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Abstract
In classic papers, Zellner (1988, 2002) demonstrated that Bayesian inference could be derived
as the solution to an information theoretic functional. Below we derive a generalized form of
this functional as a variational lower bound of a predictive information bottleneck objective.
This generalized functional encompasses most modern inference procedures and suggests
novel ones.

1. Introduction

Consider a data generating process φ ∼ p(φ) from which we have some N draws that
constitute our training set, xP = {x1, x2, . . . , xN} ∼ p(x|φ). We can also imagine (potentially
infinitely many) future draws from this same process xF = {xN+1, . . . } ∼ p(x|φ). The
predictive information I(xP ; xF )1 gives a unique measure of the complexity of a data
generating process (Bialek et al., 2001).
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Figure 1: Graphical model under consideration.

The goal of learning is to capture this complexity. To perform learning, we form a global
representation of the dataset p(θ|xP ). This can be thought of as a learning algorithm, that,
given a set of observations, produces a summary statistic of the dataset that we hope is useful
for predicting future draws from the same process. This algorithm could be deterministic or
more generally, stochastic.

For example, imagine training a neural network on some data with stochastic gradient
descent. Here the training data would be xP , the test data xF and the neural network
parameters would be θ. Our training procedure implicitly samples from the distribution
p(θ|xP ).

How do we judge the utility of this learned global representation? The mutual information
I(θ; xF ) quantifies the amount of information our representation captures about future
draws.2 To maximize learning we therefore aim to maximize this quantity.

1. We use I(x; y) for the mutual information between two random variables: I(x; y) ≡ Ep(x,y)

[
log p(x,y)

p(x)p(y)

]
2. It is interesting to note that in the limit of an infinite number of future draws, I(θ; xF ) approaches
I(θ;φ). Therefore, the amount of information we have about an infinite number of future draws from
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This is, of course, only interesting if we constrain how expressive our global representation
is, for otherwise we could simply retain the full dataset. The amount of information retained
about the observed data: I(θ; xP ) is a direct measure of our representation’s complexity.
The bits a learner extracts from data provides upper bounds on generalization (Bassily et al.,
2017).

2. Predictive Information Bottleneck

Combined, these motivate the predictive information bottleneck objective, a generalized
information bottleneck (Bialek et al., 2001; Tishby et al., 2000):

max
p(θ|xP )

I(θ; xF ) s.t. I(θ; xP ) = I0. (1)

We can turn this into an unconstrained optimization problem with the use of a Lagrange
multiplier β:

max
p(θ|xP )

I(θ; xF )− (1− β)I(θ; xP ). (2)

While this objective seems wholly out of reach, we can make progress by noting that
our random variables satisfy the Markov chain: xF ← φ→ xP → θ, in which θ and xF are
conditionally independent given xP :

I(θ; xF ,xP ) = I(θ; xF ) + I(θ; xP |xF ) = I(θ; xP ) +((((((
I(θ; xF |xP ). (3)

This implies:
I(θ; xF ) = I(θ; xP )− I(θ; xP |xF ). (4)

and the equivalent unconstrained optimization problem:3

min
p(θ|xP )

I(θ; xP |xF )− βI(θ; xP ). (5)

The first term here: I(θ; xP |xF ) is the residual information between our global representation
and the dataset after we condition on full knowledge of the data generating procedure. This
is a direct measure of the inefficiency of our proposed representation.

3. Variational Predictive Information Bottleneck

Simple variational bounds (Poole et al., 2019) can be derived for this objective, just as
was done for the (local) information bottleneck objective in Alemi et al. (2016). First, we
demonstrate a variational upper bound on I(θ; xP |xF ): 4

I(θ; xP |xF ) =
〈

log p(θ|xP )
p(θ|xF )

〉
≤
〈

log p(θ|xP )
q(θ)

〉
. (6)

the process is the same as the amount of information we have about the nature and identity of the data
generating process itself.

3. A similar transformation for the (local) variational information bottleneck appeared in Fischer (2019).
4. 〈·〉 is used to denote expectations, and unless denoted otherwise with respect to the full joint density
p(θ|xP )p(xP |φ)p(φ)p(xF |φ)
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Here we upper bound the residual information by using a variational approximation to
p(θ|xF ), the marginal of our global representation over all datasets drawn from the same
data generating procedure. Any distribution q(θ) independent of xF suffices.

Next we variationally lower bound I(θ; xP ) with:

I(θ; xP ) =
〈

log p(xP |θ)
p(xP )

〉
≥ H(xP ) +

∑
i

〈log q(xi|θ)〉 . (7)

The entropy of the training data H(xP ) is a constant outside of our control that can be
ignored. Here we variationally approximate the “posterior” of our global representation with
a factorized “likelihood”:

∏
i q(xi|θ) = q(xP |θ) ∼ p(xP |θ). Notice that while p(xP |θ) will

not factorize in general, we can certainly consider a family of variational approximations
that do.

Combining these variational bounds, we generate the objective:

min
p(θ|xP )

〈
log p(θ|xP )

q(θ) − β
∑
i

log q(xi|θ)
〉
. (8)

We have thus derived, as a variational lower bound on the predictive information bottleneck,
the objective Zellner (1988) postulates (with β = 1) is satisfied for inference procedures that
optimally process information. As Knoblauch et al. (2019) demonstrates, this encompasses a
wide array of modern inference procedures, including Generalized Bayesian Inference (Bissiri
et al., 2016) and a generalized Variational Inference, dubbed Gibbs VI (Alquier et al., 2016;
Futami et al., 2017).5 Below we highlight some of these and other connections.

4. Connections

If, in Equation (8), we identity q(θ) with a fixed prior and q(x|θ) with a fixed likelihood
of a generative model, optimizing this objective for p(θ|xP ) in the space of all probability
densities gives the generalized Boltzmann distribution (Jaynes, 1957):

p(θ|xP ) = q(θ)
[∏
i

q(xi|θ)
]β
/Z, (9)

where Z is the partition function. 6 This is a generalized form of Bayesian Inference called
the power likelihood (Holmes and Walker, 2017; Royall and Tsou, 2003). Here the inverse
temperature β acts as a Lagrange multiplier controlling the trade-off between the amount
of information we retain about our observed data (I(θ; xP )) and how much predictive
information we capture (I(θ; xF )). As β →∞ (temperature goes to zero), we recover the
maximum likelihood solution. At β = 1 (temperature = 1) we recover ordinary Bayesian
inference. As β → 0 (temperature goes to infinity), we recover just prior predictive inference
that ignores the data entirely. These limits are summarized in Table 1.

5. To incorporate the Generalized VI (Knoblauch et al., 2019) with divergence measures other than KL, we
need only replace our mutual informations (which are KL based) with their corresponding generalizations.

6. Z ≡
∫
dθ q(θ)

[∏
i
q(xi|θ)

]β
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Limit Inference Equivalent Objective p(θ|xP )
β Generalized Bayes max I(θ; xF )− (1− β)I(θ; xP ) ∝ q(θ)q(xP |θ)β

β → 0 Prior Predictive min I(θ; xP |xF ) q(θ)
β → 1 Bayesian max I(θ; xF ) ∝ q(θ)q(xP |θ)
β →∞ Maximum Likelihood max I(θ; xP ) arg minθ q(xP |θ)

Table 1: Power Bayes can be recovered as a variational lower bound on the predictive
information bottleneck objective (Equation (5)).

More generally, notice that in Equation (8) the densities q(x|θ) and q(θ) are not literally
the likelihood and prior of a generative model, they are variational approximations that we
have complete freedom to specify. This allows us to describe other more generalized forms of
Bayesian inference such as Divergence Bayes or the full Generalized Bayes (Knoblauch et al.,
2019; Bissiri et al., 2016) provided we can interpret the chosen loss function as a conditional
distribution.

If we limit the domain of p(θ|xP ) to a restricted family of parametric distributions, we
immediately recover not only standard variational inference, but a broad generalization
known as Gibbs Variational Inference (Knoblauch et al., 2019; Alquier et al., 2016; Futami
et al., 2017).

Furthermore, nothing prevents us from making q(x|θ) or q(θ) themselves parametric and
simultaneously optimizing those. Optimizing the prior with a fixed likelihood, unconstrained
p(θ|xP ), and β = 1 the objective mirrors Empirical Bayesian (Maritz and Lwin, 2018)
approaches, including the notion of reference priors (Mattingly et al., 2018; Berger et al.,
2009). Alternatively, optimizing a parametric likelihood with a parametric representation
p(θ|xP ), fixed prior, and β = 1 equates to a Neural Process (Garnelo et al., 2018).

Consider next data augmentation, where we have some stochastic process that modifies
our data with implicit conditional density t(x′|x). If the augmentation procedure is centered
about zero so that 〈x′〉t(x′|x) = x and our chosen likelihood function is concave, then we
have:

log q(x|θ) = log q(〈x′〉x′∼t(x′|x)|θ) ≥
〈
log q(x′|θ)

〉
x′∼t(x′|x) , (10)

which maintains our bound. For example, for an exponential family likelihood and any
centered augmentation procedure (like additive mean zero noise), doing generalized Bayesian
inference on an augmented dataset is also a lower bound on the predictive information
bottleneck objective.

5. Conclusion and Future Work

We have shown that a wide range of existing inference techniques are variational lower
bounds on a single predictive information bottleneck objective.

This connection highlights the drawbacks of these traditional forms of inference. In
all cases considered in the previous section, we made two choices that loosened our
variational bounds. First, we approximated p(xP |θ), with a factorized approximation
q(xP |θ) =

∏
i q(xi|θ). Second, we approximated the future conditional marginal p(θ|xF ) =
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∫
dxP p(θ|xP )p(xP |xF ) as an unconditional “prior”. Neither of these approximations is

necessary.
For example, consider the following tighter “prior”:

q(θ|xF ) ∼
∫
dxP

′ p(θ|xP
′)q(xP

′|xF ). (11)

Here we reuse a tractable global representation p(θ|xP ) and instead create a variational
approximation to the density of alternative datasets drawn from the same process: q(xP

′|xF ).
We believe this information-theoretic, representation-first perspective on learning has

the potential to motivate new and better forms of inference. 7
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