. Xu, and D. Tao. Multi-positive and unlabeled learning. In IJCAI, pages
3182–3188, 2017.

[31] P. Zhou, Y. Hou, and J. Feng. Deep adversarial subspace clustering. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1596–1604, 2018.

10

	Introduction
	Positive-Unlabeled Classifier for More Data
	Knowledge for Compressing Neural Networks
	Positive-Unlabeled Classifier for Selecting Data

	Robust Knowledge Distillation
	Experiments
	CIFAR-10
	ImageNet
	MNIST

	Related Works
	Conclusion

