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ABSTRACT

Recurrent Neural Networks (RNNs) have been widely applied to sequential data
analysis. Due to their complicated modeling structures, however, the theory be-
hind is still largely missing. To connect theory and practice, we study the gener-
alization properties of vanilla RNNs as well as their variants, including Minimal
Gated Unit (MGU) and Long Short Term Memory (LSTM) RNNs. Specifically,
our theory is established under the PAC-Learning framework. The generalization
bound is presented in terms of the spectral norms of the weight matrices and the
total number of parameters. We also establish refined generalization bounds with
additional norm assumptions, and draw a comparison among these bounds. We
remark: (1) Our generalization bound for vanilla RNNs is significantly tighter
than the best of existing results; (2) We are not aware of any other generaliza-
tion bounds for MGU and LSTM in the exiting literature; (3) We demonstrate the
advantages of these variants in generalization.

1 INTRODUCTION

Recurrent Neural Networks (RNNs) have successfully revolutionized sequential data analysis, and
been widely applied to many real world problems, such as natural language processing (Cho et al.,
2014; Bahdanau et al., 2014; Sutskever et al., 2014), speech recognition (Graves et al., 2006;
Mikolov et al., 2010; Graves, 2012; Graves et al., 2013), computer vision (Gregor et al., 2015; Xu
etal., 2015; Donahue et al., 2015; Karpathy and Fei-Fei, 2015), healthcare (Lipton et al., 2015; Choi
et al., 2016a;b), and robot control (Ku and Lee, 1995; Lee and Teng, 2000; Yoo et al., 2006). Quite
a few of these applications can be approached easily in our daily life, such as Google Translate,
Google Now, Apple Siri, etc.

The sequential modeling nature of RNNs is significantly different from feedforward neural net-
works, though they both have neurons as the basic components. RNNs exploit the internal state
(also known as hidden unit) to process the sequence of inputs, which naturally captures the depen-
dence of the sequence. RNNs can also be viewed as nonlinear dynamical systems, and reduced
to linear dynamical systems given identity activation operators. Besides the vanilla version, RNNs
have many other variants. A large class of variants incorporate the so-called “gated” units to trim
RNNs for different tasks. Typical examples include Long Short-Term Memory (LSTM, Hochre-
iter and Schmidhuber (1997)), Gated Recurrent Unit (GRU, Jozefowicz et al. (2015)) and Minimal
Gated Unit (MGU, Zhou et al. (2016)).

The success of RNNs owes not only to their special network structures and the ability to fit training
data, but also to their good generalization property: They can provide accurate predictions on unseen
data. For example, Graves et al. (2013) report that after training with merely 462 speech samples,
deep LSTM RNNs achieve a test set error of 17.7% on TIMIT phoneme recognition benchmark,
which is the best recorded score. Mikolov et al. (2010) also show that RNNs outperform significantly
state-of-the-art backoff models for speech recognition. When using RNNs in Wall Street Journal task
to predict the next word in textual data given the context, word error rate is reduced around 18%
compared to backoff models trained on the same amount of data, and 12% when backoff model is
trained on 5 times more data. Despite of the popularity of RNNs in applications, their theory is
less studied than other feedforward neural networks (Bartlett et al., 2017; Neyshabur et al., 2017,
Golowich et al., 2017; Li et al., 2018). There are still several long lasting fundamental questions
regarding the approximation, trainability, and generalization of RNNss.
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In this paper, we propose to understand the generalization ability of RNNs and their variants. We
aim to answer two questions from a theoretical perspective:

0.1) Do RNNs suffer from significant curse of dimensionality?
0.2) What are the advantages of MGU and LSTM over vanilla RNNs?

The investigation of generalization properties of neural networks including RNNs has a long history.
Most of these works adopt a layer wise analysis and establish their results by induction. For exam-
ple, Haussler (1992) establishes a complexity bound for feedforward neural networks. The result
assumes average Lipschitz constant of each layer to be greater than 1 and involves the product of
these Lipschitz constants. Thus, the resulting bound is inevitably exponential in the depth of the
network. Later, Dasgupta and Sontag (1996) and Koiran (1998) adopt a VC-dimension argument to
show complexity bounds of RNNs that are polynomial in the size of the network. Both of the works,
however, are based on oversimplified assumptions: Dasgupta and Sontag (1996) only consider linear
RNNSs for binary classification tasks; Koiran (1998) assumes RNNs take the first coordinate of their
hidden states as outputs. More recently, Bartlett et al. (2017) propose a new technique for developing
generalization bounds for feedforward neural networks based on empirical Rademacher complexity
under the PAC-Learning framework. Neyshabur et al. (2017) further adapt the technique to establish
their generalization bound using the PAC-Bayes approach. Then the follow-up work Zhang et al.
(2018) use the PAC-Bayes approach to establish a generalization bound for vanilla RNNs.

Our theory is partially motivated by Bartlett et al. (2017), but is quite different from Bartlett et al.
(2017) and Zhang et al. (2018). In particular, our analysis exploits the compositional nature of
RNNS, and decouples the spectral norms of weight matrices and the number of weight parameters.
This makes our analysis conceptually much simpler (e.g. avoid layer wise analysis), and also yields
better generalization bound than Zhang et al. (2018).

—— -

Taking a sequence to sequence multiclass classification problem as an b y \
example, we observe m sequences of data points (z; , Zi,t)tT:p where ;;1 : Th ——>hy
7+ € R% and the class label z;; € {1,...,K} forallt = 1,..,T o

and ¢+ = 1,...,m. Each sequence is drawn independently from some
underlying distribution over R%*T x {1,..., K'}. The vanilla RNNs
compute h; ; and y; , iteratively as follows,

hit =0n(Uhit—1+Waz;y), and yip =0y (Vhiy),

Figure 1: A basic building
block of vanilla RNNs

where oy, and oy, are activation operators, h; ; € R is the hidden state with hio =0,and U €
Rdnxdn /€ Rdv*dn and W € R >4 are weight matrices. The activation operators o, and o,
are entrywise, i.e., oy ([vg, ... 7vd]—r) = [on(v1),...,0n(vq)]", and Lipschitz with parameters py,
and p,, respectively. For simplicity, we assume o, (-) = tanh(-), 0,(0) = 0, and p, = 1. Extensions
to general activation operators are given in Section 2. For a new testing sequence (z, zt)f:l, we
predict the label sequence using

Zy = argmax;[y];, forallt=1,... T.

To establish the generalization bound, we need to define the “model complexity” of vanilla RNNs.
In this paper, we adopt the empirical Rademacher complexity (ERC, see more details in Section 2),
which has been widely used in the existing literature on PAC-Learning. For many nonparametric
function classes, we often need complicated argument to upper bound their ERC. Our analysis,
however, shows that we can upper bound the ERC of vanilla RNNs in a very simple manner by
exploiting their Lipschitz continuity with respect to (w.r.t) the model parameters, since they are
essentially in parametric forms. More specifically, denote F; = {f: : {z1,...,x+} — y:} as the
class of mappings from the first ¢ inputs to the ¢-th output computed by vanilla RNNs. For a matrix
A, ||Al|2 denotes the spectral norm, and for a vector v, ||v||2 denotes the Euclidean norm. Define

ﬁ: :11 = t for x = 1. Then, informally speaking, the “model complexity” of vanilla RNNs satisfies

, . Uls -1 U5 -1
Complexity = O | d Vd, ||W ”2} Va4 /1o (t\/&2 ,
plexty <mm{ Wl 2=t b1Vl fog (a1

where d = \/ dydy, + d2 + dpd,. We then give the generalization bound in the following statement.
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Theorem 1 (informal). Given a collection of samples S = {(z;,2:)i_y,i=1,...,m} with
lzitll2 < 1 and a new testing sequence (z, 2;)Z_;, with probability at least 1 — & over S, for
every margin value v > 0 and f; € F for integer ¢ < T', we have,

- ~ Complexity log &
Pz # 2t) <Ryt + 0 T L [l B (1)

where Ry = L 52" 1([yinls,, < maxjcs,, [yid; +7).

Please refer to Section 2 for a complete statement. The generalization bound in Theorem 1 can
be interpreted under three different scenarios': (I) When ||U||2 < 1, the generalization bound is

é(ﬁ), which only has a logarithmic dependence on ¢; (II) When ||U|2 = 1, the generaliza-

tion bound is 6(L) which has a linear dependence on d and ¢; (III) When ||U||z > 1, the

Vmy
generalization bound is O ( \\/ﬁfanj)’ which has a polynomial dependence on d and ¢.

We theoretically justify that vanilla RNNs do not suffer from significant curse of dimensionality.
Because they compute outputs y; recursively using the same weight matrices, and their hidden states
h, are entrywise bounded.

Compared with the generalization bound in Zhang et al. (2018), which is of the order

5 <dt2||W||2|V|2max{L IIUIIZ})
Vimy ’

our bound is tighter by a factor of ¢ for case (I), a factor of ¢ for case (II). Additionally, Zhang
et al. (2018) fail to incorporate the boundedness condition of hidden state into their analysis, thus
the generalization bound is exponential in ¢ for case (III). Our generalization bound, however, is
still polynomial in d and ¢ for case (III).

Moreover, (II) is closely related to a few recent results on imposing orthogonal constraints on weight
matrices to stabilize the training of RNNs (Saxe et al., 2013; Le et al., 2015; Arjovsky et al., 2016;
Vorontsov et al., 2017; Zhang et al., 2018). We remark that from a learning theory perspective, (II)
also implies that the orthogonal constraints can potentially help generalization.

We also present refined generalization bounds with additional matrix norm assumptions. These
assumptions allow us to derive norm-based generalization bounds. We draw a comparison among
these bounds and highlight their advantage under different scenarios.

Our theory can be further extended to several variants, including MGU and LSTM RNNs. Specifi-
cally, we show that the gated units in MGU and LSTM RNNs can introduce extra decaying factors
to further reduce the dependence on d and ¢ in generalization. Such an advantage in generalization
make these RNNs do not suffer from significant curse of dimensionality either. To the best of our
knowledge, these are the first results on generalization guarantees for these neural networks.

The rest of the paper is organized as follows: Section 2 presents the generalization bound of vanilla
RNNSs; Section 3 presents the proof outline of the generalization bound; Section 4 presents refined
generalization bounds and their comparison; Section 5 presents the generalization bound of MGU
and LSTM RNN:Ss; Section 7 discusses related works and collects open problems.

Notations: Given a vector v € R%, we denote the vector Euclidean norm by ||v||2 = 2?21 |v;|%, and
the infinity norm by ||v||cc = max; |v;|. Given a matrix M € R™*", we denote the spectral norm
by || M || as the largest singular value of M, the Frobenius norm by || M||2 = trace(M M "), and the
(2,1) norm by || M||2,1 = Y., || M. ;||2. Given a function f, we denote the function infinity norm
by || fllec = sup|f|. We adopt the standard O(-) notation, which is defined as f(z) = O (g(z)) for
x — oo if and only if there exists M > 0 and z, such that | f(z)| < Mg(x) for x > x9. We use

O(-) to denote O(-) with hidden log factors.

'To ease the discussion, we assume ||U||> does not scale with ¢. Therefore, |U|l2 < 1 is equivalent to
|[U]l2 < 1— A foraconstant A > 0. A precise statement can be found following Theorem 2.
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2 GENERALIZATION OF VANILLA RNNS

To establish the generalization bound, we start with imposing some mild assumptions.

Assumption 1. Input data are bounded, i.e., ||z; (|| < By foralli=1,...,mandt=1,...,T.

Assumption 2. The spectral norms of weight matrices are bounded respectively, i.e., ||U||2 < By,
HVHQ S Bv, and ||WH2 S BW

Assumption 3. Activation operators o, and o, are Lipschitz with parameters p; and p, respec-
tively, and 0,(0) = 0,,(0) = 0. Additionally, o}, is entrywise bounded by b.

Assumptions 1 and 2 are moderate assumptions. Moreover, Assumption 3 holds for most commonly
used activation operators, such as o, (-) = tanh(-) and o,/ (-) = ReLU(-) = max{-, 0} (1-Lipschitz).

Recall that vanilla RNNs compute h; ; and y; ¢ as follows,
hip=o0p (Uhjj—1+Wz;y) and y; =0, (Vhiy),

where U € R%*dn € Rdv*dn and W € R¥*%=_Given a sequence (x4, z;)~_;, we define X; €
Rd=xt by concatenatlng Z1,...,x as columns of X;. Recall that we denote F; = {f; : X; — u:}
as the class of mappings from the first ¢ inputs to the ¢-th output computed by vanilla RNNs. Then
we define the functional margin for the ¢-th output in vanilla RNNs as

M(fi(X), 2e) = [fe( X))z, — maxjze, [fi(Xe)];

We further define a ramp loss ¢, (—M(f;(X¢),2:)) : R — RT to each margin, where /. is a
piecewise linear function defined as

ly(a) =1{a >0} + (1 + )]1{ v <a <0},

where 1{A} denotes the indicator function of a set A. Accordingly, the ramp risk is defined
as R (ft) = E[¢, (=M(f:(X¢),2:))], and its empirical counterpart is defined as R+ (f;) =
1 Z i by (= M( ft( i.t), Zi.t)) - We then present the formal statement of Theorem 1.

Theorem 2. Let activation operators o, and o, be given, and Assumptions 1-3 hold. Then for
(z,20)1=y and S = {(wi4,2i4){_1,i=1,...,m} drawn iid. from any underlying distribution

over R%*T x {1 ... K}, with probability at least 1 — 9 over S, for every margin value v > 0 and
every f; € JF; for integer t < T, we have

dpy By min bV d,pn Ba Bw & a log \/TB —11 —3
PG #2) <R (ft)+o< { ﬁj hes(vant=) 1515)7

where d = +/d,dy, + d? + dpd, and B = p; By.

We remark that the generalization bound depends on the total number of weights, and the range of
pr By in three cases as indicated in Section 1. More precisely, if p, By < (1 + t%) for constant

a > 0 bounded away from zero, the generalization bound is of the order 19) (jf%), which has a

polynomial dependence on d and . As can be seen, with proper normalization on model parameters,
vanilla RNNs do not suffer from significant curse of dimensionality.

We also highlight a tradeoff between generalization and representation of vanilla RNNs. As can be
seen, when pp, By is strictly smaller than 1, the generalization bound is nearly independent on ¢.
The hidden state, however, only has limited representation ability, since its magnitude diminishes as
t grows large. On the contrary, when py By is strictly greater than 1, the representation ability of
hidden state is amplified but the generalization becomes worse. As a consequence, recent empirical
results show that imposing extra constraints or regularization, suchas U U = I or |[U||2 < 1 (Saxe
etal., 2013; Le et al., 2015; Arjovsky et al., 2016; Vorontsov et al., 2017; Zhang et al., 2018), helps
balance the generalization and representation of RNNs.
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3  PROOF OF MAIN RESULTS

Our analysis is based on the PAC-learning framework. Due to space limit, we only present an outline
of our proof. More technical details are deferred to Appendix A. Before we proceed, we first define
the empirical Rademacher complexity as follows.

Definition 1 (Empirical Rademacher Complexity). Let # be a function class and S = {s1,..., S}
be a collection of samples. The empirical Rademacher complexity of H given S is defined as

1 m
sup — Z e1h(sz)] ,
i=1

Empirical Rademacher Complexity: Rg(H) = E,
heH M

where ¢;’s are i.i.d. Rademacher random variables, i.e., P(¢; = 1) = P(¢; = —1) = 0.5.

We then proceed with our analysis. Recall that Mohri et al. (2012) give an empirical Rademacher
complexity (ERC)-based generalization bound, which is restated in the following lemma with
Frt ={(Xe, 2¢) = £y (=M(fe(Xe), 1)) : fe € Fi}

Lemma 1. Given a testing sequence (x4, z;)Z_;, with probability at least 1 — § over samples S =

{(:L’i,,u i) i=1,... ,m}, for every margin value v > 0 and any f; € F;, we have
_ - log 2
P(Z; # 2) < Rv(ft) < Rv(ft) + 29‘15(]:%15) +3 om (2)

Note that Lemma 1 adapts the original version (Theorem 3.1, Chapter 3.1, Mohri et al. (2012)) for
the multiclass ramp loss, and we have P(z; # 2;) < R.(f;) by definition.

Now we only need to bound the ERC $ig(F, ). Our analysis consists of three steps. First, we
characterize the Lipschitz continuity of vanilla RNNs w.r.t model parameters. Next, we bound the
covering number of function class F;. At last, we derive an upper bound on Rg(F, ) via the
standard machinery in the PAC-learning framework. Specifically, consider two different sets of
weight matrices (U, V, W) and (U’, V', W’). Given the same activation operators and input data,
denote the ¢-th output as y; and y; respectively. We characterize the Lipschitz property of ||y:||2 w.r.t
model parameters in the following lemma.

Lemma 2. Under Assumptions 1-3, given input (z;)Z_; and for any integer t < T, ||y¢||2 is Lips-
chitzin U,V and W, i.e.,

lye = yilly < Lua lU = U'llg + L IV = Vg + Lwe [[W = Wl

where Ly, = pp Bv Bwtay, Ly = Bway, and Ly, = Bya; with a;, = pypth%.

The detailed proof is provided in Appendix A.2. We give a simple example to illustrate the proof
technique. Specifically, we consider a single layer network that outputs y = o(Wz), where x is
the input, o is an activation operator with Lipschitz parameter p, and W is a weight matrix. Such a
network is Lipschitz in both z and W as follows. Given weight matrices W and W', we have

ly = ¥'ll2 = llo(Wa) = o(Wz)ll2 < pllz]|2l|W = W|lg.
Additionally, given inputs x and z’, we have

ly = /ll2 = llo(Wz) — o(Wa')|[2 < p| W2l — 2|2
Since vanilla RNNs are multilayer networks, Lemma 2 can be obtained by telescoping.

We remark that Lemma 2 is the key to the proof of our generalization bound, which separates the
spectral norms of weight matrices and the total number of parameters.

Next, we bound the covering number of F;. Denote by N (F, €, dist(+, -)) the minimal cardinality
of a subset C C F; that covers JF; at scale € w.r.t the metric dist(-, -), such that for any f; € F;, there

exists f; € C satisfying dist(fy, f;) = sup ., || ft (X¢) — fi(Xy)|l2 < €. The following lemma gives
an upper bound on N (Fy, €, dist(+, -)).

Lemma 3. Under Assumptions 1-3, given any € > 0, the covering number of F; satisfies

6ev/dt ((pnBu)" - 1>)3d2
€(pnBu — 1) ’

N (Fy, e, dist(+, ) < (1 +

where ¢ = p,pp By By By max {1, pp By }.
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The detailed proof is provided in Appendix A.3. We briefly explain the proof technique. Given
activation operators, since vanilla RNNs are in parametric forms, f; has a one-to-one correspondence
to its weight matrices U, V, and WW. Lemma 2 implies that dist(+, -) is controlled by the Frobenius
norms of the difference of weight matrices. Thus, it suffices to bound the covering numbers of
three weight matrices, which can be obtained by the standard machinery. The product of covering
numbers of three weight matrices gives us Lemma 3.

Lastly, we give an upper bound on Rg(F, ;) in the following lemma.
Lemma 4. Under Assumptions 1-3, given activation operators and samples S =

{(@is, 214){=1,i = 1,...,m}, the empirical Rademacher complexity R (F.¢) satisfies
. (pnBu)t = 1 yfros(tvam Gamnest)
Rs(Fye) =0 <dPyBV nm {b\/g’ PrBeBw prBy —1 v .

The detailed proof is provided in Appendix A.4. Our proof exploits the Lipschitz continuity of
M and £, and uses Dudley’s entropy integral as the standard machinery to establish Lemma 4.
Combining Lemma 1 and Lemma 4, we complete the proof.

4 REFINED GENERALIZATION BOUNDS

When additional norm constraints on weight matrices U,V and W are available, we can further
refine generalization bounds. Specifically, we consider the following assumptions.

Assumption 4. The weight matrices satisfy |Ul|2,1 < My, [|V|21 < My, and [|W||21 < Mw.
Assumption 5. The weight matrices satisfy | U||r < By, |V||r < By, and ||W||r < Bwr.

Note that Assumption 4 appears in Bartlett et al. (2017) and Assumption 5 appears in Neyshabur
etal. (2017). We have an equivalent relation between matrix norms, i.e., ||-||l2 < ||-[2.1 < Vd|||[r <
d|| - ||2. Comparing to Assumption 2, Assumptions 4 and 5 further restrict the model class. We then
establish the following generalization bounds.

Theorem 3. Let activation operators o, and o, be given, and Assumptions 1-3 hold. Then for
(z,20)1=y and S = {(wi4,2i4){_1,i=1,...,m} drawn iid. from any underlying distribution
over R%*T » {1 ... K}, with probability at least 1 — & over .S, for every margin value v > 0 and
every f; € F; forinteger ¢ < T, the following two bounds hold:

e Suppose Assumption 4 also holds. We have

o -1 m og 1
P(Eﬁézt)gﬁy(ﬁHO( (MU+MV—I—MW)\t/%_’Yl Viog dlog(Vd )Jr /1515)’ -

where o = p? p, By Bw By, d = \/d,d), + d2 + dpd,, and B = p; By.

e Suppose Assumption 5 also holds. We have

. An. Bu+BaoBw ) 2e=t  [dIn(d)( B2 +B2, +B2
P(Zﬁ#zt)SR»y(ft)+0<pyph( he DU W) B \1/%/’y ﬂ( )( U,F W,F v,F))7 (4)

where \; = min {b\/&, pthBW%}, d= \/dxdh + di + dndy, and 8 = p, By.

The detailed proof is provided in Appendix B.1. The first bound (3) adapts the matrix covering
lemma in Bartlett et al. (2017). The second bound (4) adapts the PAC-Bayes approach (Neyshabur
et al., 2017) by analyzing the divergence when imposing small perturbations on the weight matrices.

We compare generalization bounds in Table 1 by differentiating ranges of 3. It can be seen that
when $ > 1, both bounds (3) and (4) involve an exponential term in 5. Thus, Theorem 2 yields
a better result. When 8 < 1, we distinguish two cases: the extreme case and the approximately
low rank case. Specifically, remember that in the extreme case, we have || - |21 = d|| - ||2 and

?For simplicity, we assume again that 3 does not scale with t. By 8 < 1, we mean 3 < 1 — A for a constant
A > 1. A similar characterization applies to § > 1.
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|-l = Vd|l - ||2, e.g., orthogonal weight matrices. Therefore, bound (4) meets Theorem 2 for
[ < 1 and is worse for 5 = 1. Bound (3) is worse than Theorem 2 for 3 < 1. On the other hand, if
the weight matrices are approximately low rank, we have || - [lo.1 < d|| - [|l2 and || - ||[r < Vd| - ||
In this case, bound (4) improves Theorem 2 for 8 < 1 by reducing dependence on d. Additionally,
if t (My + My + M) < d, bound (3) yields tighter results both for 5 < 1 and § = 1. Note that
t (My + My + My) < d also implies that the input sequence is relatively short.

Table 1: Generalization bounds in Theorems 2 and 3 with respect to different ranges of 5.

Theorem 3
Theorem 2 Bound (3) Bound (4)

g1 | O(A) | O(ritviin) | G V(B Bt B

vmy Vmy NG,
—1] O A (1 (My+My+ M) 5 ( 4/BE st Bl st By

B=1) 0(g) | O(-oetmme) O< iy
A ( Va3t 3 tﬁt(]\IU+MV+I\/[W)> ~ (dB'\/B% +B%, +BZ

A>1 O(\/ﬁ’y) O( Vmy O< Vmy

5 EXTENSIONS TO MGU AND LSTM RNNSs

We extend our analysis to Minimal Gated Unit (MRU) and Long Short-Term Memory (LSTM)
RNNSs. We show that these RNNss introduce extra decaying factors to further reduce the dependence
on d and ¢ in generalization.

- >

The MGU RNNs are the simplest GRU RNNs, ,/E o= o \
1 Tt Un \
which compute output y; as follows, { A |

Wi
[ h

re = o(Wrzy + Urhy—1), \
~ n \ U"‘T T | h
hy = on (thtﬁ-Uh(?‘t@ht,l)), =17y L,__> ,

~ Tt a
hi=1—=r) ©h—1 + 7 O hy,

Yy = oy(Vhe),
where W,., W), € R&xd [ U, € R*dn V¢ R%W*d and r, € R%*. The notation ® de-
notes the Hadamard product (entrywise product) of vectors. Denote by F, ; the class of mappings
from the first ¢ inputs to the ¢-th output computed by gated (MGU or LSTM) RNNs. For simplicity,
we consider o being the sigmoid function, i.e., o(x) = (1 + exp(—z))~!, o (-) = tanh(-), and
oy being p,-Lipschitz with o,,(0) = 0. Extensions to general Lipschitz activation operators as in
Assumption 3 are straightforward. Suppose we have hy = 0 and the following assumption.

Assumption 6. All the weight matrices have bounded spectral norms respectively, i.e. ||[W,|2 <
Bw.,, [Whll2 < Bw,, [|Ur|l2 < Bu,., [|Unll2 < By, , and [[V]]z < By

Figure 2: A basic building block of MGU RNNs

Using a similar argument for vanilla RNNs yields a generalization bound of MGU RNNss as follows.
Theorem 4. Let the activation operator o, be given and Assumptions 1 and 6 hold. Then for
(z,20)i_y and S = {(2i¢,2i4)]_1,i=1,...,m} drawn iid. from any underlying distribution
over R%*T x {1 ... K}, with probability at least 1 — & over .S, for every margin value y > 0 and
every f: € Fy+ forinteger ¢t < T, we have

R dpy By min{ Vd Bw, B, 5=} flog (=L dyim)
Pz # 2) < Ry(f) + O Ty TV )

where d = +/2dydy, + 242 + dpdy, B = max;<, {\\1 — 7|l + Buy, ||rj||§o}, and 0 = B+
QBUT + BUTBU;L-

The detailed proof is provided in Appendix C.1. As can be seen, r, shrinks the magnitude of hidden
state to reduce the dependence on d and ¢ in generalization. Specifically, the hidden state h; is
entrywise bounded by 1. Then for any integer ¢ < T, we have

1 1

< and ||1—-r < ,
=TT oxp (B, Bo — [0 T) =il < o B B — 100

7]
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where ||U,.||; denotes the maximal absolute row sum. By restricting By, and ||U,||; sufficiently
small, we can guarantee that 5 and 6 are strictly smaller than 1 when By, = 1 or even By, > 1
As a result, with proper normalization of weight matrices, the generalization bound of MGU RNNs
is less dependent on d and ¢ than that of vanilla RNNs.

The LSTM RNNs are more complicated than MGU RNNs, which introduce more gates to control
the information flow in RNNs. LSTM RNNs

have two hidden states, and compute them as, Cro1 —£> (O + \\ ¢
/ 0
g = O’(Wg.%'t + Ughi—1), 'I ’ I__,@ + \‘
re = o(Wrze + Uphi—1), l‘ gta- ”0' Et+ 25> I|
Ot = O’(WofEt + Uohtfl)v By g — UT UTT Us U.,TT | / hy
¢t = 0¢ (cht + Ucht—l) , 4 A L] W UL e //

—_—e— e = = — - = — - —

a=gtOc-1+1 00, . Lo
P gr G T G Figure 3: A basic building block of LSTM RNNs

ht = 0¢ ® tanh(ct),
where Wy, W, W,, W, € Rén*dx Uy, U, U,, U, € R *xdn and g, 74,0, € R¥ . For sim-
plicity, we also consider o being the sigmoid function, and o.(-) = tanh(-). The ¢-th output is
yr = o,(Vhy), where V. € R% > and o, is p,-Lipschitz with o,(0) = 0. Suppose we have
ho = ¢op = 0 and the following assumption.

Assumption 7. The spectral norms of weight matrices are bounded respectively, i.e. ||Wy]|2
Bw,, [Werlla < Bw,, [Wol2 < Bw,, [[Well2 < Bw.,[|Uglla < Bu,, [|Urll2 < Bu,, [|Uoll2

Bu,,||Usll2 < By, , and |V |2 < By.

INIA

For properly normalized weight matrices W, and U, the generalization bound of LSTM RNNS is
given in the following theorem.

Theorem 5. Let the activation operator o, be given and Assumptions 1 and 7 hold. Then for
(z4,21){= and S = {(@;4,2:,1){_1,1 =1,...,m} drawn iid. from any underlying distribution
over R%=*T x {1 ... K}, with probability at least 1 — & over S, for every margin value v > 0 and
every f; € Fy, forinteger ¢t < T', we have

- ~ dPyBV mln{\/E7BWch%} 10g<90t:11 d\/ﬁ) log 1
P # 2) < Rylfe) 40 Ve +y 5 )

whete d = /Aoy 38+ dndy, 8 = maxjes {951l + B, Il gl } and 6 = 6+
BUg + BUT + BUO~

The detailed proof is provided in Appendix C.2. Similar to MGU RNNs, LSTM RNNs also intro-
duce extra decaying factors to reduce the dependence on d and ¢ in generalization. However, LSTM
RNNs are more complicated, but more flexible than MGU RNNS, since three factors, ¢, o; and g;
are used to jointly control the spectrum of U.. We further remark that LSTM RNNs also need the
spectral norms of weight matrices, Wy, W,., W, Ug, U,., and U,, to be properly controlled such that
better generalization bounds can be obtained.

Remark 1. We also extend our analysis to convolutional RNNs (Conv RNNs, Pinheiro and Col-
lobert (2014); Liang and Hu (2015); Xingjian et al. (2015)), and show that the convolutional filters
in Conv RNNs can reduce the dependence on d through parameter sharing in generalization. Due to
space limit, the detailed discussion is provided in Appendix D.

6 NUMERICAL EVALUATION

We demonstrate a comparison among our obtained generalization bound with Bartlett et al. (2017),
Neyshabur et al. (2017), and Zhang et al. (2018). Specifically, we train a vanilla RNN on the wikitext
long term dependency language modeling dataset. We take 0;, = tanh and set the hidden state
h € R'28 and the input = € [0, 1]'4. Accordingly, we have d = 128 and take the sequence length
t = 56. We list the complexity bounds for vanilla RNNs in Theorem 2 (Ours), Zhang et al. (2018)
(Bound 1), (3) of Theorem 3 (Bound 2), and (4) of Theorem 3 (Bound 3) in the following by
neglecting common log factors in d and ¢,
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Ours: dBy min {\/Q, Bw gfjj } log (gfjj)

Bound 1: dt? By By max{1, B} };

Bl -1,
Byfl’

Bound 2: By By (MU + My + Mw)t

Bound 3: (min {Vd, Bw 521 } Bu + Bw ) 5= \/ A (B e+ Biye+ Bie)-

The corresponding complexity bounds are shown in 35
Figure 4 in the logarithmic scale. As can be seen, our

complexity bound in Theorem 2 is much smaller than

Bounds 1-3. In more detail, the trained vanilla RNN .31
takes By = 2.6801 > 1. As discussed earlier, for
By > 1, only our bound in Theorem 2 is polynomial in
the size of the network, while Bounds 1-3 are all expo-
nential in ¢. The resulting complexity bounds corrobo- 10r
rate such a conclusion. sl

log10 complexity

We also observe that Bound 3 is smaller than Bound 0
2. The reason behind is that the weight matrices in
the trained vanilla RNN have relatively small Frobe-
nius norms but large (2,1) norms. For example, We . ined on the wikitext dataset. The verti-
have By = 13.6823 and My = 154.5439. Then, We ., s is the logarithmic scale of the cor-

can calculate the stable rank %U[}F =51 < ¥4 and responding bounds.

27
J%UF = 11.3 ~ V/d, which implies the singular values of U are not evenly distributed, while the

norms of row vectors in U are mostly approximately equal.

Ours Boundl Bound2 Bound3

Figure 4: A comparison between general-
ization bounds for the same vanilla RNN

7 DISCUSSIONS AND OPEN PROBLEMS

(I) Tighter bounds: Our obtained generalization bounds depend on the spectral norms of weight
matrices and the network size (the total number of parameters). Can we exploit other modeling
structures to further reduce the dependence on the network size? Or can we find better choices of
norms of weight matrices that yield better bounds?

(II) Margin value: Our generalization bounds depend on the margin value of the predictors. As can
be seen, a larger margin value yields a better generalization bound. However, establishing a sharp
characterization of the margin value is technically very challenging, because of its complicated
dependence on the underlying data distribution and the training algorithm.

(III) Implicit bias of SGD: Numerous empirical evidences have already shown that RNNs trained
by stochastic gradient descent (SGD) algorithms have superior generalization performance. There
have been a few theoretical results showing that SGD tends to yield low complexity models, which
can generalize (Neyshabur et al., 2014; 2015; Zhang et al., 2016; Soudry et al., 2017). Can we
extend their argument to RNNs? For example, can SGD always yield weight matrices with well
controlled spectra? As mentioned, this is crucial to the generalization of MGU and LSTM RNNS,
since not well controlled spectra may even hurt generalization.

(IV) Adaptivity to the underlying distribution: The current PAC-Learning framework focuses on
the worst case. Taking classification as an example, the theoretical analysis holds even when the
input features and labels are completely independent. Therefore, this often yields very pessimistic
results. For many real applications, however, data are not obtained adversarially. Some recent
empirical evidences suggest that the generalization of neural networks seems very adaptive to the
underlying distribution: Easier tasks lead to low complexity neural networks, while harder ones
lead to highly complex neural networks. Unfortunately, none of the existing analysis can take the
underlying distribution into consideration.



Under review as a conference paper at ICLR 2019

REFERENCES

ARJOVSKY, M., SHAH, A. and BENGIO, Y. (2016). Unitary evolution recurrent neural networks.
In International Conference on Machine Learning.

BAHDANAU, D., CHO, K. and BENGIO, Y. (2014). Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473.

BARTLETT, P. L., FOSTER, D. J. and TELGARSKY, M. J. (2017). Spectrally-normalized margin
bounds for neural networks. In Advances in Neural Information Processing Systems.

CHO, K., VAN MERRIENBOER, B., GULCEHRE, C., BAHDANAU, D., BOUGARES, F., SCHWENK,
H. and BENGIO, Y. (2014). Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. arXiv preprint arXiv:1406.1078.

CHoI, E., BAHADORI, M. T., SCHUETZ, A., STEWART, W. F. and SUN, J. (2016a). Doctor ai:
Predicting clinical events via recurrent neural networks. In Machine Learning for Healthcare
Conference.

CHoI, E., SCHUETZ, A., STEWART, W. F. and SUN, J. (2016b). Using recurrent neural network
models for early detection of heart failure onset. Journal of the American Medical Informatics
Association, 24 361-370.

DASGUPTA, B. and SONTAG, E. D. (1996). Sample complexity for learning recurrent perceptron
mappings. In Advances in Neural Information Processing Systems.

DONAHUE, J., ANNE HENDRICKS, L., GUADARRAMA, S., ROHRBACH, M., VENUGOPALAN,
S., SAENKO, K. and DARRELL, T. (2015). Long-term recurrent convolutional networks for
visual recognition and description. In Proceedings of the IEEE conference on computer vision
and pattern recognition.

GOLOWICH, N., RAKHLIN, A. and SHAMIR, O. (2017). Size-independent sample complexity of
neural networks. arXiv preprint arXiv:1712.06541.

GRAVES, A. (2012). Sequence transduction with recurrent neural networks. arXiv preprint
arXiv:1211.3711.

GRAVES, A., FERNANDEZ, S., GOMEZ, F. and SCHMIDHUBER, J. (2006). Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In Proceed-
ings of the 23rd international conference on Machine learning. ACM.

GRAVES, A., MOHAMED, A.-R. and HINTON, G. (2013). Speech recognition with deep recurrent
neural networks. In Acoustics, speech and signal processing (icassp), 2013 ieee international
conference on. IEEE.

GREGOR, K., DANIHELKA, 1., GRAVES, A., REZENDE, D. J. and WIERSTRA, D. (2015). Draw:
A recurrent neural network for image generation. arXiv preprint arXiv:1502.04623.

HAUSSLER, D. (1992). Decision theoretic generalizations of the pac model for neural net and other
learning applications. Information and Computation, 100 78—150.

HOCHREITER, S. and SCHMIDHUBER, J. (1997). Long short-term memory. Neural computation,
9 1735-1780.

HUANG, L., L1u, X., LANG, B., YU, A. W. and L1, B. (2017). Orthogonal weight normalization:
Solution to optimization over multiple dependent stiefel manifolds in deep neural networks. arXiv
preprint arXiv:1709.06079.

JozEFOWICZ, R., ZAREMBA, W. and SUTSKEVER, I. (2015). An empirical exploration of recur-
rent network architectures. In International Conference on Machine Learning.

KARPATHY, A. and FEI-FEI, L. (2015). Deep visual-semantic alignments for generating image
descriptions. In Proceedings of the IEEE conference on computer vision and pattern recognition.

10



Under review as a conference paper at ICLR 2019

KOIRAN, P. (1998). Vapnik-chervonenkis dimension of recurrent neural networks. Discrete Applied
Mathematics, 86 63-79.

KRIZHEVSKY, A., SUTSKEVER, I. and HINTON, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems.

Ku, C.-C. and LEE, K. Y. (1995). Diagonal recurrent neural networks for dynamic systems control.
IEEE transactions on neural networks, 6 144—156.

LE, Q. V., JAITLY, N. and HINTON, G. E. (2015). A simple way to initialize recurrent networks of
rectified linear units. arXiv preprint arXiv:1504.00941.

LEE, C.-H. and TENG, C.-C. (2000). Identification and control of dynamic systems using recurrent
fuzzy neural networks. IEEE Transactions on fuzzy systems, 8 349-366.

Li, X., Lu, J., WANG, Z., HAUPT, J. and ZHAO, T. (2018). On tighter generalization bound for
deep neural networks: Cnns, resnets, and beyond. arXiv preprint arXiv:1806.05159.

LIANG, M. and Hu, X. (2015). Recurrent convolutional neural network for object recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

LipTON, Z. C., KALE, D. C., ELKAN, C. and WETZEL, R. (2015). Learning to diagnose with Istm
recurrent neural networks. arXiv preprint arXiv:1511.03677.

MIKOLOV, T., KARAFIAT, M., BURGET, L., CERNOCKY, J. and KHUDANPUR, S. (2010). Recur-
rent neural network based language model. In Eleventh Annual Conference of the International
Speech Communication Association.

MOHRI, M., ROSTAMIZADEH, A. and TALWALKAR, A. (2012). Foundations of machine learning.
MIT press.

NEYSHABUR, B., BHOJANAPALLI, S., MCALLESTER, D. and SREBRO, N. (2017). A pac-
bayesian approach to spectrally-normalized margin bounds for neural networks. arXiv preprint
arXiv:1707.09564.

NEYSHABUR, B., SALAKHUTDINOV, R. R. and SREBRO, N. (2015). Path-sgd: Path-normalized
optimization in deep neural networks. In Advances in Neural Information Processing Systems.

NEYSHABUR, B., TOMIOKA, R. and SREBRO, N. (2014). In search of the real inductive bias: On
the role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614.

PINHEIRO, P. H. and COLLOBERT, R. (2014). Recurrent convolutional neural networks for scene
labeling. In 31st International Conference on Machine Learning (ICML). EPFL-CONF-199822.

SAXE, A. M., MCCLELLAND, J. L. and GANGULI, S. (2013). Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120.

SOUDRY, D., HOFFER, E. and SREBRO, N. (2017). The implicit bias of gradient descent on sepa-
rable data. arXiv preprint arXiv:1710.10345.

SUTSKEVER, I., VINYALS, O. and LE, Q. V. (2014). Sequence to sequence learning with neural
networks. In Advances in neural information processing systems.

VORONTSOV, E., TRABELSI, C., KADOURY, S. and PAL, C. (2017). On orthogonality and learning
recurrent networks with long term dependencies. arXiv preprint arXiv:1702.00071.

XIE, D., XIONG, J. and PU, S. (2017). All you need is beyond a good init: Exploring better solution
for training extremely deep convolutional neural networks with orthonormality and modulation.
arXiv preprint arXiv:1703.01827.

XINGIIAN, S., CHEN, Z., WANG, H., YEUNG, D.-Y., WONG, W.-K. and W00, W.-C. (2015).
Convolutional Istm network: A machine learning approach for precipitation nowcasting. In Ad-
vances in neural information processing systems.

11



Under review as a conference paper at ICLR 2019

XU, K., BA, J., KIRoS, R., CHO, K., COURVILLE, A., SALAKHUDINOV, R., ZEMEL, R. and
BENGIO, Y. (2015). Show, attend and tell: Neural image caption generation with visual attention.
In International Conference on Machine Learning.

Yoo, S. J., PARK, J. B. and CHOI, Y. H. (2006). Adaptive dynamic surface control of flexible-
joint robots using self-recurrent wavelet neural networks. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics), 36 1342—1355.

ZHANG, C., BENGIO, S., HARDT, M., RECHT, B. and VINYALS, O. (2016). Understanding deep
learning requires rethinking generalization. arXiv preprint arXiv:1611.03530.

ZHANG, J., LE1, Q. and DHILLON, I. S. (2018). Stabilizing gradients for deep neural networks via
efficient svd parameterization. arXiv preprint arXiv:1803.09327.

ZHoU, G.-B., WU, J., ZHANG, C.-L. and ZHOU, Z.-H. (2016). Minimal gated unit for recurrent
neural networks. International Journal of Automation and Computing, 13 226-234.

12



Under review as a conference paper at ICLR 2019

A PROOFS IN SECTION 2

A.1 LIPSCHITZ CONTINUITY OF M AND /,

We show the Lipschitz continuity of the margin operator M and the loss function £, in the following
lemma.

Lemma 5. The margin operator M is 2-Lipschitz in its first argument with respect to vector Eu-
clidean norm, and £, is %-Lipschitz.

Proof. Lety, y' and z be given, then

M(ya Z) - M (?/7 Z)

Y. — Y. + (1?73;% - gﬁggyj> ’

<

Y= _y,/z

+ | maxy’ — y;
’ Tan Ji Vi
! !
<2y=ylle < lly=91,-
For function £, it is a piecewise linear function. Thus, it is straightforward to see that £, is %—
Lipschitz. O
A.2 PROOF OF LEMMA 2

Proof. The Lemma is stated with matrix Frobenius norms. However, we can show a tighter
bound only involving the spectral norms of weight matrices. Given weight matrices U, V, W and
U, V', W', consider the ¢-th outputs y; and y; of vanilla RNNs,

lye = yillo = oy (Vhe) — oy (VR
S Py ||Vht — V/ht + V/ht — Vlh;’HQ
< py IV = V) helly + [V (he = Biy)l)
< py (lhello IV = V'lly + By [[he — hil,) - (5)

We have to bound the norm of h; as in the following lemma.

Lemma 6. Under Assumptions 1 to 3, for t > 0, the norm of h; is bounded by

t
[|he]|y < min b/, phBWB@-M .
prnBy — 1

Proof. We prove by induction. Observe that for ¢ > 1, we have
[hilly = lon(Wae + Uhi 1),
< pn |Way + Uhy—1]),
< o (IWaelly + [Uhi-1ll,)
< pn (Bw Bz + By ||hi—1ly) - (7)

Applying equation (7) recursively with hg = 0, we arrive at,

(pnBv)' —1
i hDU) —
Ihelly < pnBw B, ;O(phBUV =mBw B 1
We also have ||h¢|loc < b. Thus, combining with the above upper bound, we get ||h:]|, <
min { bV/d, hBWBx% . Clearly, ||ho||2 = O satisfies the upper bound. O
p Ph BU 1 y pp

When pp, By = 1, the ratio is defined, by L’Hospital’s rule, to be the limit,

lim (pnBu)' — 1 —
p;LBU—>1 phBU - 1 '

13
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With Lemma 6 in hand, we plug the bound (6) into equation (5) and end up with

(pnBu)' —

1
lve = villy < pypnBw B IV =V'lly + py By ||hs — Rl - (8)
pnBy —1

The remaining task is to bound ||h; — h}||,, in terms of the spectral norms of the difference of weight
matrices, ||W — W’||, and ||U — U’|,.

Lemma 7. Under Assumptions 1 to 3, for ¢t > 1, the difference of hidden states h; and h; satisfies

lhe = Dilly < Lwe [W = Wly + Lo [U = Ul

t_  Bu)t—
where Ly = pn By BT and Lysy = pf By Byt it

Proof. Similar to the proof of Lemma 6, we use induction.

[he = hilly = |lon (Way + Uhy—1) — o (Way + U’k )|,
< pn||(W =Wz + Uhyy = U'hi_ |,
< pn (I(W = Whaglly + [Uhe—r = U'hi_y )
< pn (B [W =Wy 4 |[Uhes = Uy 4+ U'hacy = U'hi 4 )
< pnBa W = Wlly + pn (Ihe1ll 1U = U'lly + By [[he—s = by 4 ;) -
Repeat this derivation recursively, we have
1he = hilly < pnBa (W = WWlly + pn 1he—1ll U = U'lly + puBu [[he—1 — ki,
< puBy (14 pnBu) W = Wiy + pi (lhe-1lly + prBu [[he—2ll,) IU = U'l,
+ (pnBu)? ||he—2 — hi_s]|,

<.

=1 _ t—1 ‘
< By Y (pnBu) W =Wy +pn Y ((pnBu) ™ [Ihylly) U = U,

j=0 =0

+ (pnBu)* |ho — holl,
(pnBu)' —1 il
Bxli_ W —Ww' B0 (ks U—U'l.. ©

S eBeE | I, + Phjz:(:) ((pnBv) 17;15) | (PR

We now plug in the upper bound (6) to calculate the summation involving the Euclidean norms of
the hidden state h;.

t—1 t—1 t—1
> (onBu)' " hill, <> G+ 1)(enBu) prBwBa <t > _(pnBu) pnBw Bs
j=0 j=0 j=0
(pnBu)' — 1
< ppBw Byt——.
= phBw By — 1
Plugging back into equation (9), we have as desired,
By)' -1 (pnBy)' —1
he = Wl < pnBy LRV Ly 2 Bw Bt~ U~ U,
I = il < 1o A W =W, g By Bt A2 - U]
O
Combining equation (8) and Lemma 7, and |W||g > ||W||2, we immediately get Lemma 2. O
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A.3 PROOF OF LEMMA 3

Proof. Our goal is to construct a covering C(Fy, ¢, dist(-,-)), i.e., for any f; € F, there exists
fi € JFu, for any input data (z;)]_,, satisfying

(X0 - x| <
Note that f is determined by weight matrices U, V and W. By Lemma 2, we have
[#x0) = Fx)|| < Lo |V =P+ Lwee [W = |+ Lo |r =T -

sup
Xt

sup
Xt
Then it is enough to construct three matrix coverings, C (U, 3%,“’ H||F> C (V, 3%”7 ||||F) and

C (W, sz ||F> Their Cartesian product gives us the covering C(F3, €, dist(+, -)). The following
lemma gives an upper bound on the covering number of matrices with a bounded Frobenius norm.

Lemma 8. Let G = {A € R"*4 : || A]|; < A} be the set of matrices with bounded spectral norm
and € > 0 be given. The covering number A/ (G, €, ||-||r) is upper bounded by

: dyds
N@ammg<uamﬂ¢%¢£h> |
€

Proof. For any matrix A € G, we define a mapping ¢ : R4*d2 s R%d2 guch that ¢(A) =
[AT,Aly, ..., AT, 1T, where A.; denotes the i-th column of matrix A. Denote the vector space
induced by the mapping ¢ by V(G) = {#(A) : A € G}. Note that we have || A||Z = ZLI AlA. =
||¢(A)||3 and the mapping ¢ is one-to-one and onto. By definition, the square of Frobenius norm

equals the square of sum of singular values and the spectral norm is the largest singular value. Hence,
the equivalence of Frobenius norm and spectral norm is given by the following inequalities,

Al < Al < min { /a1, Va2 } |1 4].

Now, we see that if we construct a covering C(V(G),¢, ||-||2), then ¢~1C(V(G), ¢, |-]2) =

{¢7(v) :v € CV(G),¢€, ||]l2)} is a covering of G at scale e with respect to the matrix Frobe-

nius norm. Therefore, we get N' (G, €, ||-|[r) < N(V(G),€,]-||l2). As a consequence, it is suffices

to upper bound the covering number of V(G). In order to do so, we need another closely related

concept, packing number.

Definition 2 (Packing). Let G be an arbitrary set and € > 0 be given. We say P(G,¢, ||-||) is a

packing of G at scale e with respect to the norm || ||, if for any two elements A, B € P, we have
|A—B| > e

Denote by M(G, ¢, ||-||) the maximal cardinality of P(G, €, ||-||).

By the maximality, we can check that N'(C, e, ||-||) < M(C, e, ||-||). Indeed, let P*(G, ¢, ||-||) be a
maximal packing. Suppose there exists A € G such that for any B € P*(G, ¢, ||||), the inequality
||A — B|| > € holds. Then we can add A to P*(G, e, ||-||), while still keeping it being a packing,
which contradicts the maximality of P*(G, €, ||-||). Thus, we have N (G, €, ||||) < M(G, €, ||-]]).

Observe that V(G) is contained in an Euclidean ball B(0; R) € R%% of radius at most
R = max|$(A)]z < min {\/dl, \/dg} |A]l> < min {\/dl, \/dg} Al

Additionally, the union of Euclidean balls B(v;e/2) C R%92 with radius ¢/2 and center v €
PV(G),¢€ ||-|l2) is further contained in an Euclidean ball B(0; R.) of slightly enlarged radius
R. = min {\/dy,/d>} X + €/2. Those balls B(v;e/2) are disjoint by the definition of packing,
thus we have

vol(B(0, R.)) [ R.\"*
NOC) el < PO 1) < Sqe el — (5 )
. dyds
(1 T Y
where vol(-) denotes the volume. O
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By Lemma 8, we can directly write out the upper bounds on the covering numbers of weight matri-

ces,
¢ Van By Ly \ ™
N Uaian'”F < 1+6M )
3LU,t €

. dydh

4. Jd) By L

N(‘/’?,LE’”'F) < <1+6m1n{\/ y / n}Bv V,t) and
Vit

. dzdp,
N W € ”” < 1+6m1n{\/dz7\/dh}BWLW¢ !
3Ly, )T ¢ '

Then we immediately have,

€ € €
ist(-. ) < _c . ) €.
N dis.) <N (U g M) 8 (Vg e ) o (W g e
? . dyd
< (1 + (M)dh (1 n min{6./d,, M}BVLV,t> "
€ €

y <1 | Gmin{vd,, \/ﬁ}BwLw,tY””
/ _

Substituting the coefficients Ly ¢, Ly, and Ly, from Lemma 2, we get

N (F, e, dist(+, )

(prBu)t—1 2d° 2 (pnBu)*—1 @
. 6v/dpypn By By B, L2 1 - 6v/dpy pj By By By Bot 20—
=~ € €
3d?

(pnBu)t—1
< 1+—6€ft £ndy 2 :

€

where ¢ = pyphBVBWB max {1, p;, By }. For future usage, we also write down for small € > 0,

6ev/dt (ppBy)"—1 Bt-1
such that % > 1, the logarithm of covering number satisfies,

120\[15 (PhBU) _1

€

log N (Fy, €, dist(-, -)) < 3d*log

A.4 PROOF OF LEMMA 4

Proof. Define Fpq, = {(Xy, 20) = M(fue(Xy),2) : fr € Fi}. By Lemma 5, we see that M is
2-Lipschitz in its first argument. In order to cover Faq ¢ at scale e, it suffices to cover F; at scale %
This immediately gives us the covering number N (Faq 1, €, |||l oc) < N (Fz, €/2, dist(-, -)).

We then give the statement of Dudley’s entropy integral.

Lemma 9. Let H be a real-valued function class taking values in [—r, r| for some constant r, and

assume that 0 € H. Let S = (s1,.. ., S;») be given points, then
do 12 2rym
Rs(H) < inf ( a Vieg N(H, e, I de>.
a>0 \ \/m m

The proof can be found in Bartlett et al. (2017). Taking H = Faq¢, we can easily verify that

F e takes values in [—r, 7] with r = p, By ||h]|2 < py By min {b\/&, phBWBz%} and
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0 € Fq. Thus, directly applying Lemma 9 yields the following bound,

4o 12 [FVT
\/log/\f (Fmts 6 || lloo)d )

Rg(Fam,e) < éI;fo (

vm o om

We bound the integral as follows,

rv/m 2ry/m 24 cft(p;LBU) -1
/ \/IOgN fM ty € H ||<>o)d6 </ 3d2 10g< pnBy—1 de

€

(pnBu)t—1
2cft’;hBUUl>

«

< 2ry/m, | 3d? log (

Picking v = \/—% is enough to give us an upper bound on R (Faq ),

4 24 (prBu)t —
< — 2r2] 24 —_— .
i)‘ig(fM)_m+\/ﬁ\/3dr og( cevVdmi phBUfl

Finally, by Talagrand’s lemma (Mohri et al., 2012) and ¢, being %-Lipschitz, we have

1 4 24 (prBy)t -1
R <R < — 4+ ———[3d?r21 24edmt-H =L )
s(F) < JRsFma) < 2o ooy 3 Og( ‘ pnBy — 1

B PROOF IN SECTION 4

B.1 PROOF OF THEOREM 3

Proof. Under additional Assumption 4, we only need to show that, with the additional matrix in-
duced norm bound, we have a refined upper bound on the matrix covering number. The proof relies
on the following lemma adapted from Bartlett et al. (2017) Lemma 3.2.

Lemma 10. Let G = {A € R“@*% : ||A]5; < A}. We have the following matrix covering upper
bound

/\2
log N (G, ¢, || - ||2) < "l log(2d1ds).

The above Lemma is a direct consequence of Lemma 3.2 in Bartlett et al. (2017) with X being
identity, a = A\, b =1, and m = dl, d= dg We apply the same trick to split the overall covering
accuracy € into 3 parts, 5 L , 3 LVt and L , corresponding to U, V, W respectively. Then we

derive a refined bound on the covering number of Fi

9 (MyL{, + MyLY, + Mw LYy,
2

log N (Fy, €, dist(-, -)) < log(2d?), (10)

€
where d = max {dy, dy, ds }. Substituting (10) into the Dudley integral as in the proof of Lemma 4
yields

Reo(Frry) < inf [~ | 12 QTWw NFo /2, [lw)d
S\ Mt _Clgo \/» . og ty €/ 4, oo )A€ | .

m m

We bound the integral as follows,

2ry/m 2ry/m MULUt + MvL + MwL‘Z/V’t
/ V1og N (Fi,€/2, ||| oo )de g/ 36 - log(2d?)de

2ry/m
=36\ /MuLy,, + My L}, + M Ly, /log(2) log 2rym
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Choosing o = % yields

4 432
Rs(Far) < - + —\/MUL + My L%, + My L2, ,/log(2d%) log (Qm\/é) .

Finally, substituting the Lipschitz constant Ly, Ly, Ly, into the expression, we have

1 4 432
Rs(Fp) < - Rs(Fana) < oo+ —\/MULUt + My L3, + My Ly, /10g(2d?) log (2m/d)

Q{HlaX{]\fU7 Mv, Mw}t

<0 T ‘“Jlo?log(mf)

Combining with Lemma 1 completes the proof.

Under additional Assumption 5, our proof is based on the following result from Lemma 1 in
Neyshabur et al. (2017).

Lemma 11. Let f, (z) : X — R? be any predictor with parameter c, and P be any distribu-
tion on the parameter that is independent of training data. Then, for any v, > 0, with proba-
bility at least 1 — § over the training set of size m, for any « and any random perturbation (3 s.t.

Pg [maxzex |fars (2) — fo ()| < T] = 3, we have

Ro (fo) — Roy (fa) < 4\/KL (a+ ﬁ||7’_) 1+10g (%) ,

where KL (o + 8||P) is KL divergence of distributions « + /3 and P.

For convenience, we omit the superscript for sample index. Denote h; (o) and hy (o + 3) as the
hidden variables with parameters o and « 4 3 respectively. Then we provide an upper bound of the
gap of hidden layers before and after the perturbation. Denote the parameters o = vec ({W, U, V'})
and the perturbation 3 = vec ({0W, 6U, 6V }).

Forany ¢t € {1,2,...,T}, we have
([t (c + B) = ha (@)l

(2)
S Ph ||(U+6U) ht,1 (Oé"‘ﬂ) + (W+ 6W) Ty — Uht,1 (OL) — WZL'tH2

(i4)
< puBu [|[h—1 (@ + B) — hi—1 (@), + 5PhBU [ht—1 (@ + B)|ly + 6pn Bz Bw

t—1
< (pnBuv)! |ho (o + B) — ho (a H2+5Z B | h—iy (@ + B)||, + 8puBeBw > (pnBu)’,
i=1 =0
(1T)
By Lemma 6, we have that for any ¢t < T,
. By)t—1
I (@)l < mim {w, pthBW(”hU)} Y (12)
pnBy —1
Combining (11), (12), and h(o) = 0, we have
t t—1
[y (@ + B) = ey ()|, < 6Mn, Y (pnBu)' + 6pnB:Bw Y _(pnBu)’
i=1 i=0
By)t—1
< 6 (\npnBu + pu B Byy) 280N 1 (13)

prBy —1

Denote y; («) and y; (o + /3) as the out with parameters o and « + 3 respectively. Then we have

(%)
[y (4 B) = yey ()|, < py lI(L+8) Vhe (0 + B) = Vi ()|
< pyBy ||he (@ + B) = hy (@)l + 6py By ||he (a + B)]|

(pnBu)t —1

(i)
< 6p,By (A B B.B
< Spy By (An, prBu + pn W) onBu — 1

+ 0py By An,, (14)
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where () is from Lipschitz continuity of o, and (4¢) is from (12) and (13).

Then choosing the prior distribution and the perturbation distribution as A/ (0, %l ) and from the
concentration result for the spectral norm bounds, we have

_52
]P)ANN(O,OZIdXd) [”AH? > &) < 2pexp (2d0’2 .

This implies with probability at least 1/2, we have max {6 By,dBw,dBy} < ov/2d1n (12d).

t_ ..
Taking o = (*y/4py (()\htphBU + pnB:Bw) % + >‘ht> 2dIn (12d)) and combining
with (14), with probability at least 1/2, we have

max llye (@ + B) —ye (@) |5

By)t -1
< ((AhtphBU + pthBw) % + )‘hf,) -04/2d1n (12d) <
PrbU —

=2

Finally, we calculate the KL divergence of P and « +  with respect to this choice of o

- 202
Py (pnBy)' — 1 ’
=05 <(Ah,,phBU + pnByBw) ~———— + Aht> dIn (d) (Bf g + Biyg + Big)
Y phBU -1
_0 Pz (An.pnBu + prByBw)® (B* — 1)* pln (p) (Bt + By + BYx)
¥ (B—1)°
We complete the proof by applying Lemma 11. O

C PROOFS IN SECTION 5

C.1 PROOF OF THEOREM 4

Proof. We use the same argument from the analysis of vanilla RNNs to investigate the Lipschitz
continuity of MGU RNNs. Consider h; and h} computed by different sets of weight matrices.

|he — h'||2_H 1—7) ®©hs L ® hy — (1—r)) ®hy_y r,ﬁ@ﬁ; )

<[5 = r) @ Bially + (1= 1) © (s = By + | = D) © T

2+Hn@(ht—h;> .

<t = rell g 1= el e = B [, + llre = 41 |

+ il [

7
_ ht
2

Expand the expression of /. Note that 7 is nonnegative, and ||7||so < 1. Then we have ||hy oo < 1.
Additionally tanh(-) is 1-Lipschitz. Thus we get
Hht htH [Un(hi1 @ 1) + Whay — Up(By_y ©71) — Wi,
<N Un(her ©11) = U by © )|, + B [Wh = Wil
<||Un = Uplly [|Pe—1 @ 7elly + Buy, 7l o |1 = Bi_1 ]|, + Bu,
+ B, ||Wh - Wh||2
< helly UL = Ublly + Buy, Irellog [[he—1 = By 1 ||, + Buy, Ire = 7illy + Bo Wi = Will, -

hfs—lHOC |7 — 7“1/5”2

We have to expand r; — r} as follows,
lre — rillz = ||Wra:t +Uphi—qy — W)z — U;h;_1H2
< By [[W = Wi, —1 = by [ly + 1B l121 0 = U2
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We also need to bound ||a|2,
1Belly < 10 = 7ellog 1Fe—vlly + llre]
<L = 7elloo M-ally + el oo (Bwi, Be + Buy, [Irell o [1he-11l2)
= (I = 7illoe + By a2 ) Iha-ally + B, B

2
< max {[|1 = vl + By 5% } [1he-alls + B, Bo.

Applying the above inequality recursively and remember |hlc < 1, we get |hl, <

min{\/ﬁ, Z= By, B, } with # = max;<; {||1 — 7]l + Bu, \|rj\|§o}. Put all the above in-
gredients together, we have
[he = hill, < (B8 + 2By, + By, Bu,,) ||he—1 — hi_4 ]|,
+ \/gHUh - U, 2 T Be Wi — W]'/LH2
(24 Bu,)Va|Uy ~ Ullly + (2B + Bu, B.) [ W, — W],

Apply the above inequality recursively, denote by § = 5 + 2By, + By, By, , we have

t t
e — Bylly <VAS 60 U — Uplly + Bo S 67 [ Wi — Wi,
j=1 j=1

t t
+ (2Vd+ By, Vd) 300 U, = Ullly + (2Bs + Bu, B.) > 07 |[Wy = W],
j=1

j=1

We then derive the Lipschitz continuity of ||y;]|2,

lye = well, < Pvallht — hill2 + py V||V — V'Ilz
0t —

0-1

0t —1 6!

< PyBV\f ||Uh Uh”z + pyBv By
-1
+ py By (2\/&+ BUh\/E) -1 1Ur = Uplly + pyBv (2Bs + Bu, B) -1 W = W,

Following the same argument for proving the generalization bound of vanilla RNNs, we can get the
generalization bound for MGU RNNSs as

dpyBme{\f Bw,B mﬁ 1} log (d\ﬁet 1 logl
+ / 5
m

Vmy

||Wh Wil + py V[V = V|2

P (% # 2) < Ry(fe) + O

C.2 PROOF OF THEOREM 5

Proof. We first bound the norm of h; as follows,

[tll2 < [lotlloc[[tanh(ce)[[2 < flotloolle 2
< lgelloollce—llz + lIrellolletll2
< lgtlloclice—1llz + lI7ellco (Bw, Be + Bu,[|hi-1ll2)
< gtllollce—1llz + lI7ellco (Bw. Be + Bu.[lot]lcollct-11l2)
< (lgtlloo + lI7tlloollot]l oo Bu.)

By applying the above inequality recursively, we have [|ht]l2 < |letl]l2 < Bw, B where

Igf 1°
B = maxj<; {||gilloo + |7llooll0jlloc Br, }. We also have ||hs||s < v/d. Thus, put together, we
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have ||h¢]l2 < min {\f Bw, B2 -1 /3t i } Next, we investigate the Lipschitz continuity of h;.
[[he = hilly < [lo¢ © tanh(c;) — oy © tanh(cy)]|,
< [lor — opl2[ltanh(es) oo + oG llocllce — cill2

We have to expand o; — o},
l|o: — 0ill2 < Bel[Wo — Wolla + By, [|ht—1 — he—1ll2 + [|he—1ll21Us — Uplla.

Note that || By, ||2 is usually small, o; and o} are close, and we have ||hi—1—h;_1]l2 < ||ot]|co|lct—1—
ci_1ll2 < llet—1 — ¢;_1]|2- Thus, we can derive

lor = 0}ll2 < Bul|Wo = Wll2 + Bu, lei—1 — cio1ll2 + V|| Uy — U -
We also expand ¢; — ¢} to get,
llee = cillz < llee-1llocllge — gillz + Irtllollee—1 — ch_yllz + [Ellosllre — Tell2 + lIrtlloclICe — 2.
We also have,
¢t — Cll2 < Bu, [|ht—1 — hy_1ll2 + |he—1ll2|Uc — Ugll2 + Be[We — Wella,
gt = gilla < BallWy = Wyllz + Bw, lhe—1 = hy_y |l + V||[Uy — Uyl2,  and
Ire = 7ill2 < Bo | Wy = W/ll2 + Bw, lhe—1 = hy_y || + V||[U, — Uy -
Putting together, we get
llee — cill2
By ([[We = Wiz + Wy = Wyl + [W, — Wi]l2)
+Vd (|lUe = Ullz + Uy = Ugllz + U = Uf]2)
+ llgellocllee—1 = ct1ll2 + (I7elloo Bu. + Bu, + Bu,) [lhe—1 — hi_1 ]2
By (|[We = Wllz + Wy = Wyll2 + W, = W[l + (Bu, + Bu, + Bu,)[Wo — Wy|2)
+ VA (|U. = Ulllz + Uy = Ull2 + U = Ull2 + (Bu, + Bu, + Bu,)||Us — Ul||2)
+ (lloellollrelloc Bu, + Bu, + Bu, + Bu,) -1 = ¢j_1l2-

By induction, we have

|\Ct—02||2
Ht
< Boy (||W Wlll2 + Wy = Willz 4+ Wy — W/|l2 + (Bu, + Bu, + Bu, ) |[Wo — W, |2)

2) )

+ \/&07:1 (10 = Uil + 1Ug = Ugllz + U = Uyll2 + (Bu, + By, + Bu,)
where ¢ = 3 + By, + By, + By,. Now we immediately have
[l — Rl
< Bm’;—_l (IWe = Wlll2 + Wy — W, |2 + W, — W]z + (Bu, + By, + Bu,)|[We — W.||2)

+\f7 (I = Ulll2 + 11Uy = Ugllz + 1U- = Ull2 + (Bu, + Bu, + Bu,)|[Us — Ug|l2) -

Then the Lipschitz continuity of y; can be written as
lye = will2 < pyBv ke = hill + py V|V = V']l

Following the same argument for proving the generalization bound of vanilla RNNs, we can get the
generalization bound for LSTM RNNs as

dpy By mln{\f Bw, Bz i 1} 1og( ef 1 log
P (2 # 2) < Ry (fe) + iy 8

21



Under review as a conference paper at ICLR 2019

D EXTENSION TO CONVOLUTIONAL RNNS

We further extend our analysis to Convolutional RNNs (Conv RNNs). Conv RNNs integrate convo-
lutional filters and recurrent neural networks. Specifically, we consider input 2 € R? and k-channel
k-dimensional convolutional filters Z;, . .., Z; € R* followed by an average pooling layer over the
k channels for reducing dimensionality. Extensions to convolution with strides and other kinds of
average pooling layers (e.g., blockwise pooling) are straightforward.

Here we denote the circulant-like matrix gen-

erated by Z; as o
r—T B Cl l1,
Z O.covvnnt. 0 B '
—_ P ] ~ Average Pooling
d—k = ‘= mTTTTT 7]
07 0...... 0 Cor i XE:}E EE P H
—— [z
d—k—1 ] Ixx
C’i = |: . | e R(d_k+1)><d, Cs ZJIK v
T | Z3
0...... 0 Z,;, 0 Wr
Od_k_l 0 7 Figure 5: Illustration of input 2 € R convolving
— i with 3-channel 3-dimensional convolutional filters
L d—k J 11,7, and Z3, followed by an average pooling.
and write Wz = [C{,...,C/]". We further denote P =  [Ig—k41 La—k+1 -+ Ta—r41], where

totally k& identity matrices
1 denotes the d-dimensional identity matrix. Define Z = [Z1,...,Zy], and Z * x = PWzz. Given
a sample (x4, 2;)1L_;, the Conv RNNs compute h; and y; as follows,

hi=0n(Uxhi1 +Wxx), and y =0, (V*h),

where hy,z; € R, and U, V, W € RF** are matrices with column vectors being k-dimensional
convolutional filters. We use zero-padding to ensure the output dimension of convolutional filters
matches the input (Krizhevsky et al., 2012). To get y;, we convolve h; with V followed by an
average pooling to reduce the dimension to K. Since we aim to show that Conv RNNs reduce the
dependence on d in generalization through parameter sharing, we simplify the notations to assume
ho = 0, and impose the following assumption. Extensions to general settings are straightforward.

Assumption 8. The activation operators oy, and o, are 1-Lipschitz with ¢, (0) = ¢,(0) = 0. oy,
is entrywise bounded by 1. The convolutional filters I/, V, and WV are orthogonal with normalized
columns, i.e., U U =UUT = %Ik, Vy=py’ = %Ik, and WTW =WWT = %Ik.

We remark that the orthogonality constraints enhance the diversity among convolutional filters (Xie
et al., 2017; Huang et al., 2017). Additionally, the normalization factor % is to control the spectral
norms of Wy, Wy, and W)y, which prevents the blowup of hidden state. Denote by F_ ; the class of
mappings from the first ¢ inputs to the ¢-th output computed by Conv RNNs. Then the generalization
bound is given in the following theorem.

Theorem 6. Let activation operators oy and oy be given, and Assumptions 1 and 8 hold. Then for
(z4,20)7_y and S = {(zi¢,24)7_1,i=1,...,m} drawn iid. from any underlying distribution
over RA*T x {1,..., K}, with probability at least 1 — § over S, for every margin value v > 0 and
every f: € F.. forinteger t <T', we have

1
]P)(zt#zt)ﬁﬁw(ft)‘FO BxktW_Fﬁ '

The detailed proof is provided in D.1. Similar to the analysis of vanilla RNNs, our proof is based
on the Lipschitz continuity of Conv RNNs with respect to its model parameters in the convolutional
filters. Specifically, by Assumption 8, the spectral norms of Wy, Wy,, and W) are all bounded by
1. Combining with the inequality, |[Wy|[r < Vd|[U||r, we have [ly; — yill2 < Ly||V — V'||r +
Ly U — U'|[g + L ||W — W||g, where Ly, Ly, and Lyy , are polynomials in d and t.
Additionally, observe that the total number of parameters in a Conv RNN is at most 3k2, which is
independent of input dimension d. As a consequence, the generalization bound of Conv RNNs only
has a lieanr dependence on k and ¢.
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D.1 PROOF OF THEOREM 6

Proof. We first characterize the Lipschitz continuity of ||y:||2 with respect to model parameters I/,
W and V. We have

lye = will2 < pyll el Wy = Warlla + py Wy 127 — htl2.
Since || |oo < 1, we have ||k |2 < v/d. Then we expand h; — b,

17t = hyll2 < pullU' * heey + Wk ze —U" 5 hy_y = W' 2|2
= thPWuhtfl + PWywax — PW&h;_l - PWWSUtHQ
< pul Pll2lWehi—1 + Wwa, — Wby — Wiprae |2

< pullPll2 | BullWw — Winrll2 + V[ Wo — Warr|l2 + [Warl2 ) he—1 — h271||2}

Observe that we have by the definition of circulant matrix,
[Wat = W[5 < (W = War|lf = (d = k) [U =U'|[E < dlu = U3
The same holds for Wyy — Wy, and Wy — Wy, We also have ||P|l2 = 1. The remaining task

is to bound the spectral norm of Wy, and Wy,. Consider the matrix product WJ Wy We claim

that the diagonal elements of W,] Wy, is bounded by Zle lU:]|3, and the off-diagonal elements
are zero. To see this, denote by Cy,, the circulant like matrix generated by U/;. Then we have

Wy = [Cy,,--.,Cy, 1" The diagonal elements of W, Wy, are
k k
(W Wet) = D (G, o), < D il
=1 i=1

By the orthogonality of U, the off-diagonal elements are
k

(W War) ., = - (Gl ) = Ek: (Cw),, (Cu,),, = 0.

Jj=1 Jj=1

Thus, the spectral norm ||[Wy||2 < Zi;l lLi:]13 < 1, and ||Wy||2, [[Wiv|l2 < 1 also hold. Then
we can derive

1he = hilla < ppBo VAW = Wl + pud U —U' |5 + pule—1 — hi_y |2-

Apply the above inequality recursively, we get

I Pﬁ—l / P?L—l 4
|he = ll2 < puBaVd W =Wlg + prd [t —U'|le
pr —1 pr —1

< BpVat|W — W' |le + dt | —U'||r.
Thus, we have the following Lipschitz continuity of ||y |2,
lye = yillz < IV = V|l + BoVat|W — W' |le + dt |l —U'|Jr.
We also bound the norm of i by induction. Specifically, we have
[hell2 < pull PWehe—y + PWwyaell2 < pulWehi-ill2 + pullWwaillz < [|he—1ll2 + Be.

Applying the above expression recursively, we have ||h|s < min{/d, B,t} < B,t. Then fol-
lowing the same argument for proving the generalization bound of vanilla RNNs, we can get the
generalization bound for Conv RNNs as

1
P(Z £ 2) <R (f)+0 BmktvﬁidtM)+\/loié |
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