2nd Symposium on Advances in Approximate Bayesian Inference, 2019 1-16

Improving Sequential Latent Variable Models
with Autoregressive Flows

Joseph Marino JMARINOQCALTECH.EDU
California Institute of Technology

Lei Chen and Jiawei He {LEI_CHEN_4, JIAWEI_HE_2 }@SFU.CA
Sitmon Fraser University

Stephan Mandt MANDTQUCI.EDU
University of California Irvine

Abstract

We propose an approach for sequence modeling based on autoregressive normalizing flows.
Each autoregressive transform, acting across time, serves as a moving reference frame for
modeling higher-level dynamics. This technique provides a simple, general-purpose method
for improving sequence modeling, with connections to existing and classical techniques. We
demonstrate the proposed approach both with standalone models, as well as a part of larger
sequential latent variable models. Results are presented on three benchmark video datasets,
where flow-based dynamics improve log-likelihood performance over baseline models.

1. Introduction

Sequential structure in data provides a rich learning signal. Recent improvements in com-
putational techniques, primarily deep networks, have facilitated learning sequential models
from high-dimensional data (Graves, 2013; Chung et al., 2015), particularly video and au-
dio. However, such models attempt to capture all sequential dependencies with relatively
unstructured dynamics. Intuitively, the model should use its dynamical components to
track changes in the input instead of simultaneously modeling the entire signal. Rather
than expanding the computational capacity of the model, we seek a method for altering the
representation of the data to provide a more structured form of dynamics.

To incorporate more structured dynamics, we propose an approach for sequence mod-
eling based on autoregressive normalizing flows (Kingma et al., 2016; Papamakarios et al.,
2017), consisting of one or more autoregressive transforms in time. A single transform is
equivalent to a Gaussian autoregressive model, and stacking additional transforms or latent
variables on top results in more expressive models. Each autoregressive transform serves as
a moving reference frame in which higher-level structure is modeled. This provides a general
mechanism for separating different forms of dynamics, with higher-level stochastic dynam-
ics modeled in the simplified space provided by lower-level deterministic transforms. This
approach generalizes the classical technique of modeling temporal derivatives to simplify
dynamics estimation (Friston, 2008) (Appendix B).

We empirically demonstrate this approach, both with standalone autoregressive nor-
malizing flows, as well as by incorporating these flows within more flexible sequential latent
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Figure 1: Graphical Models. Diagrams for (a) a single-transform affine autoregressive
flow-based model, with random variables, y1.77 ~ N (y1.7;0,I), and (b) a sequential latent
variable model with a flow-based conditional likelihood.

variable models. While normalizing flows have been applied in a few sequential contexts
previously, we emphasize the use of these models in conjunction with sequential latent vari-
able models. We present experimental results on three benchmark video datasets, showing
improved quantitative performance in terms of log-likelihood.

2. Background

Consider modeling discrete sequences of observations, X1.7 ~ pPdata(X1.7), using a probabilis-
tic model, pg(x1.7), with parameters 6. Autoregressive models (Frey et al., 1996; Bengio
and Bengio, 2000) use the chain rule of probability: py(x1.7) = [[i_, po(x¢|x<:). Each
conditional distribution, pg(x¢|x<;), models the temporal dependence between time steps.
We often assume that each distribution takes a relatively simple form, such as a diagonal
Gaussian density: pp(x¢|x<) = N (xs; po(x<t), diag(o3(x<t))), where pg(-) and op(-) are
functions for the mean and standard deviation, often sharing parameters over time steps.

Autoregressive models can be improved by incorporating latent variables, often repre-
sented as a corresponding sequence, z;.7, yielding a sequential latent variable model. The
joint distribution, pg(x1.7, Z1.7), has the following form: Hthl Po(X¢t|X<t, Z<t)po(2¢|X<t, Z<t).
Evaluating pg(x¢|x<¢) now requires integrating over the latent variables, yielding a more
flexible distribution. Such models have demonstrated success in audio (Chung et al., 2015)
and video modeling (He et al., 2018). However, design choices for these models remain an
active area of research, with each model proposing new combinations of deterministic and
stochastic dynamics.

Our approach is based on affine autoregressive normalizing flows (Kingma et al., 2016;
Papamakarios et al., 2017). Here, we briefly discuss this concept, continuing with the
perspective of temporal sequences. Kingma et al. (2016) noted that sampling from an
autoregressive Gaussian model is an invertible transform, resulting in a normalizing flow
(Rezende and Mohamed, 2015). Flow-based models transform between simple, pg(y1.7), and
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Figure 2: Flow Visualization. Visualization of the flow component for a (a) standalone
flow-based model and (b) sequential latent variable model with flow-based conditional like-
lihood for BAIR Robot Pushing. From top to bottom, each figure shows 1) the original
frames, x¢, 2) the predicted shift, pg(x<¢), for the frame, 3) the predicted scale, op(x<¢),
for the frame, and 4) the noise, y;, obtained from the inverse transform.

complex, pg(x1.7), probability distributions while maintaining exact likelihood evaluation
(Dinh et al., 2015). In the case of affine autoregressive models, this transform is given
by x; = pp(x<t) + 09(X<t) © y¢, where ® denotes element-wise multiplication. We can
improve upon this simple set-up by chaining multiple transforms together. We provide a
more in-depth discussion of autoregressive flows and related work in Appendix A.

3. Method: Sequence Modeling with Autoregressive Flows

We now describe our approach for sequence modeling with autoregressive flows, showing
how this simple technique can be incorporated within sequential latent variable models to
improve dynamics modeling. We offer a motivating example in Appendix B, discussing how
affine transforms can temporally decorrelate sequences, simplifying dynamics estimation.

We apply autoregressive flows across time steps within a sequence, x1.7 € RT*P. That
is, the observation at each time step, x; € R”, is modeled as an autoregressive function of
past observations, x-; € R‘=1*P and a random variable, y; € RP (Fig. 1a). We consider
flows of the form x; = pg(x<t)+09(X<t) Oy:, where pg(x<¢) and op(x<¢) are parameterized
by neural networks. The inverse transform is thus y; = (x¢ — pg(x<t))/0o0(x<¢). We can
also consider chains of multiple transforms (Appendix A). We can parameterize the base
distribution, pg(y1.7), with a parametric distribution or a separate model.

Consider parameterizing the conditional likelihood, pg(x¢|x<¢,z<¢), within a latent vari-
able model using an autoregressive flow (Figure 1b). To do so, we express a base conditional
distribution for y;, denoted as pg(y:|y<¢,z<¢), which is then transformed into x; via the
affine transform. Using the change of variables formula, we can express the latent variable

)

model’s log-joint distribution as log pg(x1.7,21.7) = logpe(y1.7,21.7) — log ‘det (g’;ﬁ)
where the joint distribution over yi.p and z1.p, in general, is given as py(y1.7,21.7) =
11 po(yely<t.z<t)po(ze|y<t,z<i). The latent prior, py(z|y<s,z<:), can be equivalently
conditioned on x4 or y«;, as there is a one-to-one mapping between these variables.

We can train the sequential latent variable model using variational inference (Jor-
dan et al., 1998), which introduces an approximate posterior distribution, ¢(zi.7|x1.7),
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Table 1: Quantitative Comparison. Average test log-likelihood (higher is better) in nats
per pizel per channel for Moving MNIST, BAIR Robot Pushing, and KTH Actions. For
flow-based models (1-AF and 2-AF), we report the average log-likelihood. For sequential
latent variable models (SLVM and SLVM w/ 1-AF), we report the average lower bound on
the log-likelihood.

M-MNIST BAIR KTH

1-AF —2.15 -3.05 —-3.34
2-AF —2.13 —-2.90 -3.35
SLVM >-192 > -357 > —-4.63

SLVM w/ 1-AF > -1.86 > -2.35 > 2.39

providing a lower bound on the marginal log-likelihood: logpy(x1.7) > L(x1.7;¢,0) =
Eq(zyrix1.r) 108 Po(X1.7, 21.7) — log q(z1.7|x1.7)]. We consider the case of filtering inference,
with q(z1.7|x1.7) = Hle q(z¢|x<t,2<¢). Again, we can condition g on x<; or y<;. We
derive the corresponding objective in Appendix C:
det (8Xt> ' ] (1)
Oyt

q(ze|y<t,2<t)

— log
p@(zt|Y<tv Z<t)

T
L= Eyp,iyey | logpo(yily<i,z<i) —log
t=1

4. Results

We demonstrate and evaluate the proposed method on three benchmark video datasets:
Moving MNIST (Srivastava et al., 2015), KTH Actions (Schuldt et al., 2004), and BAIR
Robot Pushing (Ebert et al., 2017). Experiment details can be found in Appendix D,
additional results are in Appendix E, and code is available here!.

To qualitatively understand autoregressive flows on sequences, we visualize each com-
ponent as an image (Fig. 2 & Fig. 8). The shift parameters (second row) tend to capture
the static background, blurring around regions of uncertainty. The scale parameters (third
row), on the other hand, tend to focus on regions of higher uncertainty. The resulting noise
variables (bottom row) display any remaining structure not modeled by the flow. In com-
paring standalone flow-based models with flow-based conditional likelihoods in sequential
latent variable models, we see that the latter qualitatively contains more structure in y.
This is expected, as the noise distribution is more expressive in this case. In Appendix E.1,
we quantify the degree of temporal decorrelation performed by flow-based models by eval-
uating the empirical correlation between frames at successive time steps for both the data,
x, and the noise variables, y. In Appendix E.2, we provide additional qualitative results.

Quantitative results for each model class are shown in Table 1. We report the average
test log-likelihood in nats per pizel per channel for flow-based models and the lower bound
on this quantity for sequential latent variable models. Standalone flow-based models per-
form surprisingly well, even outperforming sequential latent variable models in some cases.
Increasing flow depth from 1 to 2 generally results in improved performance. Sequential

1. https://github.com/joelouismarino/sequential flows
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latent variable models with flow-based conditional likelihoods outperform their baseline
counterparts with Gaussian conditional likelihoods, despite having fewer parameters.

The quantitative results in Table 1 are for a representative sequential latent variable
model with a standard convolutional encoder-decoder architecture and fully-connected la-
tent variables. However, many previous works do not evaluate proper lower bounds on
log-likelihood, using techniques like down-weighting KL divergences (Denton and Fergus,
2018; Ha and Schmidhuber, 2018; Lee et al., 2018). Indeed, Marino et al. (2018) train
SVG (Denton and Fergus, 2018) with a proper lower bound and report a lower bound of
—2.86 nats per pizel on KTH Actions, on-par with our results. Kumar et al. (2019) report
log-likelihood results on BAIR Robot Pushing, obtaining —1.3 nats per pizel, substantially
higher than our results. However, their model is significantly larger than the models pre-
sented here, consisting of 3 levels of latent variables, each containing 24 steps of flows.

5. Conclusion

We have presented a technique for improving sequence modeling based on autoregressive
normalizing flows. This technique uses affine transforms to temporally decorrelate sequen-
tial data, thereby simplifying the estimation of dynamics. We have drawn connections to
classical approaches, which involve modeling temporal derivatives. Finally, we have empir-
ically shown how this technique can improve sequential latent variable models.
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Figure 3: Affine Autoregressive Transforms. Computational diagrams for (a) forward
and (b) inverse affine autoregressive transforms (Papamakarios et al., 2017). Each y; is an
affine transform of x;, with the affine parameters potentially non-linear functions of x;.
The inverse transform is capable of converting a correlated input, x1.7, into a less correlated
variable, y1.7.

Appendix A. Autoregressive Flows & Related Work

Kingma et al. (2016) noted that sampling from an autoregressive Gaussian model is an
invertible transform, resulting in a normalizing flow (Rippel and Adams, 2013; Dinh et al.,
2015, 2017; Rezende and Mohamed, 2015). Flow-based models transform between simple
and complex probability distributions while maintaining exact likelihood evaluation. To
see their connection to autoregressive models, we can express sampling a Gaussian random
variable, x; ~ pp(x¢|x<¢), using the reparameterization trick (Kingma and Welling, 2014;
Rezende et al., 2014):

Xt = pg(X<t) + o9(X<t) Oy, (2)
where y; ~ N (y¢;0,1) is an auxiliary random variable and ® denotes element-wise multi-
plication. Thus, x; is an invertible transform of y;, with the inverse given as

Xt — “9(X<t) (3)

yr =
09 (X<t)

where division is performed element-wise. The inverse transform in Eq. 3 acts to normalize
(hence, normalizing flow) and therefore decorrelate x;.7. Given the functional mapping

between y; and x; in Eq. 2, the change of variables formula converts between probabilities

det (§X11T> ’ . (4)

Yi.T
By the construction of Egs. 2 and 3, the Jacobian in Eq. 4 is triangular, enabling efficient
evaluation as the product of diagonal terms:

T
log ’det <gx1:T> l = Z Z log 79,i(x<t), (5)
t=1 i

YT

in each space:

log po(x1.7) = log pe(y1.7) — log

where ¢ denotes the observation dimension, e.g. pixel. For a Gaussian autoregressive model,
po(y1.1) = N(y1.1;0,I). With these components, the change of variables formula (Eq. 4)
provides an equivalent method for sampling and evaluating the model, py(x1.7).
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We can improve upon this simple set-up by chaining together multiple transforms, ef-
fectively resulting in a hierarchical autoregressive model. Letting y7', denote the variables
after the m'" transform, the change of variables formula for M transforms is

o) B (3],

Autoregressive flows were initially considered in the contexts of variational inference (Kingma
et al., 2016) and generative modeling (Papamakarios et al., 2017). These approaches are,
in fact, generalizations of previous approaches with affine transforms (Dinh et al., 2015,
2017). While autoregressive flows are well-suited for sequential data, as mentioned previ-
ously, these approaches, as well as many recent approaches (Huang et al., 2018; Oliva et al.,
2018; Kingma and Dhariwal, 2018), were initially applied in static settings, such as images.

More recent works have started applying flow-based models to sequential data. For
instance, van den Oord et al. (2018) and Ping et al. (2019) distill autoregressive speech
models into flow-based models. Prenger et al. (2019) and Kim et al. (2019) instead train
these models directly. Kumar et al. (2019) use a flow to model individual video frames, with
an autoregressive prior modeling dynamics across time steps. Rhinehart et al. (2018) and
Rhinehart et al. (2019) use autoregressive flows for modeling vehicle motion, and Henter
et al. (2019) use flows for motion synthesis with motion-capture data. Ziegler and Rush
(2019) learn distributions over sequences of discrete observations (e.g., text) by using flows
to model dynamics of continuous latent variables. Like these recent works, we apply flow-
based models to sequential data. However, we demonstrate that autoregressive flows can
serve as a useful, general-purpose technique for improving sequence modeling as components
of sequential latent variable models. To the best of our knowledge, our work is the first to
focus on the aspect of using flows to pre-process sequential data to improve downstream
dynamics modeling.

In this paper, we utilize affine flows (Eq. 2). This family of flows includes methods like
NICE (Dinh et al., 2015), ReaNVP (Dinh et al., 2017), IAF (Kingma et al., 2016), MAF
(Papamakarios et al., 2017), and GLOW (Kingma and Dhariwal, 2018). However, there has
been recent work in non-affine flows (Huang et al., 2018; Jaini et al., 2019; Durkan et al.,
2019), which may offer further flexibility. We chose to investigate affine flows for their
relative simplicity and connections to previous techniques, however, the use of non-affine
flows could result in additional improvements.

IOgPG(XLT) = logpg(y{\f[;r) log

Appendix B. A Motivating Example

Consider the discrete dynamical system defined by the following set of equations:

Xt = X¢—1 + Uy, (7)

U = U1 + Wy, (8)
where wy ~ N (wy;0,X). We can express x; and u; in probabilistic terms as

xp ~ N (x5 %-1 + w1, X), 9)
Uy NN(ut;ut_l,E). (10)

10
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Figure 4: Motivating Example. Plots are shown for a sample of x1.7 (left), uj.z (center),
and wy.p (right). Here, wi.p ~ N (w1.7;0,I), and u and x are initialized at 0. Moving
from x — u — w via affine transforms results in successively less temporal correlation and
therefore simpler dynamics.

Physically, this describes the noisy dynamics of a particle with momentum and mass 1,
subject to Gaussian noise. If we consider the dynamics at the level of x, we can use the
fact that w;_1 = x;_1 — Xy_9 to write

P(xe|Xe—1, Xe—2) = N (X¢; Xe—1 + Xp—1 — Xp—2, 2). (11)

Thus, we see that in the space of x, the dynamics are second-order Markov, requiring
knowledge of the past two time steps. However, at the level of u (Eq. 10), the dynamics are
first-order Markov, requiring only the previous time step. Yet, note that u, is, in fact, an

affine autoregressive transform of x; because u; = x; — x;_1 is a special case of the general

Xt— Mo (X<t)
g 9(X<t)

so, from the change of variables formula, we have p(x¢|x;—1,%¢—2) = p(us|us—1). In other

words, an affine autoregressive transform has allowed us to convert a second-order Markov
system into a first-order Markov system, thereby simplifying the dynamics. Continuing this
process to move to w; = u; — uy_1, we arrive at a representation that is entirely temporally
decorrelated, i.e. no dynamics, because p(w;) = N(wy;0,3). A sample from this system
is shown in Figure 4, illustrating this process of temporal decorrelation.

The special case of modeling temporal changes, u; = x¢ — X;—1 = AXy, IS a common
pre-processing technique; for recent examples, see Deisenroth et al. (2013); Chua et al.
(2018); Kumar et al. (2019). In fact, Ax; is a finite differences approximation of the
generalized velocity (Friston, 2008) of x, a classic modeling technique in dynamical models
and control (Kalman et al., 1960), redefining the state-space to be first-order Markov.
Affine autoregressive flows offer a generalization of this technique, allowing for non-linear
transform parameters and flows consisting of multiple transforms, with each transform
serving to successively decorrelate the input sequence in time. In analogy with generalized
velocity, each transform serves as a mowving reference frame, allowing us to focus model
capacity on less correlated fluctuations rather than the highly correlated raw signal.

form In Eq. 7, we see that the Jacobian of this transform is dx;/0u; = 1,

11
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Appendix C. Lower Bound Derivation

Consider the model defined in Section 3, with the conditional likelihood parameterized with
autoregressive flows. That is, we parameterize

Xt = po(X<t) + 09(x<t) O yy (12)
yielding
8Xt -1
po(Xt|x<t,z2<t) = po(yi|y <t Z<s) |det Iy, (13)
t
The joint distribution over all time steps is then given as
T
po(X1.7,21.1) H (Xe|x<t, 2<t)po(2¢e[x<t, 2<1) (14)
T
0x
H (ytly<t,z<t) |det <8yt> Po(Ze|X<t, 2<t)- (15)
- t

To perform variational inference, we consider a filtering approximate posterior of the form

T

q(zrrlxir) = [ alzilx<i 2<). (16)
i=1

We can then plug these expressions into the evidence lower bound:

L= Eq(zl:T|x1:T) [log pg(x1.7, 21.7) — log q(z1.7|x1:7)] (17)

T -1
ox
Eq(z1¢T|x1;T) llog (Hpe(Yt|Y<t,Z§t) det <3yz> pG(Zt‘X<t>Z<t)>
t=1

T
— log <H Q(Zt’XSt7Z<t)>] (18)

i (2] 0

Finally, in the filtering setting, we can rewrite the expectation, bringing it inside of the sum
(see Gemici et al. (2017); Marino et al. (2018)):

Q(Zt|X§ta Z<t)

p&(zt\X<t7 Z<t)

= Eq(z1.0x1.7) [Z log py(ytly<t,z<t) — log
t=1

T
7| X<y, Z 0x
L= ZE‘I(ZSt|XSt) IIOgPG(Yt‘yq’ z<t) — log q<t|<t<t)) — log ‘det <(‘3yz> ’ ] - (20)

t=1 Pe(zt |X<t, Z<t

Because there exists a one-to-one mapping between x;.7 and yi.77, we can equivalently
condition the approximate posterior and the prior on y, i.e.
0x
det < t)‘ (21)
dyi

T

L= ZE‘I(thb’gt) llogpﬁ(}’t|}’<t, th) — log
t=1

Q(Zt|Y§t7 Z<t)

—log
p@(zt|Y<t7Z<t)
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Appendix D. Experiment Details

We store a fixed number of past frames in the buffer of each transform, to generate the
shift and scale for the transform. For each stack of flow, 4 convolutional layers with kernel
size (3,3), stride 1 and padding 1 are applied first on each data observation in the buffer,
preserving the data shape. The outputs are concatenated along the channel dimension and
go through another four convolutional layers also with kernel size (3, 3), stride 1 and padding
1. Finally, separate convolutional layers with the same kernel size, stride and padding are
used to generate shift and scale respectively.

For latent variable models, we use a DC-GAN structure (Radford et al., 2015), with
4 layers of convolutional layers of kernel size (4,4), stride 2 and padding 1 before another
convolutional layer of kernel size (4,4), stride 1 and no padding to encode the data. The
encoded data is sent to an LSTM (Hochreiter and Schmidhuber, 1997) followed by fully
connected layers to generate the mean and log-variance for estimating the approximate
posterior distribution of the latent variable, z;. The conditional prior distribution is modeled
with another LSTM followed by fully connected layers, taking the previous latent variable
as input. The decoder take the inverse structure of the encoder. In the SLVM, we use 2
LSTM layers for modelling the conditional prior and approximate posterior distributions,
while in the combined model we use 1 LSTM layer for each.

We use the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 1 x 10~ to
train all the models. For Moving MNIST, we use a batch size of 16 and train for 200, 000
iterations for latent variable models and 100, 000 iterations for flow-based and latent variable
models with flow-based likelihoods. For BAIR Robot Pushing, we use a batch size of 8 and
train for 200, 000 iterations for all models. For KTH dataset we use a batch size of 8 and
train for 90, 000 iterations for all models. Batch norm (Ioffe and Szegedy, 2015) is applied to
all convolutional layers that do not directly generate distribution or transform parameters.
We randomly crop sequence of length 13 from all sequences and evaluate on the last 10
frames. (For 2-flow models we crop sequence of length 16 to fill up all buffers.) Code is
available here?.

Table 2: Number of parameters for each model on each dataset. Flow-based
models contain relatively few parameters as compared with the SLVM, as our flows consist
primarily of 3 x 3 convolutions with limited channels. In the SLVM, we use 2 LSTM layers
for modelling the prior and posterior distribution of latent variable while in the combined
model we use 1 LSTM layer for each.

Model 1-AF  2-AF SLVM SLVM w/ 1-AF
Moving Mnist 343k 686k 11302k 10592k
BAIR Robot Pushing 363k 726k 11325k 10643k
KTH Action 343k 686k 11302k 10592k

2. https://github.com/joelouismarino/sequential _flows
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Figure 5: Implementation Visualization of the autoregressive flow.
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Figure 6: Model Architecture Diagrams. Diagrams are shown for the (a) approximate
posterior, (b) conditional prior, and (c) conditional likelihood of the sequential latent vari-
able model. conv denotes a convolutional layer, LSTM denotes a long short-term memory
layer, fc denotes a fully-connected layer, and t_conv denotes a transposed convolutional
layer. For conv and t_conv layers, the numbers in parentheses respectively denote the
number of filters, filter size, stride, and padding of the layer. For fc and LSTM layers, the
number in parentheses denotes the number of units.
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Table 3: Training Quantitative Comparison. Average training log-likelihood (higher
is better) in nats per pizel per channel for Moving MNIST, BAIR Robot Pushing, and KTH
Actions. For flow-based models (1-AF and 2-AF), we report the average log-likelihood. For
sequential latent variable models (SLVM and SLVM w/ 1-AF), we report the average lower
bound on the log-likelihood.

M-MNIST BAIR KTH

1-AF —2.06 —2.98 —2.95
2-AF —2.04 —2.76 —2.95
SLVM >-193 >-346 > —-3.05

SLVM w/ 1-AF >—-185 >-231 > -221

Appendix E. Additional Experimental Results
E.1. Quantifying Temporal Decorrelation

The qualitative results in Figures 2 and 8 demonstrate that flows are capable of removing
much of the structure of the observations, resulting in whitened noise images. To quan-
titatively confirm the temporal decorrelation resulting from this process, we evaluate the
empirical correlation between successive frames, averaged over spatial locations and chan-
nels, for the data observations and noise variables. This is an average normalized version of
the auto-covariance of each signal with a time delay of 1 time step. Specifically, we estimate
the temporal correlation as

HWC i, ',k 1.9 ) 7k (2
. Z E k k (xi Jk) M( ’J,k))(x( 3,k) ,U( J» k)) 22)
x = C*W*H oy $ 25N~ (oid:h))? ’

where 2(7%) denotes the value of the image at location (,7) and channel k, p(3:k) denotes
the mean of this dimension, and o) denotes the standard deviation of this dimension.
H, W, and C respectively denote the height, width, and number of channels of the observa-
tions.

Table 4: Temporal Correlation. Temporal correlation (Eq. 22) between successive time
steps for data observations, x, and noise variables, y, for SLVM w/ 1-AF.

M-MNIST BAIR KTH

COITx 0.24 0.87 0.96
corry 0.02 0.43 0.31

We evaluated this quantity for data examples, x, and noise variables, y, for SLVM w/
1-AF. The results for training sequences are shown in Table 4. In Figure 7, we plot this
quantity during training for KTH Actions. We see that flows do indeed result in a decrease
in temporal correlation. Note that because correlation is a measure of linear dependence,
one cannot conclude from these results alone that the flows have resulted in simplified
temporal structure. However, these results agree with the qualitative and quantitative
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Figure 7: Temporal Correlation During Training. corry during training for SLVM w/
1-AF on the KTH Actions. Temporal correlation decreases substantially during training.

results presented in Section 4, suggesting that autoregressive flows can yield sequences with
simpler dynamics.

E.2. Additional Qualitative Experiments

I-..’ VV_ ' lr I.: : - ’ {Ar ! “ )
ddd b€ g s s
(d)

Figure 8: Flow Visualization. Visualization of the flow component for a (a, c¢) standalone
flow-based model and (b, d) sequential latent variable model with flow-based conditional
likelihood for KTH Actions and Moving MNIST. From top to bottom, each figure shows
1) the original frames, x¢, 2) the predicted shift, pg(x<¢), for the frame, 3) the predicted
scale, og(x<¢), for the frame, and 4) the noise, y;, obtained from the inverse transform.
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Figure 9: SLVM w/ 2-AF Visualization on Moving MNIST. Visualization of the
flow component for sequential latent variable models with 2-layer flow-based conditional
likelihoods for Moving MNIST. From top to bottom on the left side, each figure shows 1)
the original frames, x;, 2) the lower-level predicted shift, ué(x<t), for the frame, 3) the
predicted scale, oj(x<¢), for the frame. On the right side, from top to bottom, we have 1)

the higer-level predicted shift, pZ(x<;), for the frame, 3) the predicted scale, o2(x<¢), for
the frame and 4) the noise, y¢, obtained from the inverse transform.
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Figure 10: Generated Moving MNIST Samples. Samples frame sequences generated
from a 2-AF model.

Figure 11: Generated BAIR Robot Pushing Samples. Samples frame sequences
generated from SLVM w/ 1-AF.
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