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Abstract

We humans seem to have an innate understanding of the asymmetric progression
of time, which we use to efficiently and safely perceive and manipulate our envi-
ronment. Drawing inspiration from that, we address the problem of learning an
arrow of time in a Markov (Decision) Process. We illustrate how a learned arrow
of time can capture meaningful information about the environment, which in turn
can be used to measure reachability, detect side-effects and to obtain an intrinsic
reward signal. We show empirical results on a selection of discrete and continuous
environments, and demonstrate for a class of stochastic processes that the learned
arrow of time agrees reasonably well with a known notion of an arrow of time
given by the celebrated Jordan-Kinderlehrer-Otto result.

1 Introduction

The asymmetric progression of time has a profound effect on how we, as agents, perceive, process
and manipulate our environment. Given a sequence of observations of our familiar surroundings (e.g.
as photographs or video frames), we possess the innate ability to predict whether the said observations
are ordered correctly. We use this ability not just to perceive, but also to act: for instance, we know to
be cautious about dropping a vase, guided by the intuition that the act of breaking a vase cannot be
undone. It is manifest that this profound intuition reflects some fundamental properties of the world
in which we dwell, and in this work, we ask whether and how these properties can be exploited to
learn a representation that functionally mimics our understanding of the asymmetric nature of time.

In his book The Nature of Physical World Eddington (1929), British astronomer Sir Arthur Stanley
Eddington coined the term Arrow of Time to denote this inherent asymmetry. It was attributed to the
non-decreasing nature of the total thermodynamic entropy of an isolated system, as required by the
second law of thermodynamics. However, the mathematical groundwork required for its description
was already laid by Lyapunov (1892) in the context of dynamical systems. Since then, the notion of
an arrow of time has been formalized and explored in various contexts, spanning not only physics
(Prigogine, 1978; Jordan et al., 1998; Crooks, 1999) but also algorithmic information theory (Zurek,
1989, 1998), causal inference (Janzing et al., 2016) and time-series analysis (Janzing, 2010) .
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Expectedly, the notion of irreversiblity plays a central role in the discourse. In his Nobel lecture,
Prigogine (1978) posits that irreversible processes induce the arrow of time1. At the same time, the
matter of reversibility has received considerable attention in reinforcement learning, especially in
the context of safe exploration (Hans et al.; Moldovan and Abbeel, 2012; Eysenbach et al., 2017),
learning backtracking models (Goyal et al., 2018; Nair et al., 2018) and AI-Safety (Amodei et al.,
2016; Krakovna et al., 2018). In these applications, learning a notion of (ir)reversibility is of
paramount importance: for instance, the central premise of safe exploration is to avoid states that
prematurely and irreversibly terminate the agent and/or damage the environment. It is related (but
not identical) to the problem of detecting and avoiding side-effects, in particular those that adversely
affect the environment. In Amodei et al. (2016), the example considered is that of a cleaning robot
tasked with moving a box across a room. The optimal way of successfully completing the task might
involve the robot doing something disruptive, like knocking a vase over. Such disruptions might be
difficult to recover from; in the extreme case, they might be virtually irreversible – say when the vase
is broken.

The scope of this work includes detecting and quantifying such disruptions by learning the arrow of
time of an environment2. Concretely, we aim to learn a potential (scalar) function on the state space.
This function must keep track of the passage of time, in the sense that states that tend to occur in the
future – states with a larger number of broken vases, for instance – should be assigned larger values.
To that end, we first introduce a general objective functional (Section 2.1) and study it analytically for
toy problems (Section 2.2). We continue by interpreting the solution to the objective (Section 2.3) and
highlight its applications (Section 3). To tackle more complex problems, we parameterize the potential
function by a neural network and present a stochastic training algorithm (Section 4). Subsequently,
we demonstrate results on a selection of discrete and continuous environments and discuss the results
critically, highlighting both the strengths and shortcomings of our method (Section 4). Finally,
we place our method in a broader context by empirically elucidating connections to the theory of
stochastic processes and the variational Fokker-Planck equation (Section 4.1).

2 The h-Potential

2.1 Formalism

Preliminaries. In this section, we will represent the arrow of time as a scalar function h that increases
(in expectation) over time. Given a Markov Decision Process (Environment), let S and A be its state
and action space (respectively). A policy π is a function mapping a state s ∈ S to a distribution
over the action space, π(a|s) ∈ P(A). Given π and some distribution over the states, we call the
sequence (s0, s1, ..., sN ) a state-transition trajectory τπ, where we have st+1 ∼ pπ(st+1|st) =∑
a p(st+1|st, at)π(at|st) and s0 ∼ p0(s) for some initial state distribution p0(s). In this sense, τπ

can be thought of as an instantiation of the Markov (stochastic) process with transitions characterized
by pπ .

Methods. Now, for any given function h : S → R, one may define the following functional:

Jπ[h] = EtE(st→st+1)∼τπ [h(st+1)− h(st)] = EtEstEst+1
[h(st+1)− h(st)|st] (1)

where the expectation is over the state transitions of the Markov process τπ and the time-step t. We
now define:

hπ = arg max{Jπ[h] + λT [h]} (2)
where T implements some regularizer (e.g. L2, etc.) weighted by λ. The Jπ term is maximized if the
quantity hπ(st) increases in expectation3 with increasing t, whereas the regularizer T ensures that
hπ is well-behaved and does not diverge to infinity in a finite domain4. In what follows, we simplify
notation by using hπ and h interchangeably.

1Even for systems that are reversible at the microscopic scale, the unified integral fluctuation theorem (Seifert,
2012) shows that the ratio of the probability of a trajectory and its time-reversed counterpart grows exponentially
with the amount of entropy the former produces.

2Detecting the arrow of time in videos has been studied (Wei et al., 2018; Pickup et al., 2014).
3Note that while Jπ[h] requires h to increase along all trajectories in expectation, it does not guarantee that

it must increase along all trajectories.
4Under certain conditions, hπ resembles the negative stochastic discrete-time Lyapunov function (Li et al.,

2013) of the Markov process τπ .
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2.2 Theoretical Analysis
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Figure 1: A two variable Markov
chain where the reversibility of the tran-
sition from the first state to the second
is parameterized by α.

The optimization problem formulated in Eqn 2 can be studied
analytically: in Appendix A, we derive the analytic solutions
for Markov processes with discrete state-spaces and known
transition matrices. The key result of our analysis is a charac-
terization of how the optimal h must behave for the considered
regularization schemes. Further, we evaluate the solutions for
illustrative toy Markov chains in Fig 1 and 2 to learn the fol-
lowing.

First, consider the two variable Markov chain in Fig 1 where
the initial state is either s1 or s2 with equal probability. If
α > 0.5, the transition from s1 to s2 is more likely than the
reverse transition from s2 to s1. In this case, one would expect that h(s1) < h(s2) and that
h(s2) − h(s1) increases with α, which is indeed what we find5 given an appropriate regularizer.
Conversely, if α = 0.5, the transition between s1 and s2 is equally likely in either direction (i.e. it
is fully reversible), and we obtain h(s1) = h(s2). Second, consider the four variable Markov chain
in Fig 2 where the initial state is s1 and all state transitions are irreversible. Inituitively, one should
expect that h(s1) < h(s2) < h(s3) < h(s4), and h(s2)− h(s1) = h(s3)− h(s2) = h(s4)− h(s3),
given that all state transitions are equally irreversible. We obtain this behaviour with an appropriate
regularizer6.

s1 s2 s3 s4

Figure 2: A four variable Markov
chain corresponding to a sequence of
irreversible state transitions.

While this serves to show that the optimization problem defined
in Eqn 2 can indeed lead to interesting solutions, an analytical
treatment is not always feasible for complex environments with
a large number of states and/or undetermined state transition
rules. In such cases, as we shall see in later sections, one may
resort to parameterizing h as a function approximator and solve
the optimization problem in Eqn 2 with stochastic gradient methods.

2.3 Interpretation and Subtleties
Having defined and analyzed h, we turn to the task of interpreting it. Based on the analytical results
presented in Section 2.2, it seems reasonable to expect that even in interesting environments, h
should remain constant (in expectation) along reversible trajectories. Further, along trajectories with
irreversible transitions, one may hope that h not only increases, but also quantifies the irreversibility
in some sense. In Section 4, we empirically investigate if this is indeed the case. But before that,
there are two conceptual aspects that warrant closer scrutiny.

The first is rooted in the observation that the states st are collected by a given but arbitrary policy π.
In particular, there may exist demonic7 policies for which the resulting arrow-of-time is unnatural,
perhaps even misleading. Consider for instance the actions of a practitioner of Kintsugi, the ancient
Japanese art of repairing broken pottery. The corresponding policy might cause the environment to
transition from a state where the vase is broken to one where it is not. If we learn h on such demonic
(or expert) trajectories8, it might be the case that counter to our intuition, states with a larger number
of broken vases are assigned smaller values (and the vice versa). Now, we may choose to resolve this
conundrum by defining

J [h] = Eπ∼ΠJπ[h] (3)

where Π is the set of all policies defined on S, and ∼ denotes uniform sampling. The resulting
function h∗ = arg max{J [h] + T } would characterize the arrow-of-time w.r.t. all possible policies,
and one would expect that for a vast majority of such policies, the transition from broken vase to a
intact vase is rather unlikely and/or requires highly specialized policies.

Unfortunately, determining h∗ is not feasible for most interesting applications, given the outer
expectation over all possible policies; we therefore settle for a (uniformly) random policy which
we denote by π] (and the corresponding potential as h]). The simplicity (or rather, clumsiness) of

5cf. Examples 1 and 3 in Appendix A.
6cf. Example 4 in Appendix A.
7This is indeed an allusion to Maxwell’s Demon, cf. Thomson (1874).
8By doing so, we solve an inverse RL problem (Ng and Russell, 2000).
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π] justifies its adoption, since one would expect a demonic policy to be rather complex and not
implementable with random actions. In this sense, we ensure that the arrow of time characterizes the
underlying dynamics of the environment, and not the peculiarities of a particular agent. However,
the price we pay for our choice is the lack of adequate exploration in complex enough environments,
although this problem plagues most model-based reinforcement learning approaches9 (cf. Ha and
Schmidhuber (2018)).

The second aspect concerns what we require of environments in which the arrow of time is informative.
To illustrate the matter, we consider a class of Hamiltonian systems10, a typical instance of which
could be a billiard ball moving on a frictionless arena and bouncing (elastically) off the edges11.
The state space comprises the ball’s velocity and its position constrained to a billiard table (without
holes!), where the ball is initialized at a random position on the table. For such a system, it can be
seen by time-reversal symmetry that when averaged over a large number of trajectories, the state
transition s → s′ is just as likely as the reverse transition s′ → s. In this case, one should expect
the arrow of time to be constant12 (see Eqn 2). A similar argument can be made for systems that
identically follow closed trajectories in their respective state space (e.g. a frictionless and undriven
pendulum). It follows that h must remain constant along the trajectory and that the arrow of time
is uninformative. However, for so-called dissipative systems, the notion of an arrow of time is
pronounced and well studied (Prigogine, 1978; Willems, 1972). In MDPs, dissipative behaviour may
arise in situations where certain transitions are irreversible by design (e.g. bricks disappearing in
Atari Breakout), or due to partial observability (e.g. for a damped pendulum, the state space does not
track the microscopic processes that give rise to friction13).

Therefore, a central premise underlying the practical utility of learning the arrow of time is that
the considered MDP is indeed dissipative. Operating under this assumption, we now discuss a
few applications of the arrow of time and experimentally demonstrate its learnability on non-trivial
environments.

3 Applications with Related Work

3.1 Measuring Reachability

Given two states s and s′ in S, the reachability of s′ from s measures how difficult it is for an agent
at state s to reach state s′. The prospect of learning reachability from state-transition trajectories has
been explored: in Savinov et al. (2018), the approach taken involves learning a logistic regressor
network gθ : S × S → [0, 1] to predict the probability of states s′ and s being reachable to one
another within a certain number of steps (of a random policy), in which case g(s, s′) ≈ 1. However,
the model g is not directed: it does not learn whether s′ is more likely to follow s, or the vice versa.
Instead, we propose to learn a function ηπ : S × S → R such that ηπ(s → s′) 7→ hπ(s′) − hπ(s)
where ηπ(s→ s′) is said to measure the directed reachability of state s′ from state s by following
some reference policy π. In the following, we take the reference policy as given (e.g. a random
policy) and drop the π for notational clarity. Now, η has the following properties.

First, consider the case where the transition between states s and s′ is fully reversible, i.e. when state
s is exactly as reachable from state s′ as is s′ from s. In expectation, we obtain h(s′) = h(s) and
consequently, η(s → s′) = η(s′ → s). We denote such reversible transitions with s ↔ s′. Now,
if instead the state s′ is more likely to occur after state s than state s after s′, we say s′ is more
reachable14 from s than s from s′. It follows in expectation that h(s′) > h(s), and consequently,
η(s → s′) > 0 along with η(s′ → s) = −η(s → s′) < 0. Second, it can easily be seen that the
reachability measure implemented by η is additive by design: given three states s0, s1, s2 ∈ S, we
have that η(s0 → s2) = η(s0 → s1) + η(s1 → s2). As a special case, consider when s0 ↔ s1 and

9While this is a fundamental problem, powerful methods for off-policy learning exist (cf. Munos et al. (2016)
and references therein); however, a full analysis is beyond the scope of the current work.

10Systems where Liouville’s theorem holds. Further, the Hamiltonian is assumed to be time-independent.
11This is well studied in the context of dynamical systems and chaos theory (keyword: dynamic billiards); see

(Bunimovich, 2007) and references therein.
12Prigogine (1978) (page 783 et seq.) provides a more physical treatment.
13Note that while a damped pendulum can be expressed as a Hamiltonian system (McDonald, 2015), the

Hamiltonian is time dependent.
14With respect to the reference (random) policy, which is implicit in our notation.
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s1 ↔ s2: it follows that s0 ↔ s2. In words, if both transitions, from s0 to s1 and from s1 and s2,
are fully reversible, it automatically follows that the transition from s0 to s2 is also fully reversible.
Third, η allows for a soft measure of reachability. As we shall see in Section 4, it measures not only
whether a state s′ is reachable from another state s, but also quantifies how reachable the former is
from the latter. For instance: if the state s(0) is one with all vases intact, s(1) with one vase broken,
and s(100) with a hundred vases broken, we find that η(s(0) → s(100)) ≈ 100 · η(s(0) → s(1)). This
behaviour is sought-after in the context of AI-Safety (Krakovna et al., 2018; Leike et al., 2017).

While these properties are satisfactory, the following aspect should be considered to prevent potential
confusion. Namely, while we expect η(s′ → s) = η(s→ s′) if the transition between states s and
s′ is fully reversible, the converse is not guaranteed, especially for non-ergodic environments. For
instance, if a Markov chain does not admit a trajectory between states s and s′, it might still be the
case that h(s) = h(s′), and consequently, η(s→ s′) = η(s′ → s) = 0.

3.2 Detecting and Penalizing Side Effects for Safe Exploration

The problem of detecting and avoiding side-effects is well known and crucially important for safe
exploration (Moldovan and Abbeel, 2012; Eysenbach et al., 2017; Krakovna et al., 2018; Armstrong
and Levinstein, 2017). Broadly, the problem involves detecting and avoiding state transitions that
permanently and irreversibly damage the agent or the environment. As such, it is not surprising
that it is fundamentally related to reachability, as in the agent is prohibited from taking actions that
drastically reduce the reachability between the resulting state and some predefined safe state. In
Eysenbach et al. (2017), the authors learn a reset policy responsible for resetting the environment
to some initial state after the agent has completed its trajectory. The resulting value function of the
reset policy indicates when the actual (forward) policy executes an irreversible state transition. In
contrast, Krakovna et al. (2018) propose to attack the problem by measuring reachability relative to a
baseline state. However, determining it requires counterfactual reasoning, which in turn requires a
known causal model.

We propose to directly use the reachability measure η defined in Section 3.1 to derive a Lagrangian
for safe-exploration. Let rt be the reward (potentially including an exploration bonus) at time-step t.
The augmented reward is given by:

r̂t = rt − β ·max{η(st−1 → st), 0} (4)

where β is a scaling coefficient. In practice, one may replace η with σ(η), where σ is a monotonically
increasing transfer function (e.g. a step function).

Intuitively, transitions s → s′ that are less reversible cause the h-potential to increase, and the
resulting reachability measure η(s→ s′) > 0 in expectation. This in-turn incurs a penalty, which is
reflected in the value function of the agent. Conversely, transitions that are reversible should have the
property that η(s→ s′) = 0 (also in expectation), thereby incurring no penalty.

3.3 Rewarding Curious Behaviour

In many environments where reinforcement learning methods shine, the reward function is assumed
to be given; however, shaping a good reward function can often prove to be a challenging endeavour.
It is in this context that the notion of curiosity comes to play an important role (Schmidhuber,
2010; Chentanez et al., 2005; Pathak et al., 2017; Burda et al., 2018; Savinov et al., 2018). One
typical approach towards encouraging curious behaviour is to seek novel states that surprise the agent
(Schmidhuber, 2010; Pathak et al., 2017; Burda et al., 2018) and use the error in the agent’s prediction
of future states is used as a curiosity reward. This approach is, however, susceptible to the so-called
noisy-TV problem, wherein an uninteresting source of entropy like a noisy-TV can induce a large
curiosity bonus because the agent cannot predict its future state. Savinov et al. (2018) propose to
define novelty in terms of (undirected) reachability - states that are easily reachable from the current
state are considered less novel.

The h-potential and the corresponding reachability measure η affords another way of defining a
curiosity reward: namely, states that are difficult to access by a simple reference policy (e.g. a random
policy) should incur a larger reward. In other words, it encourages an agent to do hard things, i.e. to
seek states that are otherwise difficult to reach just by chance. The general form of the corresponding
reward is given by: r̂t = −η(st−1 → st).
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Despite the above being independent of the reward function defined by the environment, the latter
might often align with the former: in many environments, the task at hand is to reach the least
reachable state. This is readily recognized in classical control tasks like Pendulum, Cartpole and
Mountain-Car, where the goal state is often the least reachable. However, if the environment’s
specified task requires the agent to inadvertently execute irreversible trajectories, we expect our
proposed reward to be less applicable.

4 Algorithm and Experiments

In this section, we introduce a learning algorithm for the parameterized h-potential and empirically
validate it on a selection of discrete and continuous environments (more experiments can be found in
Appendix C).

For interesting MDPs with a large number of states and unknown state transition models, an analytic
solution like in Section 2.2 is not feasible. In such cases, the h-potential can be parameterized by a
neural network hθ with parameters θ, reducing the optimization problem in Eqn 2 to:

arg max
θ

{
Jπ[hθ] + λT [hθ]

}
(5)

For stochastic training, the expectation in Eqn 1 can be replaced by its Monte-Carlo estimate, and
optimization problem in Eqn 5 can be solved via stochastic gradient descent – the details are given in
Algorithm 1 (Appendix B).

Now, we turn to the question of what regularizer to use. Perhaps the simplest candidate is early
stopping, wherein the network hθ is simply not trained to convergence. In combination with weight-
decay and/or gradient clipping, we find it to work surprisingly well in practice. Another good
regularizer is the so-called trajectory regularizer (cf. Eqn 17 in Appendix A):

T [h] = −EtEstEst+1 [(h(st+1)− h(st))
2|st] (6)

In words, the trajectory regularizer penalizes all changes in h, whereas the primary objective J
encourages h to increase along a trajectory; for an appropriate coefficient λ, a balance is found.
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Figure 3: The potential difference (i.e. change
in h-potential) between consecutive states along a
trajectory. The dashed vertical lines denote when
a vase is broken. Gist: the h-potential increases
step-wise when the agent irreversibly breaks a vase
(corresponding to the spikes), but remains constant
as it reversibly moves about. Further, the spikes
are all of roughly the same height, indicating that
the h-potential has learned to count the number of
destroyed vases.

2D World with Vases.15 The environment consid-
ered is a 7×7 2D world, where cells can be occupied
by the agent, the goal and/or a vase (their respective
positions are randomly sampled in each episode). If
the agent enters a cell with a vase in it, the vase dis-
appears without compromising the agent. We use a
random policy to generate state-transition trajectories,
which we then use to train the h-potential. In Fig 9
(in Appendix C.1.1), we plot the h-potential along
a trajectory (parameterized by t) generated by a ran-
dom policy. We find that h(st) increases step-wise
when the agent breaks a vase, but remains constant
as it moves around – consequently, we observe that
the breaking of a vase corresponds to a spike in the
η(st → st+1) signal (Fig 3). Indeed, the latter is
reversible whereas the former irreversibly changes
the environment. Moreover, we find that the spikes in
Fig 3 are of roughly similar heights, indicating that
the model has learned to measure the number of vases
broken, i.e. it has learned to quantify irreversiblity,
instead of merely detecting it16.

Now, to study the robustness of the h-potential to noise, we carry out the following two experiments.
In the first of the two, we append a uniformly-random temporally uncorrelated noise signal to the state,
which serves as an entropy source (i.e. a noisy-TV). In the second, we append a clock to the state,

15Experimental details and additional plots can be found in Appendix C.1.1.
16The trained h-potential can be utilized to derive a safety reward from the trained model, as elaborated in

Section 3.2 (cf. Fig 11 in Appendix C.1.1).
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i.e. a temporally-correlated signal that increases in constant intervals as the trajectory progresses.
Fig 8a and 8b (Appendix C.1.1) show the respective plots for the corresponding reachability η. While
the former noises the background in the η(st → st+1) signal, the spikes remain clearly visible,
suggesting that the h-potential is fairly robust to temporally uncorrelated sources of entropy. The
latter has a more interesting effect - the h-potential latches on to the clock signal, which results in the
baseline η shifting up by a constant. While the spikes remain visible for the most part, this experiment
shows that the model might be susceptible to spurious causal signals in the environment.
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Figure 4: The h-potential along a trajectory from
a random policy, annotated with the corresponding
state images. The white sprite corresponds to the
agent, orange to a wall, blue to a box and green to
a goal. Gist: the h-potential increases sharply as
the agent pushes a box against the wall. While it
may decrease (for a given trajectory) if the agent
manages to move a box away from the wall (in this
case), it increases in expectation over trajectories
(cf. Fig 15 in Appendix C.1.3).

Sokoban17 ("warehouse-keeper") is a classic puzzle
video game, where an agent must push a number of
boxes to set goal locations placed on a map. We use
a 2D-world like implementation18, where each cell
can be occupied by a wall, the agent or a box. Addi-
tionally, a goal marker may co-occupy a cell with all
sprites except a wall. The agent may only push boxes
(and not pull), rendering certain moves irreversible
- for instance, when a box is pushed against a wall.
Solving Sokoban requires long-term planning, pre-
cisely due to the existence of such irreversible moves.
To further exacerbate the problem, the task of even
determining whether a move is irreversible might be
non-trivial.

We train the h-potential on trajectories generated by a
random policy, wherein we generate a random (solv-
able) map for each trajectory. Fig 4 shows the evolu-
tion of h with timesteps for a randomly sampled (val-
idation) map. We find that h increases sharply when
a box is pushed against a wall, but remains constant
as the agent moves about (potentially pushing a box
around). Indeed, the latter is reversible whereas the
former is not. Further, we confirm that h does not necessarily increase along all trajectories, but only in
expectation (Fig 15). We therefore learn that the h-potential can be used to extract useful information
from the environment, all without any external supervision (via rewards) or specialized policies.

1.25 1.00 0.75 0.50 0.25 0.00 0.25 0.50
Position

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

h(
x

=
,v

=
0)

[N
eg

at
iv

e 
Po

te
nt

ia
l a

t Z
er

o 
Ve

lo
cit

y] Negative Potential at Zero Velocity

0.2

0.4

0.6

0.8

1.0

He
ig

ht
 o

f t
he

 M
ou

nt
ai

n

Height

Figure 5: The h-potential (for Mountain Car) at
zero-velocity plotted against position. Also plotted
(orange) is the height profile of the mountain. Gist:
the h-potential approximately recovers the height-
profile of the mountain with just trajectories from
a random policy.

Mountain-Car with Friction.19 The environment
considered shares its dynamics with the well known
(continuous) Mountain-Car environment (Sutton and
Barto, 2011), but with a crucial amendment: the car is
subject to friction20. Friction is required to make the
environment dissipative and thereby induce an arrow
of time (cf. Section 2.3). Moreover, we initialize the
system in a uniform-randomly sampled state to avoid
exploration issues.

Fig 6a shows the output of the h-potential trained
with trajectory regularization overlayed with random
trajectories, whereas Fig 5 plots the negative poten-
tial at zero-velocity together with the height of the
mountain. We not only find that h is at its maximum
around the valley, but also that −h at zero velocity
largely recovers the terrain just from random trajecto-
ries. In addition, we also train the h-potential under
identical conditions but without friction. The resulting environment is not dissipative, and in Fig 6b
we accordingly find that the corresponding h-potential is not informative (and an order of magnitude
smaller), highlighting the practical importance of dissipation.

17Experimental details and additional plots can be found in Appendix C.1.3.
18Our implementation is adapted from Schrader (2018).
19Experimental details and additional plots can be found in Appendix C.2.2
20Technically, this is achieved by subtracting a velocity dependent term from the acceleration.
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Figure 6: The h-potential as a function of state (position and velocity) for (continuous) Mountain-Car with and
without friction. The overlay shows random trajectories (emanating from the dots). Gist: with friction, we find
that the state with largest h is one where the car is stationary at the bottom of the valley. Without friction, there
is no dissipation and the car oscillates up and down the valley. Consequently, we observe that the h-potential is
constant (up-to edge effects) and thereby uninformative.

Appendices C.1.2 and C.2.1 present additional experiments. The former shows for a discrete
environment that the h-potential can be used to derive a reward signal that correlates well with what
one might engineer; in the latter, we learn the h-potential for an under-damped pendulum.

4.1 Connection to Stochastic Processes

In this section, we empirically study the link between our method and the theory of stochastic
processes. Concretely: our goal is to investigate whether a learned arrow of time behaves as expected
by comparing it with a known notion of an arrow of time due to Jordan, Kinderlehrer, and Otto (1998).
Experimental details are provided in Appendix C.3.
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Figure 7: The true arrow of time (the Free-Energy
functional, in blue) plotted against the learned arrow
of time (the H-functional, plotted in orange) after
linear scaling and shifting. We find the two to be in
good (albeit not perfect) agreement.

Following the notation of Jordan et al. (1998), we
consider the spatial distribution ρ(x, t) at time
t of a particle undergoing Brownian motion in
the presence of a potential Ψ. The Ito stochastic
differential equation (associated with the Fokker-
Planck-Equation) is given by:

dX(t) = −∇Ψ(X(t))dt+
√

2β−1dW(t) (7)

where X(t) is the random variable correspond-
ing to the distribution ρ(x, t), the initial spatial
distribution ρ0(x) = ρ(x, t = 0) is fixed, β is
a parameter and W is the standard Wiener pro-
cess (or equivalently, dW is uncorrelated white-
noise). The celebrated Jordan-Kinderlehrer-Otto
result (Jordan et al., 1998) shows that the dynam-
ics of a distribution satisfying the Ito SDE (Eqn 7)
has the property that the following Free-Energy
functional F [ρ(·, t)] can only decrease with time21:

F [ρ(·, t)] =

∫
Rn

Ψρ(·, t)dx︸ ︷︷ ︸
E[ρ(·,t)]

+β−1

∫
Rn
ρ(·, t) log ρ(·, t)dx︸ ︷︷ ︸
−S[ρ(·,t)]

= Ex∼ρ(·,t)[Ψ + β−1 log ρ(·, t)] (8)

where E[ρ] is the energy functional and S[ρ] is the (Gibbs-Boltzmann) entropy functional. It follows
that the free-energy functional F induces an arrow of time for the stochastic process generated by
Eqn 7.

Given that background, the question we now ask is the following: given just samples from the
stochastic process X(t), how well does a learned h-potential agree with the true Free-Energy

21In other words, F [ρ(·, t)] is a Lyapunov functional.
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functional? To answer that, we first define the H-functional as:

H[ρ(·, t)] = −Ex∼ρ(·,t)[h(x)] (9)

This allows us to compare H[ρ(·, t)] with F [ρ(·, t)], modulo a linear scaling and shift. To that
end, we train h with realizations of two-dimensional random walks under an elliptic paraboloid
potential Ψ. Further, Ex∼ρ(·,t)[Ψ] is estimated via Monte-Carlo sampling, the differential entropy
Ex∼ρ(·,t)[log ρ(·, t)] via a non-parametric estimator (Kozachenko and Leonenko, 1987; Kraskov et al.,
2004; Gao et al., 2015), and the linear transform coefficients for H via linear regression. Fig 16 (in
Appendix C.3) plots h as a function of state x ∈ R2, whereas Fig 7 shows that after appropriate
(linear) scaling, the learned H largely agrees with the true F .

5 Conclusion
Over the course of the paper, we addressed the problem of learning the arrow of time in Markov
(Decision) Processes. Having formulated an objective (Eqn 2) and analyzed the corresponding
optimization problem for discrete state-spaces (Section 2.2 and Appendix A), we laid out the
fundamental challenges that arise – namely the presence of demonic policies and the requirement that
the environment be dissipative (Section 2.3). Under appropriate assumptions, we discussed how the
arrow of time can be used to measure reachability, detect side-effects and define a curiosity reward
(Section 3). Subsequently, we demonstrated the process of learning the arrow of time on a selection
of discrete and continuous environments (Section 4). Finally, we showed for random walks that the
learned arrow of time agrees well with the Free-Energy functional, which acts as the true arrow of
time. Future work could draw connections to algorithmic independence of cause and mechanism
(Janzing et al., 2016) and explore applications in causal inference (Janzing, 2010; Peters et al., 2017).
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A Theoretical Analysis

In this section, we present a theoretical analysis of the optimization problem formulated in Eqn 2, and
analytically evaluate the result for a few toy Markov processes to validate that the resulting solutions
are indeed consistent with intuition. To simplify the exposition, we consider the discrete case where
the state space S of the MDP is finite.

Consider a discrete Markov chain with enumerable states si ∈ S. At an arbitrary (but given) time-
step t, we let pti = p(st = si) denote the probability that the Markov chain is in state si, and pt

the corresponding vector (over states). With Tij we denote the probability of the Markov chain
transitioning from state si to sj under some policy π, i.e. Tij = pπ(st+1 = sj |st = si). One has the
transition rule:

pt+1 = ptT pt = p0T t (10)
where T t is the t-th matrix power of T . Now, we let hi denote the value hπ takes at state si, i.e.
hi = hπ(si), and the corresponding vector (over states) becomes h. This reduces the expectation of
the function (now a vector) h w.r.t any state distribution (now also a vector) p to the scalar product
p · h. In matrix notation, the optimization problem in Eqn 2 simplifies to:

arg max
h

1

N

N−1∑
t=0

[
ptTh− pt · h

]
+ λT (h) (11)

For certain T , the discrete problem in Eqn 11 can be handled analytically. We consider two candidates
for T , the first being the norm of h, and the second one being the norm of change in hi, in expectation
along a trajectory.
Proposition 1. If T (h) = −(2N)−1‖h‖2, the solution to the optimization problem in Eqn 11 is
given by:

h =
p0TN − p0

λ
(12)

Proof. First, note that the objective in Eqn 11 becomes:

L[h] =
1

N

N−1∑
t=0

[
ptTh− pt · h

]
− 1

2N
‖h‖2 (13)

To solve the maximization problem, we must differentiate L w.r.t. its argument h, and set the resulting
expression to zero. This yields:

∇hL =
1

N

[
N−1∑
t=0

(ptT − pt)− λh

]
= 0 (14)

Now, the summation (over t) is telescoping, and evaluates to pN−1T − p0. Substituting pN−1 with
the corresponding expression from Eqn 10 and solving for h, we obtain Eqn 12.

Proposition 1 has an interesting implication: if the Markov chain is initialized at equilibrium, i.e. if
p0 = p0T , we obtain that h = 0 identically. Given the above, we may now consider simple Markov
chains to explore the implications of Eqn 12.
Example 1. Consider a Markov chain with two states and reversible transitions, parameterized by
α ∈ [0, 1] such that T11 = T21 = 1− α and T12 = T22 = α. If p0 = (1/2, 1/2), one obtains:

h ∝ (−γ, γ) (15)

where γ = α − 1/2. To see how, consider that for all N > 0, one obtains p0TN = (1 − α, α).
Together with Proposition 1, Eqn 15 follows.

The above example illustrates two things. On the one hand, if α = 1/2, one obtains a Markov chain
with perfect reversibility, i.e. the transition s1 → s2 is equally as likely as the transition s2 → s1.
In this case, one indeed obtains h(s1) = h(s2) = 0, as mentioned above. On the other hand, if one
sets α = 1, the transition from s2 → s1 is never sampled, and that from s1 → s2 is irreversible;
consequently, h(s2)− h(s1) takes the largest value possible. Now, while this aligns well with our
intuition, the following example exposes a weakness of the L2-norm-penalty used in Proposition 1.
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Example 2. Consider two Markov chains, both always initialized at s1. For the first Markov chain,
the dynamics admits the following transitions: s1 → s2 → s3 → s4, whereas for the second chain,
one has s1 → s3 → s2 → s4. Now, for both chains and N ≥ 4, it’s easy to see that (p0TN )i = 1 if
i = 4, but 0 otherwise. From Eqn 12, one obtains:

h ∝ (−1, 0, 0, 1) (16)

The solution for h given by Eqn 16 indeed increases (non-strictly) monotonously with timestep.
However, we obtain h(s2) = h(s3) = 0 for both Markov chains. In particular, h does not increase
between the s2 → s3 transition in the former and the s3 → s2 transition in the latter, even though
both transitions are irreversible. It is in general apparent from 1 that the solution for h depends only
on the initial and final state distribution, and not the intermediate trajectory.

Now, consider the following regularizer that penalizes not just the function norm, but the change in h
in expectation along trajectories:

T (h) = − 1

2N

N−1∑
t=0

(ptTh− pt · h)2 − ω

2N
‖h‖2 (17)

where ω is the relative weight of the L2 regularizer. This leads to the result:
Proposition 2. The solution to the optimization problem in Eqn 11 with the regularizer in Eqn 17 is
the solution to the following matrix-equation:

N−1∑
t=0

p0(T t+1 − T t)hp0(T t+1 − T t) + ωh =
p0TN − p0

2λ
(18)

Proof. Analogous to Eqn 13, we may write the objective in Eqn 11 as (by substituting Eqn 17 in
Eqn 11):

L[h] =
1

N

N−1∑
t=0

[
ptTh− pt · h

]
− λ

2N

N−1∑
t=0

(ptTh− pt · h)2 − λω

2N
‖h‖2 (19)

Like in Proposition 1, we maximize it by setting the gradient of L w.r.t. h to zero. This yields:

∇hL =
1

N

[
N−1∑
t=0

(ptT − pt)− λ

2
∇h

N−1∑
t=0

(ptTh− pt · h)2 − ωλh

]
= 0 (20)

The first term in the RHS is again a telescoping sum; it evaluates to: p0TN − p0 (cf. proof of
Proposition 1). The second term can be expressed as (with I as the identity matrix):

λ

2
∇h

N−1∑
t=0

(ptTh− pt · h)2 =
λ

2

N−1∑
t=0

∇h(pt(T − I)h)2 (21)

= λ

N−1∑
t=0

(pt(T − I)h)(pt(T − I)) (22)

= λ

N−1∑
t=0

p0(T t+1 − T t)hp0(T t+1 − T t) (23)

where the last equality follows from Eqn 10. Substituting the above in Eqn 20 and rearranging terms
yields Eqn 18.

While Eqn 18 does not yield an explicit expression for h, it is sufficient for analysing individual cases
considered in Examples 1 and 2.
Example 3. Consider the two-state Markov chain in Example 1 and the associated transition matrix
T and initial state distribution p0 = (1/2, 1/2). Using the regularization scheme in Eqn 17 and the
associated solution Eqn 18, one obtains:

h = (−γ̃, γ̃) (24)
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where:
γ̃ =

2α− 1

λ(4α2 − 4α+ 2ω + 1)
(25)

To obtain this result22, we use that T t = T for all t ≥ 1 and truncate the sum without loss of
generality at N = 1.

Like in Example 1, we observe h(s1) = h(s2) = 0 if α = 1/2 for all ω > 0 (i.e. at equilibrium). In
addition, if ω ≥ 1/2, it can be shown that h(s2)− h(s1) increases monotonously with α and takes
the largest possible value at α = 1. We therefore find that for the simple two-state Markov chain of
Example 1, the regularization in Eqn 17 indeed leads to intuitive behaviour for the respective solution
h. Now:
Example 4. Consider the four-state Markov chain with transitions s1 → s2 → s3 → s4 and the
corresponding transition matrix T , where T12 = T23 = T34 = T44 = 1, Tij = 0 for all other i, j. Set
p0 = (1, 0, 0, 0), i.e. the chain is always initialized at s1. Now, the summation over t in Eqn 18 can
be truncated w.l.o.g when N = 4, given that T t+1 = T t for all t ≥ 3. At ω = 0, one solution is:

h ∝ (−3/2,−1/2, 1/2, 3/2) (26)

Further, for all finite ω, one obtains h(s1) < h(s2) < h(s3) < h(s4), where the inequality is strict.
This is unlike Eqn 16 where h(s2) = h(s3), and consistent with the intuitive expectation that the
arrow of time must increase along irreversible transitions.

In conclusion: we find that the functional objective defined in Eqn 2 may indeed lead to analytical
solutions that are consistent with the notion of an arrow of time in certain toy Markov chains.
However, in most interesting real world environments, the transition model T is not known and or or
the number of states is infeasibly large, rendering an analytic solution intractable. In such cases, as
we see in Section 4, it is possible to parameterize h as a neural network and train the resulting model
with stochastic gradient descent to optimize the functional objective defined in Eqn 2.

B Algorithm

Algorithm 1 Training the h-Potential

Require: Environment Env, random policy π], trajectory buffer B
Require: Model hθ, regularizer T , optimizer.

1: for k = 1...M do
2: B[k, :]← (s0, ..., sN ) ∼ Env[π]] {Sample a trajectory of length N with the random policy

and write to k-th position in the buffer.}
3: end for
4: loop
5: Sample trajectory index k ∼ {1, ...,M} and time-step t ∼ {0, ..., N − 1}. {In general, one

may sample multiple k’s and t’s for a larger mini-batch.}
6: Fetch states st ← B[k, t] and st+1 ← B[k, t + 1] from buffer.
7: Compute loss as L(θ) = −[hθ(st+1)− hθ(st)].
8: if using trajectory regularizer then
9: Compute regularizer term as [hθ(st+1)− hθ(st)]2 and add to L(θ).

10: else
11: Apply the regularizer as required. If early-stopping, break out of the loop if necessary.
12: end if
13: Compute parameter gradients∇θL(θ) and update parameters with the optimizer.
14: end loop

C Experimental Details

All experiments were run on a workstation with 40 cores, 256 GB RAM and 2 nVidia GTX 1080Ti.

22Interested readers may refer to the attached SymPy computation.
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(b) Causal Noise

Figure 8: The potential difference η plotted along trajectories, where the state-space is augmented with
temporally uncorrelated (TV-) and correlated (causal) noise. The dashed vertical lines indicate time-steps where
a vase is broken. Gist: while our method is fairly robust to TV-noise, it might get distracted by causal noise.

C.1 Discrete Environments

C.1.1 2D World with Vases
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Figure 9: The h-potential along a trajectory sampled
from a random policy. Gist: The h-potential increases
step-wise along the trajectory every time an agent
(irreversibly) breaks a vase. It remains constant as the
agent (reversibly) moves about.

The environment state comprises three 7×7 binary
images (corresponding to agent, vases and goal),
and the vases appear in a different arrangement ev-
ery time the environment is reset. The probability
of sampling a vase at any given position is set to
1/2.

We use a two-layer deep and 256-unit wide ReLU
network to parameterize the h-potential. It is
trained on 4096 trajectories of length 128 for
10000 iterations of stochastic gradient descent
with Adam optimizer (learning rate: 0.0001). The
batch-size is set to 128, and we use a weight de-
cay of 0.005 to regularize the model. We use a
validation trajectory to generate the plots in Fig 9
and 3. Moreover, Fig 10 shows histograms of the
values taken by h at various time-steps along the
trajectory. We learn that h takes on larger values
(on average) as t increases.

To test the robustness of our method, we conduct experiments where the environment state is
augmented with one of: (a) a 7× 7 image with uniform-randomly sampled pixel values (TV-noise)
and (b) a 7 × 7 image where every pixel takes the value t/128, where t is the time-step23 of the
corresponding state (Causal Noise). Fig 8a and 8b plot the corresponding η = ∆h along randomly
sampled trajectories.

Given a learned arrow of time, we now present an experiment where we use it to derive a safe-
exploration penalty (in addition to the environment reward). To that end, we now consider the
situation where the agent’s policy is not random, but specialized to reach the goal state (from its
current state). For both the baseline and the safe agents, every action is rewarded with the change in
Manhattan norm of the agent’s position to that of the goal – i.e. an action that moves the agent closer
to the goal is rewarded +1, one that moves it farther away from the goal is penalized −1, and one that
keeps the distance unchanged is neither penalized nor rewarded (0). Further, every step is penalized
by −0.1 (so as to keep the trajectories short), and exceeding the available time limit (30 steps) incurs
a termination penalty (−10). In addition, the reward function of the safe agent is augmented with the
reachability, i.e. it takes the form described in Eqn 4. We use β = 4 and a transfer function σ such
that σ(η) = 0 if η < 5000 (cf. Fig 3), and 1 otherwise.

23Recall that the trajectory length is set to 128.
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(a) Probability of reaching the goal.
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(b) Number of vases broken.

Figure 11: Probability of reaching the goal and the expected number of vases broken, obtained over 100
evaluation episodes (per step). Gist: while the safety Lagrangian results in fewer vases broken, the probability of
reaching the goal state is compromised. This trade-off between safety and efficiency is expected (cf. Moldovan
and Abbeel (2012)).

The policy is parameterized by a 3-layer deep 256-unit wide (fully connected) ReLU network and
trained via Duelling Double Deep Q-Learning24 (Van Hasselt et al., 2016; Wang et al., 2015). The
discount factor is set to 0.99 and the target network is updated once every 200 iterations. For
exploration, we use a 1− ε greedy policy, where ε is decayed linearly from 1 to 0.1 in the span of
the first 10000 iterations. The replay buffer stores 10000 experiences and the batch-size used is 10.
Fig 11a shows the probability of reaching the goal (in an episode of 30 steps) over the iterations
(sample size 100), whereas Fig 11b shows the expected number of vases broken per episode (over
the same 100 episodes). Both curves are smoothed by a Savitzky-Golay filter (Savitzky and Golay,
1964) of order 3 and window-size 53 (the original, unsmoothed curves are shaded). As expected, we
find that using the safety penalty does indeed result in fewer vases broken, but also makes the task
of reaching the goal difficult (we do not ensure that the goal is reachable without breaking vases).
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Figure 10: Histogram (over trajectories) of values
taken by h at time-steps t = 0, t = 32 and t = T =
128.

C.1.2 2D World with Drying Tomatoes

The environment considered comprises a 7 × 7
2D world where each cell is initially occupied
by watered tomato plant25. The agent waters the
cell it occupies, restoring the moisture level of
the plant in the said cell to 100%. However, for
each step the agent does not water a plant, it loses
some moisture (by 2% of maximum in our exper-
iments). If a plant loses all moisture, it is consid-
ered dead and no amount of watering can resurrect
it. The state-space comprises two 7×7 images: the
first image is an indicator of the agent’s position,
whereas the pixel values of the second image quan-
tifies the amount of moisture held by the plant26

at the corresponding location.

We show that it is possible to recover an intrinsic reward signal that coincides well with one that one
might engineer. To that end, we parameterize the h-potential as a two-layer deep 256-unit wide ReLU
network and train it on 4096 trajectories (generated by a random policy) of length 128 for 10000
iterations of Adam (learning rate: 0.0001). The batch-size is set to 128 and the model is regularized
with the trajectory regularizer (λ = 0.5).

24We adapt the implementation due to Shangtong (2018).
25We draw inspiration from the tomato-watering environment described in Leike et al. (2017).
26This is a strong causal signal which may distract the model. We include it nonetheless to make the task

more challenging.
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(a) States at time t. (b) States at time t+ 1.

Figure 13: Random samples from 200 transitions that cause the largest increase in the h-potential (out of a
sample size of 8000 transitions). The orange, white, blue and green sprites correspond to a wall, the agent, a box
and a goal marker respectively. Gist: pushing boxes against the wall increases the h-potential.

Unsurprisingly, we find that h increases as the plants lose moisture. But conversely, when the agent wa-
ters a plant, it causes the h-potential to decrease by an amount that strongly correlates with the amount
of moisture the watered plant gains. This can be used to define a dense reward signal for the agent:
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Figure 12: The intrinsic reward (Eqn 27) plotted against
an engineered reward, which in this case is the amount
of moisture gained by the tomato plant the agent just
watered. Gist: the h-Potential captures useful informa-
tion about the environment, which can then be utilized
to define intrinsic rewards.

r̂t = −{η(st−1 → st)− RunningAveraget[η]}
(27)

where we use a momentum of 0.95 to evaluate
the running average.

In Fig 12, we plot for a random trajectory the
intrinsic reward r̂t against a reference reward,
which in this case is the moisture gain of the
plant the agent just watered. Further, we observe
the reward function dropping significantly at
around the 90-th iteration - this is precisely when
all plants have died. This demonstrates that the
h-potential can indeed be useful for defining
intrinsic rewards.

C.1.3 Sokoban

The environment state comprises five 10 × 10
binary images, where the pixel value at each location indicates the presence of the agent, a box, a goal,
a wall and empty space. The layout of all sprites are randomized at each environment reset, under
the constraint that the game is still solvable (Schrader, 2018). The h-potential is parameterized by a
two-layer deep and 512-unit wide network, which is trained on 4096 trajectories of length 512 for
20000 steps of Adam (learning rate: 0.0001). The batch-size is set to 256 and we use the trajectory
regularizer (λ = 0.05) to regularize our model.

C.2 Continous Environments

C.2.1 Under-damped Pendulum

Under-damped Pendulum. The environment considered simulates an under-damped pendulum,
where the state space comprises the angle27 θ and angular velocity θ̇ of the pendulum. The dynamics

27θ is commonly represented as (cos(θ), sin(θ)) instead of a scalar.
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(a) Learned h-Potential as a function of the state-space
(θ, θ̇). Overlaid are trajectories from a random policy.
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(b) Negative of the learned h-Potential as a function
of θ when θ̇ = 0.

Figure 14: Gist: the learned h-Potential takes large values around (θ, θ̇) = 0, since that is where most
trajectories terminate due to the effect of damping.

are governed by the following differential equation where τ is the (time-dependent) torque applied by
the agent and m, l, g are constants:

θ̈ =
−3g

2l
sin(θ) +

3τ

ml2
− αθ̇ (28)

We adapt the implementation in OpenAI Gym (Brockman et al., 2016) to add an extra term
αθ̇ to the dynamics to simulate friction. In our experiments, we set g = 10, m =
l = 1, α = 0.1 and the torque τ is uniformly sampled iid. from the interval [−2, 2].
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Figure 15: h-Potential averaged over 8000 trajecto-
ries, plotted against timestep t; shaded band shows the
standard deviation. Gist: as required by its objective
(Eqn 1), the h-Potential must increase in expectation
along trajectories.

The h-Potential is parameterized by a two-layer
256-unit wide ReLU network, which is trained
on 4096 trajectories of length 256 for 20000
steps of stochastic gradient descent with Adam
(learning rate: 0.0001). The batch-size is set
to 1024 and we use the trajectory regularizer
with λ = 1 to regularize the network. Fig 14a
plots the learned h-potential (trained with trajec-
tory regularizer) as a function of the state (θ, θ̇)
whereas Fig 14b shows the negative potential for
all angles θ at zero angular velocity, i.e. θ̇ = 0.
We indeed find that states in the vicinity of θ = 0
have a larger h-potential, owing to the fact that
all trajectories converge to (θ, θ̇) = 0 for large
t due to the dissipative action of friction.

C.2.2 Continuous Mountain Car

The environment28 considered is a variation of Mountain Car (Sutton and Barto, 2011), where the
state-space is a tuple (x, ẋ) of the position and velocity of a vehicle on a mountainous terrain. The
action space is the interval [−1, 1] and denotes the force f applied by the vehicle. The dynamics of
the modified environment is given by the following equation of motion:

ẍ = ζf − 0.0025 cos 3x− αẋ (29)

where ζ and α are constants set to 0.0015 and 0.1 respectively, and the velocity ẋ is clamped to
the interval [−0.07, 0.07]. Our modification is the last αẋ term to simulate friction. Further, the

28We adapt the implemetation due to Brockman et al. (2016), available here:
github.com/openai/gym/blob/master/gym/envs/classic_control/continuous_mountain_car.py
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initial state (x, ẋ) is sampled uniformly from the state space S = [−1.2, 0.6]× [−0.07, 0.07]. This
can potentially be avoided if an exploratory policy is used (instead of the random policy) to gather
trajectories, but we leave this for future work.

The h-potential is parameterized by a two-layer 256-unit wide ReLU network, which is trained on
4096 trajectories of length 256 for 20000 steps of stochastic gradient descent with Adam (learning
rate: 0.0001). The batch-size is set to 1024 and we use the trajectory regularizer with λ = 1.

C.3 Stochastic Processes

The environment state comprises two scalars, the x1 and x2 coordinates of the particle’s position x.
The potential is given by:

Ψ(x) =
x2

1

20
+
x2

2

40
(30)

corresponding to a two dimensional Ornstein-Uhlenbeck process, and
√

2β−1 is set to 0.3.
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Figure 16: Learned h-Potential as a function of position
x. Observe the qualitative similarity to the potential Ψ
defined in Eqn 30.

We train a two-layer deep, 512-unit wide net-
work on 8092 trajectories of length 64 for 20000
steps of stochastic gradient descent with Adam
(learning rate: 0.0001). The batch-size is set to
1024 and the network is regularized by weight
decay (with coefficient 0.0005). Fig 16 shows
the learned h-potential as a function of position
x. Fig 7 compares the free-energy functional
with the learnt arrow of time given by the lin-
early scaled H-functional. To obtain the linear
scaling parameters for the H , we find parame-
ters w and b such that

∑N
t=0(wH[ρ(·, t)] + b−

F [ρ(·, t)])2 is minimized (constraining w to be
positive).

19


