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Abstract

We propose a Gaussian process regression network model where latent functions
are arbitrarily coupled a priori. Driven by the problem of developing forecast
methods for distributed solar and other renewable power generation, we propose
coupled priors that exploit spatial dependencies in a scalable structure. We estimate
short term forecast models for solar power at multiple distributed sites and ground
wind speed at proximate weather stations. Our approach maintains or improves
point-forecast accuracy relative to competing benchmarks. At the same time our
approach significantly reduces forecast variance.

1 Introduction

Local short term solar power forecasts are an important input for distributed grid control, energy
market and home energy management [2, 11]. Output variation is driven by two main factors:
variation due to sun angle and distance, and variation due to weather effects. Both induce spatially-
related dependence between proximate sites. In the context of small scale residential sites, data on
system configuration and local environment are often limited, motivating approaches that do not rely
on rich history or feature sets as are typically required by current approaches [2, 5, 10, 11, 13]. Also
inherent to the application is a need to minimize and model forecast uncertainty in a principled way
[2]. Short term wind power forecasting is similarly critical to energy technologies [11]. Variability is
driven by wind speed which, as for solar, is driven by interacting environmental factors giving rise to
spatial dependencies a priori.

Gaussian process (GP) models are a flexible nonparametric Bayesian approach and have been extended
to numerous multi-task problems including spatio-temporal contexts [3, 9]. Multi-task GP methods
have been developed along several lines [see e.g. 1, for a review], with scalability a core challenge. For
this reason, latent Gaussian processes in mixing-based multi-task methods are generally constrained
to be statistically independent [8, 12]. In particular, the Gaussian process regression network (GPRN)
model of Wilson et al. [12] assumes observations are a linear combination of several node and weight
latent functions that are all drawn from independent univariate Gaussian process priors.

We build on the scalable generic inference method of [8] to extend the model of [12] and allow
feature-driven, nonzero covariance between arbitrary subsets, or ‘groups’, of latent functions. The
grouping structure is flexible and can be tailored to applications of interest. By adopting separable
kernel specifications, we maintain scalability of the approach. We apply our model to forecast solar
output of distributed residential sites and use spatial features to exploit spatial dependence between
latent functions. We also test our method on a ground wind speed dataset. Our results show that, for
solar models, exploiting spatial covariance maintains or improves point-forecast accuracy relative
to benchmarks and at the same time reduces forecast variance. Further, wind forecast accuracy and
uncertainty is improved on all measures.
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2 Grouped Gaussian process model and inference

W consider data of the form {X ∈ RN×D,Y ∈ RN×P } where each xn in X is a D-dimensional
vector of input features and each y(n) in Y is a P -dimensional vector of task outputs, n = 1, . . . , N .
Let F be a N × Q matrix of latent GP functions {fj(x)}Qj=1 (fj is the N -dimensional vector for
latent function j) and let W ∈ RP×Qg×N and G ∈ RQg×1×N be tensors formed from PQg and Qg

latent functions in F, respectively, with Qg(P + 1) = Q. We can express the likelihood of Wilson
et al. [12] as p(y(n)|f(n),φ) = N (y(n);W(n)g(n),Σy), where φ = Σy, f(n) = {W(n),g(n)} and
Σy is a diagonal matrix. P -dimensional outputs are constructed at xn as the product of a P ×Qg

matrix of weight functions, W(n), and Qg-dimensional vector of node functions g(n) (Figure 1 in
the Appendix).

To group latent GP functions we re-express F in terms of arbitrarily chosen submatrices Fr ∈
RN×Qr , r = 1, . . . , R, whereR is the number of groups andQr is the number of functions in group r
(‘group size’),

∑R
r=1Qr = Q. The prior on F can be expressed as p(F|θ) =

∏R
r=1N (Fr;0,K

r
ff ),

where Kr
ff ∈ RNQr×NQr is the covariance matrix generated by the group kernel function

κr(fj(x), fj′(x
′)) evaluated for functions fj and fj′ at locations x and x′. κr(fj(x), fj′(x′)) = 0

iff the functions fj and fj′ do not belong to the same group r. We refer to this model as grouped
Gaussian processes (GGP).

Our inference method extends the framework of Krauth et al. [8], which is a sparse variational method
assuming conditionally independent latent functions, to the case where latent functions covary within
groups. The prior on F is augmented with inducing variables, {ur}Rr=1, drawn from the same GP
priors as Fr at new inducing points Zr ∈ RM×D. The prior above is thus replaced by

p(u|θ) =
R∏

r=1

N (ur;0,K
r
uu), and p(F|u) =

R∏
r=1

N (Fr; µ̃r, K̃r), (1)

where µ̃r = Arur, K̃r = Kr
ff −ArK

r
uf and Ar = Kr

fu(K
r
uu)
−1.

We use separable kernels of the form κr(fj(x), fj′(x
′)) = κr(x,x

′)κr(hj ,hj′), where h are H-
dimensioned feature vectors forming matrices Hr ∈ RQr×H that govern covariance across functions
fj ∈ Fr. Kr

uu ∈ RMQr×MQr is the covariance matrix induced by κr(fj(x), fj′(x′)) evaluated
over {Zr, Hr}, yielding Kr

uu = Kr
hh ⊗ Kr

zz and importantly the decomposition (Kr
uu)
−1 =

(Kr
hh)
−1 ⊗ (Kr

zz)
−1. We define Kr

fu and Kr
uf similarly. By adopting the Kronecker-structure and

further embedding this in a sparse variational framework using M inducing points, we reduce the
maximum dimension of required matrix inversions from NQr to max(Qr,M), M � N .

Latent functions in the general framework need not map to a particular feature set. We solve this by
setting Qg = P and grouping latent functions fj according to rows of W(n), and defining spatial
features hj = (latitudej , longitudej). Node functions in G are assumed to be independent i.e.
〈gj ,gj′〉 = 0 for i 6= i′ with features for gj relating to task j. Thus, in addition to depending on
input features x(n), weights over node functions for each task are also spatially smoothed via Kr

hh.
This structure allows both task-specific parameterization and regularization over weights in the prior.

The (analytically intractable) joint posterior distribution of the latent functions and inducing vari-
ables under the prior and likelihood models above is approximated via variational inference
[6]. Specifically, p(F,u|Y) ≈ q(F,u|λ) def

= p(F|u)q(u|λ). The variational posterior q(u|λ)
is defined generally as a mixture of K Gaussians with mixture proportions πk i.e. q(u|λ) =∑K

k=1 πk
∏r

r=1N (ur;mkr,Skr). We then estimate the model by maximizing the so-called ev-
idence lower bound. Under our structure, (Gaussian) posterior mixture covariances for fr(n),
Σkr(n) ∈ Qr ×Qr, can be shown to decompose as:

Σkr(n) = K̃r(n) + Ar(n)SkrA
′
r(n), where Ar(n) = IQr ⊗ κr(x(n),Zr)(K

r
zz)
−1, and

K̃r(n) = Kr
hh ×

[
κr(x(n),x(n) − κr(x(n),Zr)K

r
zzκr(Zr,x(n))

]
. (2)

Predictive posterior distributions over qk(f?|λk) are defined similarly. Hence, a nice property of our
model is that cross-function covariance within a group can be driven by spatial features (or other
covariates) from the prior, where Skr is diagonal, or more flexible in form where Skr is non-diagonal.
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3 Experiments

We evaluate GGP on forecasting problems for residential solar power and ground wind speed datasets.
For solar we forecast power fifteen minutes ahead using five minute average power for three datasets:
ten Adelaide sites (ADEL-AUTM) and twelve Sydney sites (SYD-AUTM), both over 60 days during
Autumn 2016; and ten Adelaide sites (ADEL-SUMM) over 60 days in Spring-Summer 2016. We train
all models on 36 days of data, and test forecast accuracy for 24 subsequent days (days are defined as
7 am to 7pm). For WIND we forecast ground wind speed thirty minutes ahead at six weather stations
in Victoria, Australia. Data are half-hourly wind speed readings collected over an eight month period.
The WIND data present an interesting challenge, with frequent missing and noisy observations. In
all we have 5000 (4000) training points and 3636 (1024) test points per site for solar (per station for
wind). Datasets have varying spatial dispersions ranging from 15 by 20 to 30 by 40 kilometer areas.

Kernels and features for κr(x,x′) and κr(hj ,hj′) are selected in line with previous studies of
distributed solar forecasting [4, 5, 10]. We define κgj

(xt,xs) = κgj
(lt, ls) as a radial basis func-

tion kernel (κRBF ) applied to a vector of recent lagged power at site j, i.e. for site j at time t,
lj,t = (yj,t, yj,t−1, yj,t−2). For row-group (task) r, we define a multiplicative kernel structure
with κr(x,x′) = κPer.(t, s)κRBF (lrt, lrs), where κPer.(t, s) is a periodic kernel on a time index
t capturing diurnal cyclical trends in output. For κr(hj ,hj′) we use a compact RBF- Epanech-
nikov structure, i.e., κr(hj ,hj′) = κRBF (hj ,hj′)κEp.(hj ,hj′), j, j′ = 1 . . . P , allowing cross-site
weights to reduce to zero at a distance optimized for each task. For WIND we use the same kernel and
feature definitions as for solar but a different grouping structure for GGP. We allow functions on the
diagonal of W to be independent and group off-diagonal functions within each row.

We estimate several benchmarks: (1) independent GP forecast models for each site (IGP), (2) pooled
multi-task models with task-specific (spatial) features (MTG), (3) multi-task linear coregional models
(LCM) and (4) GPRN with independent latent functions [12]. Both IGP and MTG models have univariate
Gaussian likelihood functions, while the LCM is comprised of P node functions mapped to outputs
via a P ×Qg matrix of deterministic weights, i.e. p(y(n)|f(n),φ) = N (y(n);W(n)g(n),Σy) where
W(n)ij = wij ∀n = 1, . . . , N . We maintain consistent kernel specification across models and
present results for diagonal and full Gaussian posterior specifications (for GGP we use a Kronecker
construction of the full posterior for each group).

To compare model performance under equivalent settings, we standardize settings by reference to
a consistent target computational complexity per iteration, which in our variational framework is
dominated by operations with cubic complexity on the number of inducing points M . We therefore
set M = 200 per group for GGP and adjust M for each benchmark accordingly. We optimize the
ELBO iteratively using ADAM [7] until its relative change over successive epochs is less than 10−5 up
to a maximum of 200 epochs. All data except time index features are normalized. Reported forecast
accuracy measures are root mean squared error (RMSE) and negative log predictive density (NLPD)
which is estimated using Monte Carlo. In addition, we compute average ranking (M-RANK) over
RMSE and NLPD and mean forecast variance (F-VAR).

Results Results for all models are presented at Table 1. For solar, GGP maintains or improves point
accuracy when compared to best performing benchmarks on both RMSE and NLPD individually. For
RMSE, accuracy under GGP differs by less than one percent relative to GPRN, and similarly matches
or improves on NLPD relative to LCM and other benchmarks. GGP performs well in terms of overall
accuracy across both measures, consistently achieving the highest average rank across both measures
(M-RANK). In contrast, competing baselines either perform well on RMSE at the expense of poor
performance under NLPD or vice versa. The benefit of regularization under the GGP is clear when
considering mean forecast variance, which is lower under GGP than all benchmark models for all
experiments. Compared to GPRN (LCM), the most accurate GGP model reduces solar forecast variance
by 18 to 24 (13 to 40) percent. Orientation of spatial kernels and compact kernel support were found
to vary markedly across groups, confirming the relevance of flexible, site-specific parameterization.

We test statistical significance of differences in performance via 95 percent intervals estimated by
Monte Carlo. Results show that RMSE under GPRN is statistically significantly lower than under GGP
for solar datasets. In all other cases, RMSE is either not significantly different or significantly higher
than under GGP. Results are similar for NLPD, which is statistically significantly lower under LCM for
two of three datasets, and otherwise higher or not significantly different.
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Table 1: Forecast accuracy and variance of GGP and benchmark models using diagonal (D) and full
(F) Gaussian posteriors. M-RANK is mean of RMSE and NLPD ranks and F-VAR is mean forecast
variance. Lower values indicate better performance for all measures. *indicates significantly different
from best GGP model ((D) or (F)) based on 95 percent interval from Monte Carlo analysis.

ADEL-AUTM ADEL-SUMM
RMSE NLPD M-RANK F-VAR RMSE NLPD M-RANK F-VAR

GGP (D) 0.282 0.243 2.5 0.140 0.318 0.323 2.5 0.118
GGP (F) 0.288 * 0.265 * 4.0 0.136 * 0.321 * 0.352 * 4.0 0.113 *
LCM (D) 0.294 * 0.240 4.0 0.162 * 0.325 * 0.332 * 4.5 0.165 *
LCM (F) 0.293 * 0.240 * 3.0 0.160 * 0.323 * 0.323 3.0 0.158 *
GPRN (D) 0.278 * 0.311 * 3.0 0.173 * 0.315 * 0.376 * 3.0 0.152 *
GPRN (F) 0.283 0.320 * 4.5 0.174 * 0.316 * 0.382 * 4.0 0.152 *
MTG (D) 0.301 * 0.337 * 7.0 0.174 * 0.444 * 0.675 * 10.0 0.256 *
MTG (F) 0.304 * 0.376 * 9.0 0.206 * 0.441 * 0.674 * 9.0 0.267 *
IGP (D) 0.315 * 0.368 * 9.0 0.177 * 0.341 * 0.415 * 7.5 0.153 *
IGP (F) 0.314 * 0.370 * 9.0 0.183 * 0.343 * 0.414 * 7.5 0.156 *

SYD-AUTM WIND
RMSE NLPD M-RANK F-VAR RMSE NLPD M-RANK F-VAR

GGP (D) 0.284 0.257 2.5 0.157 0.454 * 0.670 * 2.5 0.282 *
GGP (F) 0.298 * 0.286 * 6.0 0.142 * 0.450 0.661 1.0 0.281
LCM (D) 0.310 * 0.273 * 6.5 0.180 * 0.464 * 0.672 * 4.0 0.300 *
LCM (F) 0.302 * 0.257 5.5 0.178 * 0.465 * 0.676 * 5.0 0.305 *
GPRN (D) 0.281 * 0.323 * 3.5 0.185 * 0.453 * 0.685 * 3.5 0.301 *
GPRN (F) 0.284 0.326 * 5.5 0.187 * 0.461 * 0.700 * 5.0 0.304 *
MTG (D) 0.280 0.342 * 5.0 0.207 * 0.474 * 0.737 * 10.0 0.353 *
MTG (F) 0.283 0.360 * 6.5 0.219 * 0.473 * 0.729 * 8.0 0.337 *
IGP (D) 0.286 0.340 * 7.5 0.204 * 0.472 * 0.721 * 7.0 0.336 *
IGP (F) 0.286 0.335 * 6.5 0.202 * 0.473 * 0.731 * 9.0 0.345 *

For the WIND dataset, GGP outperforms all other models on all measures including point accuracy
(NLPD and RMSE), overall accuracy (M-RANK) and forecast variance. Consistent reductions in
variance are observed, ranging from 7 to 25 percent improvements over competing models. As for
solar, confidence intervals are constructed via Monte Carlo. For WIND, all differences in model
performance are confirmed to be statistically significant.

4 Discussion

We have proposed a general multi-task GP model, where groups of functions are coupled a priori.
Our approach allows for input-varying covariance across tasks governed by kernels and features
and, by building upon sparse variational methods and exploiting Kronecker structures, our inference
method is inherently scalable to a large number of observations.

We have shown the applicability of our approach to forecasting short term distributed solar power
and wind speed at multiple locations, where it matches or improves point forecast performance of
single-task learning approaches and other multi-task baselines under similar computational constraints
while improving quantification of predictive variance. In general, the GGP strikes a balance between
flexible, task-specific parameterization and effective regularization via structure imposed in the prior.
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A Supplementary Information

Figure 1: Gaussian process regression network model where Y is a linear combination of node and
weight latent functions comprising F. In the grouped Gaussian process (GGP) framework, latent
functions may be grouped arbitrarily. A grouping scheme is illustrated where weight functions in
W are grouped by rows (grouped functions are shown in the same shade) and given a fully-coupled
prior, while node functions in G are independent. Here N is the number of observations per task; P
is the number of tasks; and Qg is the group size.
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