Under review as a conference paper at ICLR 2020

POTENTIAL FLOW GENERATOR WITH Lo OPTIMAL
TRANSPORT REGULARITY FOR GENERATIVE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a potential flow generator with L, optimal transport regularity, which
can be easily integrated into a wide range of generative models including different
versions of GANs and normalizing flow models. With only a slight augmentation
to the original generator loss functions, our generator not only tries to transport the
input distribution to the target one, but also aims to find the one with minimum L,
transport cost. We show the effectiveness of our method in several 2D problems,
and illustrate the concept of “proximity” due to the Ly optimal transport regularity.
Subsequently, we demonstrate the effectiveness of the potential flow generator in
image translation tasks with unpaired training data from the MNIST dataset and
the CelebA dataset with a comparison against vanilla WGAN-GP and CycleGAN.

1 INTRODUCTION

Many of the generative models, for example, generative adversarial networks (GANs) (Goodfellow
et al.l 2014} |Arjovsky et al,2017; |Salimans et al., 2018)) and normalizing flow models (Rezende &
Mohamed, 2015} |Kingma & Dhariwal, [2018; (Chen et al.,|2018), aim to find a generator that could
map the input distribution to the target distribution.

In many cases, especially when the input dis-
tributions are purely noises, the specific maps
between input and output are of little importance
as long as the generated distributions match the
target ones. However, in other cases like image-
to-image translations, where both input and tar-
get distributions are distributions of images, the
generators are required to have additional regu-
larity such that the input individuals are mapped
to the “corresponding” outputs in some sense.
If paired input-output samples are provided, L,
penalty could be hybridized into generators loss
functions to encourage the output individuals to
fit the ground truth (Isola et al.,|2017). For the
cases without paired data, a popular approach
is to introduce another generator and encourage
the two generators to be the inverse maps of
each other, as in CycleGAN (Zhu et al.| 2017),
DualGAN (Y1 et al.,|2017) and DiscoGAN (Kim
et al.l2017), etc. However, such a pair of gener-
ators is not unique and lacks clear mathematical
interpretation about its effectiveness.

Generator without Generator with
L, Optimal Transport L, Optimal Transport
Regularity Regularity

Figure 1: Schematic of generator without and with
L optimal transport regularity.

In this paper we introduce a special generator, i.e., the potential flow generator, with Ly optimal
transport regularity. By applying such generator, not only are we trying to find a map from the
input distribution to the target one, but we also aim to find the optimal transport map that minimizes
the squared Euclidean transport distance. In Figure [[| we provide a schematic comparison between
generators with and without optimal transport regularity. While both generators provide a scheme to
map from the input distribution to the output distribution, the total squared transport distances in the
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left generator is larger than that in the right generator. Note that the generator with optimal transport
regularity has the characteristic of “proximity”’in that the inputs tend to be mapped to nearby outputs.
As we will show later, this “proximity” characteristic of Ly optimal transport regularity could be
utilized in image translation tasks. Compared with other approaches like CycleGAN, the Lo optimal
transport regularity has a much clearer mathematical interpretation.

There have been other approaches to learn the optimal transport map in generative models. For
example, |Seguy et al.|(2017) proposed to first learn the regularized optimal transport plan and then
the optimal transport map, based on the dual form of regularized optimal transport problem. Also,
Yang & Uhler|(2018)) proposed to learn the unbalanced optimal transport plan in an adversarial way
derived from a convex conjugate representation of divergences. In the W2GAN model proposed by
Leygonie et al.|(2019), the discriminator’s objective is the 2-Wasserstein metric so that the generator
is supposed to recover the Lo optimal transport map. All the above approaches need to introduce,
and are limited to, specific loss functions to train the generators.

Our proposed potential flow generator takes a different approach in that with only a slight augmenta-
tion to the original generator loss functions, our generator could be integrated into a wide range of
generative models with various generator loss functions, including different versions of GANs and
normalizing flow models. This simple modification makes our method easy to adopt on various tasks
considering the existing rich literature and the future developments of generative models.

In Section 2| we present a formal definition of optimal transport map and the motivation to apply Lo
optimal transport regularity to generators. In Section [3|we give a detailed formulation of the potential
flow generator and the augmentation to the original loss functions. Results are then provided in
Section[dl We include the discussion and conclusions in Section

2 GENERATIVE MODELS AND OPTIMAL TRANSPORT MAP

First, we introduce the concept of push forward, which will be used extensively in the paper.

Definition 1 Given two Polish space X and Y, B(X) and B(Y) the Borel o-algebra on X and Y, and
P(X),P(Y) the set of probability measures on B(X) and B(Y). Let f : X — Y be a Borel map, and
w € P(X). We define fuu € P(Y), the push forward of p through f, by

Fan(A) = u(f~1(A)), VA € B(Y). (1

With the concept of push forward, we can formulate the goal of GANs and normalizing flow models
as to train the generator G such that Gxp is equal to or at least close to v in some sense, where
1 and v are the input and target distribution, respectively. Usually, the loss functions for training
the generators are metrics of closeness that vary for different models. For example, in continuous
normalizing flows (Chen et al., |2018), such metric of closeness is Dy, (Gxpl||v) or Dk (v||Gap).
In Wasserstein GANs (WGANSs) (Arjovsky et al., [2017), the metric of closeness is the Wasserstein-1
distance between G4 and v, which is estimated in a variational form with the discriminator neural
network. As a result, the generator and discriminator neural networks are trained in an adversarial
way:

UE" b i Mipschitz Eony D(@) = B2y D(G(2)), @
where D is the discriminator neural network and the Lipschitz constraint could be imposed via the
gradient penalty (Gulrajani et al.| 2017), spectral normalization (Miyato et al., 2018), etc.

Now we introduce the concept of optimal transport map as follows:
Definition 2 Given a cost function ¢ : X x Y = R, and pp € P(X), v € P(Y), we let T be the set of

all transport maps from i to v, i.e. T :={f : fupu = v}. Monge’s optimal transport problem is to
minimize the cost functional C(f) among T, where

C(f) = EEN#C(IB, f(.’I})) 3)

and the minimizer f* € T is called the optimal transport map.

In this paper, we are concerned mostly with the case where X = Y = R with L transport cost, i.e.,
the transport c(x, y) = ||z — y||?>. We assume that ; and v are absolute continuous w.r.t. Lebesgue
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measure, i.e. they have probability density functions. In general, Monge’s problem could be ill-posed
in that T could be empty set or there is no minimizer in T. Also, the optimal transport map could be
non-unique. However, for the special case we consider, there exists a unique solution to Monge’s
problem (Brenier, |1991}|Gangbo & McCannl [1996).

Informally speaking, with Ly transport cost the optimal transport map has the characteristic of
“proximity”, i.e. the inputs tend to be mapped to nearby outputs. In image translation tasks, such
“proximity” characteristic would be helpful if we could properly embed the images into Euclidean
space such that our preferred input-output pairs are close to each other. A similar idea is also proposed
in |Yang & Uhler| (2018) for unbalanced optimal transport. Apart from image translations, the Lo
optimal transport problem is important in many other aspects. For example, it is closely related to
gradient flow (Ambrosio et al., [2008)), Fokker-Planck equations (Santambrogio, 2017), flow in porous
medium (Otto} |1997)), etc.

3 POTENTIAL FLOW GENERATOR

3.1 POTENTIAL FLOW FORMULATION OF OPTIMAL TRANSPORT MAP

We assume that p and v have probability density p,, and p,, respectively, and consider all smooth
enough density fields p(¢, ) and velocity fields v(t, x), where ¢ € [0, T'], subject to the continuity
equation as well as initial and final conditions
dp+V - (pv) =0,
p(0,) = pu, p(T;") = pu.
The above equation states that such velocity field will induce a transport map: we can construct an
ordinary differential equation (ODE)

“4)

i v(t,u), (5)

and the map from the initial point to the final point gives the transport map from p to v.

As is proposed by Benamou & Brenier (2000), for the transport cost function ¢(z,y) = ||z — y||%,
the minimal transport cost is equal to the infimum of

T
T/ / p(t, x)|v(t, ) |*dedt (6)
Rrd Jo
among all (p, v) satisfying equation . The optimality condition is given by
1
v(t,x) = Vo(t,z), O+ 5|v¢|2 =0. (7)

In other words, the optimal velocity field is actually induced from a flow with time-dependent
potential ¢(¢, x). The use of this formulation is well-known in optimal transport community (Trigila
& Tabakl [2016} [Peyré et al.,2019). In this paper we integrate this formulation in the deep generative
models. Instead of solving Monge’s problem and find the exact Ly optimal transport map, which is
unrealistic due to the limited families of neural network functions as well as the errors arising from
training the neural networks, our goal is to regularize the generators in a wide range of generative
models, so that the generator maps could approximate the L, optimal transport map at least in low
dimensional problems. The maps would also be endowed with the characteristics of “proximity” so
that we can apply them to engineering problems.

3.2 POTENTIAL FLOW GENERATOR

The potential ¢(t, x) is the key function to estimate, since the velocity field could be obtained by
taking the gradient of the potential and consequently the transport map could be obtained from
Equation[5] There are two strategies to use neural networks to represent ¢. One can take advantage of
the fact that the time-dependent potential field ¢ is actually uniquely determined by its initial condition
from Equation |7} and use a neural network to represent the initial condition of ¢, i.e. ¢(0, x), while
approximating ¢(¢, ) via time discretization schemes. Alternatively, one can use a neural network to
represent ¢(t, x) directly and later apply the PDE regularity for ¢(¢, ) in Equation |7, We name the
generators defined in the above two approaches as discrete potential flow generator and continuous
potential flow generator, respectively, and give a detailed formulation as follows.
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3.2.1 DISCRETE POTENTIAL FLOW GENERATOR

In the discrete potential flow generator, we use the neural network ¢(x) : R? — R to represent
the initial condition of ¢(t, x), i.e. ¢(0,x). The potential field ¢(t, ) as well as the velocity field
v(t, x) could then be approximated by different time discretization schemes. As an example, here
we use the first-order forward Eular scheme for the simplicity of implementation. To be specific,
suppose the time discretization step is At and the number of total steps is n with nAt = T, then for
i =0,1...n, $(iAt, x) could be represented by ¢;(x), where

Pit1(m) = &i(m)_%v&i(m)ﬁ, fori=0,1,2...,n —1. (8)
Consequently, the velocity field v(iAt, ) could be represented by 9; (), where
Oi(x) = V(x), fori=0,1..n. )
Finally, we can build the transport map from Equation 3}

ug(x) = @,

1
g1 (@) = ity () + At (i (@), fori = 0,1,2.m — 1, (10)

with G(-) = 4,(-) be our transport map.

The discrete potential flow generator has built-in optimal transport regularity since the optimal
condition (Equation[7)) is encoded in the time discretization (Equation[§). However, such discretization
also introduces nested gradients, which dramatically increases the computational cost when the
number of total steps n is increased. In our tests, we found that even n = 5 is almost intractable.

3.2.2 CONTINUOUS POTENTIAL FLOW GENERATOR

In the continuous potential flow generator, we use the neural network J)(t, z) : RxRY - Rto
represent ¢(t, ). Consequently, the velocity field v(t, x) can be represented by (¢, ), where

o(t,x) = Vo(t, z). (11)

With the velocity field we could estimate the transport map by solving the ODE (Equation [5) using
any numerical ODE solver. As an example, we can use the first-order forward Eular scheme, i.e.

u(0,x) =,

a((i + DAL @) = (AL 2)+ALB(IAL (AL @), fori = 0,1,2.m— 1, 02

with G(-) = @(T, ) be the transport map, where At is the time discretization step and n is the
number of total steps with nAt =T

In the continuous potential flow generator, increasing the number of total steps would not introduce
high order differentiations, therefore we could have large n, for a better precision of the ODE solver.
Different from the discrete potential flow generator, the optimal condition (Equation[7) is not encoded
in the continuous potential flow generator, therefore we need to penalize Equation [7]in the loss
function, as we will discuss in the next subsection.

One may come up with another strategy of imposing the Lo optimal transport regularity: to use a
vanilla generator, which is a neural network directly mapping from inputs to outputs, and penalize
the Lo transport cost, i.e., the loss function is

Lvanilla = Loriginal + QEQ:NHHG(-'B) - mHza (13)

where L, ;gina s the original loss function for the generator, and « is the weight for the transport
penalty. We emphasize that such strategy is much inferior to penalizing Equation[/|in the continuous
potential flow generator. When training the vanilla generator with Lo transport penalty, no matter
how we weight the Lo transport cost penalty, we always have to make a trade off between “matching
the generated distribution with the target one” and “reducing the transport cost” since there is always
a conflict between them, and consequently G'x 1 will be biased towards u. On the other hand, there is
no conflict between matching the distributions and penalizing Equation [7]in the continuous potential
flow generator. As a consequence, the continuous potential flow generator is robust with respect to
different weights for the PDE penalty. We will show this in Section 4]
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3.3 TRAINING THE POTENTIAL FLOW GENERATOR

While the optimal condition (Equation [/)) has been considered in the above two generators, the
constraints of initial and final conditions have so far been neglected. However, the constraint of initial
and final conditions provides the principle to train the neural network: we need to tune the parameter
in the neural network ¢ so that G4 matches v. This could be done in the fashion of GANs or
normalizing flow models.

3.3.1 LossIN GAN MODELS

For the discrete potential flow generator, since the optimal transport regularity is already built in, the
loss for training G is simply the GAN loss for the generator, i.e.

Lp-prc = Lgan, (14
where Lg an actually depends on the specific version of GANs. For example, if we use WGAN-GP,
then Lgany = —E,~,D(G(z)), where D is the discriminator neural network.

For the continuous potential flow generator, as mentioned above, we also need to make qg satisify
Equation [/| for the optimal transport regularity. Inspired by the applications of neural networks
in solving forward and backward problems of PDEs (Lagaris et al., [1998; |Raissi et al., [2017azbj
Sirignano & Spiliopoulos|, 2018), we penalize the squared residual of the PDE on the so-called
“residual” points. In particular, the loss for continuous potential flow generator would be
N
1 ~ 1,_+~ 979

Le-pra = Lean + A ;[8@(% x;) + §|V¢(fz’, z;) ], (15)
where {(¢;,x;)}¥, are the residual points for estimating the residual of the PDE (Equation , and A
is the weight for the PDE penalty. In this paper we set them as the points on “trajectories” of input
samples, i.e.

{(tlﬁwi)}ﬁl = U U {(iAt,fL(iAt,iL'j))}, (16)
i=0z;€B
where B is the set of batch samples from p. Note that the coordinates of the residual points involve u,
but this should not be taken into consideration when calculating the gradient of the loss function with
respect to the generator parameters.

We point out that the residual points should cover the whole spatial-temporal domain. Theoretically,
only penalizing the squared residual of the PDE on “trajectories” could lead to failure in approximating
the Lo optimal transport map. However, in our numerical experiments, this flawed sampling strategy
still works. As an improvement, in each training iteration we can perturb the trajectory points with
Gaussian noise in space and uniform noise in time as residual points, so that in principle they are
sampled from the whole spatial-temporal domain.

3.3.2 Lo0SS IN NORMALIZING FLOw MODELS

Our continuous potential flow generator could be viewed as a further development of Neural ODE
(Chen et al.| |2018)) applied to generative models, i.e. the continuous normalizing flow. The difference
mainly lies in that we set the velocity as the gradient of a time-dependent potential function, and
an augmented PDE loss is required for the generator. While both density matching and maximum
likelihood training could be applied, here we take the latter as an example: we assume that the density
of 41 and samples from v are available, and we maximize E, ., [logpc.. . (y)], where pa,, ,, is the
density of G . Then, the loss for the continuous potential flow generator would be:

N
1 ~ 1,_ -~
Lc_prg = —Eyullogpa, . (y)] + )\N ;[@WU%J + §|V¢(ti,wi)|2]27 (17)

where as in the GAN model, {(¢;,x;)}¥; are the residual points for estimating the residual of PDE
(Equation 7), and X is the weight for the PDE penalty. E,, [log pg.,.(y)] could be estimated via the
approach introduced in (Chen et al.|(2018) and we give a detailed description in Appendix

The discrete potential flow cannot be trivially applied in normalizing flow models since we found that
the time step size is too large to calculate the density accurately.
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4 RESULTS

4.1 2D PROBLEMS

In this subsection, we apply the potential flow generators to several two-dimensional problems.
We mainly study the following two problems where we know analytical solutions for the optimal
transport maps. In problem 1 we assume that both p and v are Gaussian distributions with p =
N([0;0],]0.25,0;0,1]) and v = N([0; 0], [1, 0; 0, 0.25]). In this case the optimal transport map is
f((z,y)) = (22,0.5y). In problem 2 we assume that ; and v are concentrated on concentric rings.
In polar coordinates, suppose y has (r, 6) uniformly distributed on [0.5, 1] x [0, 27), while v has (r, 6)
uniformly distributed on [2, 2.5] x [0, 27), where 7 and 6 are radius and angular, respectively. In this
case the optimal transport map is f((r, #)) = (r + 1.5, 6) in polar coordinates. We present the proofs
in Appendix [A] Samples from p and v as well as the optimal transport map in both problems are
illustrated in Figure[2] We prepared 40000 samples for the input distribution and target distribution in
each problem as training data for Section[d.T.T]and {.1.2] and 1000 samples for Section d.1.3]

Samples of y and v Vanilla, Weight = 0.1 Vanilla, Weight = 0.01 Samples of y and v Vanilla, Weight = 0.1 Vanilla, Weight = 0.01
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Figure 2: Comparison of different methods: vanilla generator with Lo transport cost penalty, discrete
potential flow generator (D-PFG), continuous potential flow generator (C-PFG), and CycleGAN in
problem 1 (left) and 2 (right). The red and blue arrows represent the map of generators, the black
arrows represent the analytical optimal transport map.

4.1.1 VANILLA GENERATOR VERSUS POTENTIAL FLOW GENERATOR

For the above two problems we compare the following methods: (a) vanilla generator with Lo
transport cost penalty, i.e., using the loss function in Equation @ with GAN loss as Loy iginat» (b)
discrete potential flow generator, and (c) continuous potential flow generator with PDE penalty. For
the vanilla generator and the continuous potential flow generator, we test different weights for the
penalty in order to compare the influence of penalty weights in both generators. As for the GAN loss
for generators we use the sliced Wasserstein distanceﬂ due to its relatively low computational cost,
robustness, and clear mathematical interpretation in low dimensional problems (Deshpande et al.}
2018). In Figure 2] we illustrate the maps of different generators. A more systematic and quantitative
comparison from three independent runs for each case is provided in Table[T] where the best results
are marked as bold. The statistics come from 100,000 testing data.

IStrictly speaking, there is no “adversarial” training when we use sliced Wasserstein loss since the distance is
estimated explicitly rather than represented by an other neural network. However, the idea of computing the
distance between fake data and real data coincides with other GANs, especially WGANSs. Therefore, in this
paper we view the sliced Wasserstein distance as a special version of GAN loss.
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Table 1: Comparison between different generators on two problems

Problem 1 Problem 2

Std in x-axis  Std in y-axis Error of map | Mean of norm  Error of map
Reference 1.000 0.500 2.250
Vanilla («=0.1) | 0.919£0.004 0.5924+0.003 0.108+£0.002 | 2.107+0.002  0.146£0.003
Vanilla («=0.01) | 0.985£0.005 0.499+0.006 0.439+0.587 | 2.227+£0.004 0.973+1.319
Vanilla («=0.001) | 0.992+0.009 0.4934+0.001 0.462+0.593 | 2.2434+0.002  1.000£1.311
D-PFG 0.9934+0.001 0.498+0.002 0.018+0.006 | Fail sometimes
C-PFG (A=10.0) |0.991+£0.001 0.502+0.001 0.018+0.006 | 2.243£0.001  0.024-£0.004
C-PFG (A\=1.0) 0.99240.001 0.499+0.002 0.019£0.007 | 2.245+0.000  0.0294-0.002
C-PFG (A\=0.1) 0.9904+0.002 0.503+0.003 0.025+0.008 | 2.2454+0.001  0.031+0.004

As we already mentioned, vanilla generators with Ly transport penalty would make G4 biased
towards p to reduce the transport cost from g to G4 . This is clearly shown in both problems with
the penalty weight o = 0.1. In fact, we observed more significant biases with larger penalty weights.
For the cases with smaller penalty weights a = 0.01,0.001, in some of the runs, while G4 u are
close to v, the maps of generators are far from the optimal ones, which shows that the L, transport
penalty cannot provide sufficient regularity if the penalty weight is too small. These numerical results
are consistent with our earlier discussion about the intrinsic limitation of the Ly transport penalty.

On the other hand, the potential flow generators give better matching between G4 1 and v, as well
as smaller errors between the estimated transport maps and the analytical optimal transport maps.
Notably, in both problems the continuous potential flow generators give good results with a wide
range of PDE penalty weights ranging from 0.1 to 10, which shows the superiority of PDE penalty in
the continuous potential flow generators compared with the transport penalty in vanilla generators. We
also report that while in the first problem the discrete potential flow generator achieves a comparable
result with the continuous potential flow generators, in the second problem we encountered “NAN"
problems during training of the discrete potential flow generator in some of the runs. This indicates
that the discrete potential flow generator is not as robust as the continuous one, which could be
attributed to the high order differentiations and small total time steps n in the discrete potential flow
generators.

4.1.2 CYCLEGAN VERSUS POTENTIAL FLOW GENERATOR

We also apply CycleGAN on the above two problems, with different random seeds. Here, we use
feedforward networks as generators and discriminators, with WGAN-GP for the GAN loss function,
and L, loss for cycle-consistency loss with weight 5. In Figure 2] we illustrate the maps of G (red
arrows) and F' (blue arrows), i.e. the two generators in CycleGAN. The red and blue arrows overlap
with opposite directions, which indicates that G and F are approximately the inverse map of each
other, as we expected from the cycle-consistency loss. However, the maps are totally different in
the three runs with different random seeds, which agrees with our discussion in Section E] that the
generator pair in CycleGAN is not unique. Moreover, the generator maps are less “regular’” than
the maps from the potential flow generator. Specifically, we can hardly interpret the generator maps
given by CycleGAN.

4.1.3 DISCRETE REGULARIZED OPTIMAL TRANSPORT SOLVER VERSUS POTENTIAL FLOW
GENERATOR

Finally, we compare the continuous potential flow generator in SWG and WGAN-GP with the discrete
regularized optimal transport solvexE] introduced by [Seguy et al.|(2017)) on the above two problems.
The results of the output distributions, as well as the errors between estimated transport maps and the

>We used the code from https://github.com/vivienseguy/Large-Scale-OT, with the author’s permission. All
the setups are kept as default, except the training data and batch size. Here we use the same training dataset of
size 1000 for all the methods, which is of the same magnitude as their original training dataset in the test code.
Their default batch size is 50. Note that their solver is actually looking for the regularized optimal transport, but
when the weight for regularization is small, e.g. 0.02 in their code, we expect the results to be close to the exact
optimal transport.
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Table 2: Comparison between discrete regularized OT solver and C-PFG on two problems

Problem 1 Problem 2
Std in x-axis Std in y-axis Error of map | Mean of norm Error of map

Reference 1.000 0.500 2.250

RegOT, bs=50 0.908 0.444 0.105 2.185 0.169
C-PFG, bs=50, SWG 0.921 0.600 0.117 2.119 0.158
C-PFG, bs=50, WGAN 1.017 0.519 0.102 2.201 0.257
RegOT, bs=1000 Fail Fail

C-PFG, bs=1000, SWG 1.019 0.509 0.079 2.237 0.116
C-PFG, bs=1000, WGAN 1.022 0.502 0.097 2.239 0.129

analytical optimal transport maps are shown in Table [2] where the best results for different batch size
setups are marked as bold. The statistics come from 100,000 testing data.

We first set the batch size as 50; in this case, the errors of maps are similar for all three methods, while
the output distributions of the continuous potential flow generator in WGAN-GP match the best with
the target ones. As is well known, the gradients of the sample Wasserstein loss are biased (Bellemare
et al.}2017), thus the output distributions are biased for GANs based on the Wasserstein loss. This
problem could be serious when the batch size is small. Therefore, we increased the batch size to
1000. In this case, we encounterred “NAN” problems when learning the barycentric mapping in the
discrete regularized OT solver. SWG and WGAN-GP with continuous potential flow generators are
stable, and we can see an improvement in the output distributions and error of maps, as we expected.

4.1.4 MORE PROBLEMS IN GAN MODEL AND NORMALIZING FLOW MODEL
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Figure 3: Potential flow generator in (a) WGAN-GP and (b) continuous normalizing flow for different
problems. Each column shows the setup and results of one problem. The top row shows the samples
or the unnormalized density functions of y (purple) and v (orange), the bottom row shows the map
estimated by potential flow generator G and samples of G4 .

Apart from the previous two problems, we also apply WGAN-GP and continuous normalizing flow
models with continuous potential flow generators to several more complicated distributions. The
results are illustrated in Figure E} We can see the match between G4 1 and v in each of the problems,
as well as that the samples of i tend to be mapped to nearby positions. This shows the effectiveness
of the continuous potential flow generator in various generative models, as well as the characteristics
of “proximity” in the potential flow generator maps due to the Lo optimal transport regularity.

4.2 IMAGE TRANSLATION TASKS

In this section, we aim to show the capability of continuous potential flow generator in dealing with
high dimensional problems, and also to show its advantage in image translations tasks with unpaired
training data. We use WGAN-GP for the GAN loss. Before feeding the images into the generators,
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we embed them into a Euclidean space, where the Lo distances between embedding vectors should
quantify the similarities between images. In this paper we apply the principal component analysis
(PCA) (Jolliffel 2011)), a simple but highly interpretable approach to conduct the image embedding.

4.2.1
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THE MNIST DATASET

Figure 4: Potential flow generator on the MNIST.
In each raw, the top images are the inputs, while
the bottom images are the corresponding outputs.

should be close in the L, distance.

4.2.2 THE CELEBA DATASET
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We firstly test the problem of translation be-
tween the MNIST images (LeCun et all,[2010).
We divide the MNIST training dataset into two
clusters: (a) images of digits O to 4, and (b) im-
ages of digits 5 to 9. We view the two clusters
of images as samples of 1 and v, respectively,
i.e., we want to find the optimal transport map
from images of digits O to 4 to images of digits
5 to 9. The dimensionality of Euclidean space,
i.e. the total components in PCA, is set as 100.

In Figure [ we randomly pick images from the
test dataset and show the corresponding inputs
and outputs (more images in Appendix [D). As
we can see, the potential flow generator tends to
translate images of digit O to digit 6, digit 1 to
digit 7, digit 3 to digit 5 or 8, and digit 4 to digit
9. This is consistent with our previous discus-
sion about the characteristics of “proximity” in
that the input digits and output digits “look sim-
ilar”, and the corresponding embedding vectors

Figure 5: Comparison between our method, vanilla WGAN-GP, CycleGAN with WGAN-GP as
GAN loss and L; or Ly loss as cycle-consistency loss, as well as official CycleGAN. The first two
rows are the original images and their projections on the 700-dimensional Euclidean space induced
by PCA, which are similar. The next five rows are the corresponding outputs. The last three rows are
the reconstructed images from different CycleGANSs.
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In this section we test the translation task between the CelebA images (Liu et al.|[2015]). We randomly
pick 60000 images from the CelebA training dataset and divide them into two clusters: (a) images
with attribute “smiling” labeled as false, and (b) images with attribute “smiling” labeled as true. The
images are cropped so that only faces remain on the images. We view the two clusters as samples of
1 and v, respectively. The total number of components in PCA is set to 700. Note that our goal is to
generate images of smiling faces belonging to the same people as in input images. The difficulty lies
in that the training data are unpaired and actually we do not have the ground truth as a reference.

We compare our method against vanilla WGAN-GP, and CycleGAN with WGAN-GP for GAN
loss. In CycleGAN we use L; or Lo loss as cycle-consistency loss, with weight = 10 as in|Zhu et al.
(2017). To make a fair comparison, for each generator and discriminator, we use a feedforward neural
network (FNN) with the same size of hidden layers (5 x 256). We also test the official CycleGANE]
on this problem, where we feed the cropped face images (with resizing but without random jitter
cropping) instead of embedding vectors into the model. The results of images randomly picked from
the test dataset are shown in Figure 3}

For most of the images, our method could successfully translate the no-smiling faces to smiling faces
belonging to the same people. Some of the output images are blurred, since it is difficult to learn the
high order modes of PCA with FNN. Vanilla WGAN-GP and CycleGAN with FNN totally failed, in
that the input and output images come from different people. This comparison clearly showed the
necessity of additional regularity for the generators in translation tasks with only unpaired data, and
that GAN loss + cycle-consistency loss cannot provide sufficient regularity.

The official CycleGAN is decent in performance, generating images less blurred than our method,
but failed to change the countenance for some images. Note that the number of parameters in official
CycleGAN is about 30 times more than that in our method, and the total training time is more than
two times of our method on a single NVIDIA Tesla V100 GPU.

5 DISCUSSION AND CONCLUSIONS

In this paper we propose potential flow generators with L, optimal transport regularity as plug-and-
play generator modules that could be easiy integrated in a wide range of generative models. In
particular, we propose two versions: the discrete one and the continuous one. For the discrete version,
the Lo optimal transport regularity is directly encoded in, while for the continuous version we only
need a slight augmentation to the original generator loss functions to impose the Lo optimal transport
regularity.

We firstly show that the potential flow generators are able to approximate the Lo optimal transport
maps in 2D problems. The continuous potential flow generator outperforms the discrete one in
robustness. The continuous potential flow generator is also applied to WGAN-GP and continuous
normalizing flow models, where we illustrate the characteristic of “proximity” for the potential flow
generator due to the Ly optimal transport regularity. Consequently, we show the effectiveness of
our method in image translation tasks using unpaired training data from the MNIST dataset and the
CelebA dataset. We can see that our method significantly outperforms the vanilla WGAN-GP and
CycleGAN using FNN with the same size of hidden layers.

We think that the results of our method in translation tasks are impressive considering that we
only use PCA, a linear embedding method, with only feedforward neural networks. Such a naive
strategy actually leads to the blurred patterns in the output images, which is also the case (even more
severe) for vanilla WGAN-GP and CycleGAN using the same strategy. A possible improvement is
to integrate the potential flow generator with other embedding techniques like autoencoders with
convolutional neural networks. Apart from image-to-image translations, it is also possible to apply
the potential flow generator to other translation tasks, if the translation objects could be properly
embedded into Euclidean space. Moreover, it was perceived that the training of ODE-based model is
slow, but the training of our method could be accelerated by applying methods related to optimal
transport, e.g. the Wasserstein natural gradient method (Tong Lin et al., 2018} [Li & Montufar, 2018).
We leave these possible improvements to future work.

3We used the code from https://www.tensorflow.org/tutorials/generative/cyclegan. The size of training dataset
is reduced to 1000 for official CycleGAN, which is similar to the horse-to-zebra dataset. The number of total
epochs is set back to 200 as in the original CycleGAN paper.
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A PROOF OF THE OPTIMAL MAPS IN SECTION

In problem 1, for Gaussian distributions p and v with mean m; and m., as well as covariance
matrices ¥ and 3o, from|Gelbrich| (1990) we know that the minimum transport cost from p to v
with cost function ¢(z,y) = ||z — y||* is

Imy — ma||? + Tr(S + 3 — 2(81/2%,321/%)1/2), (18)

which is known as the squared Wasserstein-2 distance between two Gaussian distributions. In
particular, the minimum transport cost is 0.5 in our problem.

For the map f((x,y)) = (2x,0.5y), f4u is Gaussian since f is linear. By checking the mean and
covariance we have fup = v. Also, the transport map of f is

Epmn(0,0.25) (22 — ) 4+ Eyopnr(0,1)(0.5y — y)? = 0.25 + 0.25 = 0.5 (19)

which is exactly the minimum transport cost, thus f is the optimal transport map. We complete the
proof of the optimal transport map in problem 1.

In problem 2, denote X = [0.5,1], Y = [2,2.5], O = [0,27), and m; = U(X), ma = U(Y),
mg = U(O), where we use U(A) to represent the uniform probability measure on set A.

For f((r,0)) = (r +1.5,0), p = UX) x U(O), v = U(Y) x U(O), we have fup = v. For any
transport map from p to v, denote as g((r,6)) = (g,(r,0), go(r,0)) in polar coordinates, we only
need to show that the transport cost of g is no less than the cost of f.

Let A((r,0)) = (g,(r,0),0), then the transport cost of g is no less than the cost of A since the
transport cost is reduced for any point (r, 9)[%])

Actually we could view g,(r, #) as a multivalued function in r so that g,.(r, #) induces a transport
plan H from m; to my. More formally, define measure H : B(X x Y) — R by

H(A) = / / 1 yeaM(z, dy)dm:(z) = / M (z,dy)dm (x), (20)
xJy A
where M (-,-) : X x B(Y) — R is defined by
M(£C7A) :/®1gr(rvg)EAdm9(9) (21)

To see H is a transport plan from m; to ms, we need to check:

1. VA e B(X),H(A xY) =mq(A).
This is true since

HAXY)= /A/YM(Ldy)dml(x) = /AM(m,Y)dml(z) =mq(A), (22)

where we utilize that M (z,Y) = 1.
2. VA € B(Y), H(X x A) = mg(A).
Note that g p = v, thus (g7 (A x 0)) = v(A x Q) = ma(A). Also,

u(g~ (A x 0)) = / /@ 1y (o.0ychxodma(0)dm ()

= [ [ tuncccadmof@)im @ o
- / Mz, A)dmi ()
= f;g(X x A).

Therefore H(X x A) = mo(A).

*It’s not necessary that hyp =wv.
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We also claim that the Lo transport cost of h equals to that of H. The transport cost of h and H are

= z,0) — z)%dm m1(x
h>f/X/@<gr<,0> V2dimo(8)dm (z),

(24)
) = [ w-opit= [ [ (g2 dydm o).
XxY xJy
respectively. By the definition of M, we have M (z, -) = g,(x, -)xmyg for any = € X, thus
[ w=ararady) = [ (o:(@.0) = a)dmo(0) es)

for any x € X. Therefore C'(h) = C(H).

Let F(x) = x + 1.5 be another transport plan from m; to mg, clearly the Ly transport cost of f
equals to that of F'. Note that the transport cost of H is no less than that of F', since the latter one is
the optimal transport plan from m; to me. This complete the proof of claim that the transport cost of
g is no less than that of f, and thus the proof of the optimal transport map in problem 2.

B DETAILS OF LOSS FUNCTIONS IN CONTINUOUS NORMALIZING FLOWS

To estimate log pc., . (), we have the ODE that connects the probability density at inputs and outputs
of the generator:

d - o

% IOg( ( (tv :13))) =—Va- G(tv u(tv :I?)) = _Aﬂd)(tv u(tv 113)), (26)
for all « in the support of 1, where the initial probability density p(@(0, x)) = p, () is the density
of 41 at input @, while the terminal probability density p(w(7T’, z)) = pg,,.(G(x)) is the density of
Gy at output G(x).

Also, we estimate = G~ (y) by solving the ODE
— = —9(T — t,w) 27

with initial condition w(0) as y = G(z) and w(T) as the corresponding x = G~1(y).

For each y, we can use Equationto estimate the corresponding = = G ~*(y), and consequently
log(pu(x)) since we have the density of p. Then we apply Equation [26)to estimate log pa., ;. (¥)-
By sampling y ~ v, we can estimate E,, [log pg,,,.(y)]. In practice, we also need to discretize
Equations [26|and 27 properly. For example, we use the first-order Euler scheme in our practice. Note
that when applying maximum likelihood training, the density of x could be unnormalized, since
multiplications with p,, would merely lead to a constant difference in the loss function.

C NETWORKS AND HYPERPARAMETERS

Except in the regulized discrete optimal transport solver and official CycleGAN, all the neural
networks are feedforward neural networks of 5 hidden layers, each of width 128 for 2D problems,
or 256 in image translation tasks. For potential flow generator, the activation function is tanh for
the smoothness of (;5 The activation function in vanilla generator in F1gurells also tanh. All the
other activation functions are leaky ReLU (Maas et al.|[2013) with negative slope 0.2, except in the
regulized discrete optimal transport solver and official CycleGAN.

The batch size is set as 1000 for all the cases except in Table[2]and in official CycleGAN. We use
1000 random projection directions to estimate the sliced Wasserstein distances. In WGAN-GP model
the coefficient for gradient penalty is 0.1, and we do 5 discriminator updates per generator update.

In potential flow generators, the time span 7" is 1.0. We set the number of total time steps n = 4
in discrete potential flow generators, while n = 100 in continuous potential flow generators for 2D
problems and n = 10 in image translation tasks. The PDE penalty weight A for continuous potential
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flow generator is set as 1.0 by default, except those in the 2D problems where we compare different
generators.

We use the Adam optimizer (Kingma & Bal [2014)) for all the problems. In the 2D problems, the
learning rate is set as [ = 1072, 81 = 0.5, By = 0.999 for sliced Wasserstein distance, while set
asl = 1072, B; = 0.5, B> = 0.9 in WGAN-GP. We train the generators for 100, 000 iterations in
Figure [Zland Figure [3a] and 20, 000 iterations in Table [2] In the normalizing flow model we set
1 =107%, pB1 = 0.9, B2 = 0.999, and train the generator for 10, 000 iterations. In image translation
tasks we set [ = 1074, 31 = 0.5, B2 = 0.9, and train the generator for 100, 000 iterations for our
method and CycleGANs with FNN, while 200, 000 iterations for vanilla GAN.

D MORE RESULTS ON THE MNSIT AND CELEBA DATASET

f ﬁ \r 7
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(b) Testing dataset

Figure 6: Potential flow generator on the MNIST (a) training and (b) testing dataset. In each raw, the
top images are reconstructed from the input vectors, while the bottom images are reconstructed from
the corresponding output vectors.
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(a) Training dataset

(b) Testing dataset

top images are reconstructed from the input vectors, while the bottom images are reconstructed from
16

Figure 7: Potential flow generator on the CelebA (a) training and (b) testing dataset. In each raw, the
the corresponding output vectors.
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