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ABSTRACT

Loss functions play a pivotal role in deep metric learning (DML). A large variety
of loss functions have been proposed in DML recently. However, it remains dif-
ficult to answer this question: what are the intrinsic differences among these loss
functions? This paper answers this question by proposing a unified perspective to
rethink deep metric loss functions. We show theoretically that most DML methods
in deep metric learning, in view of gradient equivalence, are essentially weight as-
signment strategies of training pairs. Based on this unified view, we revisit several
typical DML methods and disclose their hidden drawbacks. Moreover, we point
out the key components of an effective DML approach which drives us to propose
our weight assignment framework. We evaluate our method on image retrieval
tasks, and show that it outperforms the state-of-the-art DML approaches by a sig-
nificant margin on the CUB-200-2011, Cars-196, Stanford Online Products and
In-Shop Clothes Retrieval datasets.

1 INTRODUCTION

Deep metric learning (DML) approaches learn to project images to a discriminative embedding
space via deep neural networks. The embedded vectors of similar samples are closer while that of
dissimilar samples are further. We call a method pair-based when its loss function can be expressed
in terms of pairwise cosine similarities 1. Most DML methods belong to this category, such as
contrastive (Hadsell et al. (2006); Sohn (2016)), triplet (Hoffer & Ailon (2015)), quadruplet (Law
et al. (2013)), lifted structure (Oh Song et al. (2016)), N-pairs (Sohn (2016)), binomial deviance (Yi
et al. (2014)), histogram (Ustinova & Lempitsky (2016)) and angular (Wang et al. (2017)) losses.

One critical problem of these pair-based methods is how to discover and harness informative pairs,
especially hard negative pairs because they pose two challenges for metric learning: (1) The number
of negative pairs is second polynomial to the dataset size, thus utilizing all of the them is time-
consuming and infeasible. (2) As we will show in our experiment section, training with numerous
easy pairs causes performance degradation if involving these easy instances in the training process.

Existing DML methods propose different strategies to mitigate this problem. Contrastive loss ne-
glects the negative pairs whose dot products are below a given threshold, while triplet loss only
utilizes the negative pairs whose similarities are higher than that of the positive minus a fixed mar-
gin. However, contrastive is too absolute while triplet is too sensitive. Both cannot make full use
of all the informative pairwise relations as stated in Hoffer & Ailon (2015); Wu et al. (2017). In
contrast to employing a fixed margin, some other pair-based methods with log-exp formulation, like
binomial deviance and N-pairs losses, solve this problem in a relative subtle way which will be
detailed in Section 4.

In this paper, we establish a unified view of deep metric learning by theoretically proving all pair-
based methods are equivalent to weight assignment strategies (Section 3). Thus, the intrinsic differ-
ence of these pair-based methods is that they assign pairs different weight coefficients, which leads
us to rethink existing DML methods and discover their concrete pros and cons.

To seek an effective DML method, we posit two key factors of an suitable weight assignment (Sec-
tion 5): (1) Assigning zero weight coefficients to easy pairs, since such pairs are already well taken

1For simiplicity, we use cosine similarity instead of euclidean distance, since we assume the embedding
vector is L2 normalized.
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care of by the current model. Assigning easy pairs with nonzero weight may lead performance
degradation. (2) Assigning weight to a pair by considering its absolute similarity and relative simi-
larity compared with other pairs sharing the same anchor.

To the best of our knowledge, none of existing methods satisfy these two factors simultaneously.
Instead, we propose a novel weight assignment strategy (Section 5.2) to solve this problem. It
distinguishes the uninformative pairs through valid triplet based hard mining (VTHM) and assigns
suitable weights to pairs via relative and absolute similarity based weight assignment (RAW).

To demonstrate the effectiveness of our proposed unified weight assignment framework, we conduct
experiments on CUB-200-2011 (Wah et al. (2011)), Cars-196 (Krause et al. (2013)), Stanford Online
Product (Oh Song et al. (2016)), and In-Shop Clothes Retrieval (Liu et al. (2016b)) datasets for the
task of image retrieval (Section 6). Experimental results show that our framework improves the state-
of-the-art performance by a large margin. Moreover, existing methods, such as binomial deviance
and lifted structure loss, can also be improved when they get rid of the side effect of easy samples
guided by our framework.

2 RELATED WORK

Pair-based DML. Siamese network (Hadsell et al. (2006)) that learns embedding via contrastive
loss, is one of the first pair-based DML methods. It pulls positive pairs as close as possible, while
keeps negative pairs farther than a give distance. Triplet loss (Hoffer & Ailon (2015)) is based on
triplets that consists of one positive pair and one negative pair sharing the same anchor point and
targets learn an embedding space where the similarity of the negative pair is lower than that of the
positive pair by a given margin. Inspired by triplet loss, methods using quadruplets emerged, e.g.,
PDDM (Law et al. (2013)) and histogram loss (Ustinova & Lempitsky (2016)).

Oh Song et al. (2016) argue that contrastive and triplet losses have not exploited all the pairwise
relations of samples in one mini-batch, and propose lifted structure loss to utilize all the pairwise
relations. However, it only subsamples approximately equal number of negative pairs of examples
as positive randomly, thus, abandons a large number of informative negative pairs. Yi et al. (2014)
propose binomial deviance loss using binomial deviance to evaluate the cost between labels and
similarities, and pay more attention on hard pairs.

Hard Mining and Sampling The importance of hard mining in DML has been realized recently
(Schroff et al. (2015); Harwood et al. (2017); Wu et al. (2017); Ge et al. (2018)), since most pairs,
especially negative pairs, are uninformative and cannot boost the model further. Schroff et al. (2015)
propose semi-hard mining, which only uses semi-hard triplets whose negative pair is farther than its
positive pair. Such valid semi-hard triplets are scarce thus semi-hard mining needs a large batch-
size, 1800 in the paper, to seek informative pairs. Harwood et al. (2017) provide a framework named
smart mining to search hard samples from the whole dataset, which suffers from off-line computa-
tion burden. HTL (Ge et al. (2018)) builds a hierarchal tree of all the classes to find hard negative
pairs. Wu et al. (2017) discuss the importance of sampling, and propose a sampling approach named
distance weighted sampling which sample negative examples uniformly according to similarity.

Compared with these methods above only focusing on sampling, we propose a more generalized
view: weight assignment view, and sampling is a special category of weight assignment whose
weights are 0 or 1. Unlike some heuristically designed pair-based methods, our DML method is
carefully designed driven by the instruction of the unified weight assignment view.

3 A UNIFIED WEIGHT ASSIGNMENT VIEW

Notations. Let xi ∈ Rd×1 be a real valued instance vector and yi ∈ {1, 2 . . . , C} denote the label
of xi. Then we have the instance matrix X ∈ Rm×d and the label vector y ∈ {1, 2, . . . , C}m
for m training samples. An instance xi is projected to a unit sphere in an l dimension space by
f(·;θ) : Rd → Sl−1, where f is a learned function (a neural network) parameterized by θ.

In this paper, we use the cosine similarity si,j =< f(xi;θ), f(xj ;θ) > to measure the similarity
between xi and xj , resulting an m × m similarity matrix S whose element at (i, j) is si,j . Fur-
thermore, Pi (Ni) denotes the index set of positive (negative) samples of the anchor point xi (i.e.,
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Pi = {j|yj = yi ∧ j 6= i}, and Ni = {j|yj 6= yi}). Given a pair-based DML loss L(X,y;θ), it
can be expressed as a function in terms of S: H(S,y) according to the definition of pair-based.

To better understand our theorem, we define gradient equivalence as following:

Definition 3.1. At the t-th iteration, given two loss functions F(X,y;θ) and G(X,y;θ), if

∂F(X,y;θ)

∂θ

∣∣∣∣
t

=
∂G(X,y;θ)

∂θ

∣∣∣∣
t

, (1)

where ∂F(X,y;θ)
∂θ

∣∣∣∣
t

is the partial gradient of F(X,y;θ) w.r.t. θ at θt, then we call F(X,y;θ) and

G(X,y;θ) are gradient equivalent at the t-th iteration.

Gradient equivalence indicates these two functions have equal derivatives w.r.t. the model parame-
ters at the t-th iteration, thus two gradient equivalent loss functions are the same for model training
with gradient-based optimizer such SGD and Adam. Optimizing one loss function is equivalent to
optimizing the other.

Theorem 3.1. For any pair-based loss L(X,y;θ), there exists a loss function gradient equivalent
to L with the following formulation:

F(S,y) =
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∑
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∑
j∈Pi

wi,jsi,j

 , (2)

where wi,j ≥ 0 denoting the weight assigned to pair {xi,xj}.

Proof. Since L is pair-based, L can be expressed as a function of S: H(S,y). Thus the partial
gradient of L w.r.t. θ at t-th iteration is:
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(3)

where Ii,j = 1 when {xi,xj} is a positive pair, otherwise 0.

Let wi,j =
1
2 (1− 2Ii,j)

∂H(S,y)
∂si,j
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t

, then in Equation (2),
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 (4)

is gradient equivalent to L.

Theorem 3.1 unifies all existing pair-based approaches as weight assignment scheme and sheds light
on the dark side of them. In the next section, we unveil their vital drawbacks that are undetectable if
only analyzing their loss functions by studying their respective weight assignments.

4 RETHINKING EXISTING METHODS

In this section, we revisit several classic pair-based DML loss functions: contrastive, triplet, bino-
mial deviance and lifted structure losses in the weight assignment scenario.
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(a) Contrastive loss (b) Triplet loss (c) Lifted structure loss (d) Binomial deviance loss

Figure 1: Weight coefficient vs. pairwise cosine similarity. The solid green lines show the weight
assigned for positive pairs, the dotted blue for negative pairs.

Contrastive Loss. Hadsell et al. (2006); Chopra et al. (2005) propose Siamese network, which
encourages positive pairs to be closer, and negative pairs to be further when their cosine similarity
is higher than a fixed threshold. Its loss function formulates as below:

Lcontrast := (1− Ii,j)[si,j − λ]+ − Ii,jsi,j , (5)

where λ is the threshold. According to Equation (4), its weight assignment can be formulated as
below:

wi,j = IA({xi,xj}), (6)
where IA is indicator function of a subset A = {{xi,xj}|j ∈ Pi}

⋃
{{xi,xj}|si,j > λ ∧ j ∈ Ni}.

The curves of weight assigned to pairs vs. similarities are shown in Figure (1a). The weight of any
positive pair is 1. The weight of a negative pair is 1 if its similarity is higher than λ, otherwise is 0.

From the weight assignment, we find one drawback of contrastive loss that it treats all selected pairs
equally, while neglecting their different hardness.

Triplet Loss. Hoffer & Ailon (2015) learn a discriminative model based on a triplet, which consists
of an anchor xi, a positive instance xp and negative instance xn:

Ltriplet := [si,n − si,p + λ]+, (7)

where λ is the given margin. Weight assignment of triplet loss is:

wi,j = IB({xi,xj}), (8)

where IB is indicator function of a subset B = {{xi,xp}|si,n − si,p + λ > 0}
⋃
{{xi,xn}|si,n −

si,p + λ > 0}. The weight curves of triplet loss are exhibited in Figure (1b), where we find only
pairs in B are assigned with weight 1.

Two problems come to light when we rethink triplet approach from our unified view: One is the
same with contrastive loss in assigning equal weights to selected pairs without considering their
different hardness. Moreover, for triplet loss, whether a positive pair is selected intoB only depends
on one randomly sampled negative pair, and vice versa. This makes triplet loss tend to miss large
amount of informative pairs and to be unstable during the training process.

Lifted Structure Loss. Oh Song et al. (2016) propose lifted structure loss whose objective is to ex-
ploit all the pairwise distances in a mini-batch, but the original version of lifted structure approach
has not utilized all the negative pairs of one anchor. Hermans* et al. (2017) put forward a gener-
alized form of lifted structure loss which leverages all anchor-positive and anchor-negative pairs as
following:

Llifted :=
1

m

m∑
i=1

{
log

[∑
k∈Pi

exp (−si,k)

]
− log

[∑
k∈Ni

exp (λ− si,k)

]}
+

(9)

When the hinge function w.r.t. xi in above equation returns nonzero value, we get its weight wi,j

assignment by calculating the gradient of Llifted w.r.t. si,j and si,k:

wi,j =
exp (−si,j)∑

k∈Pi
exp (−si,k)

=
1∑

k∈Pi
exp (si,j − si,k)

, if j ∈ Pi (10)

wi,j =
exp (si,j)∑

k∈Ni
exp (si,k)

=
1∑

k∈Ni
exp (si,j − si,k)

, if j ∈ Ni (11)
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When the hinge function returns zero value, the weights assigned to all involved pairs are zeros.

Its weight distribution is illustrated in Figure (1c). From Equation (11) and Figure (1c), we find
that lifted structure has important improvement compared to contrastive and triplet approaches: It
assigns pairs with different weight coefficients based on their similarities, while contrastive and
triplet methods only think of pairs or triplets at instance level and assign pairs with 0 or 1 weight
values. However, lifted structure is still confronted with two drawbacks from our weight assignment
perspective: (1) It evaluates the overall state of all pairs with the same anchor to determine whether
assigning all these pairs with zero or nonzero weights. In consequence, it ignores some informative
pairs or assigns nonzero weights to numerous uninformative pairs. (2) In Equation (11), the weight
of one pair only depends on its relative hardness (si,j − si,k) compared with other pairs, while
neglects its absolute similarity.

Binomial Deviance Loss. Yi et al. (2014) propose the binomial deviance approach, whose loss
function is:

Lbinomial :=

m∑
i=1

 1

|Pi|
∑
k∈Pi

log [1 + exp (α(γ − si,k))] +
1

|Ni|
∑
k∈Ni

log [1 + exp (β(si,k − γ))]

 , (12)

where γ is a hyper-parameter which serves as a soft threshold similar as λ in contrastive loss, α and
β represent the sensitivities of positive and negative pairs to the threshold γ, respectively.

Its weight assignment strategy follows:

wi,j =
1

|Pi|
α exp (α (γ − si,j))
1 + exp (α (γ − si,j))

, if j ∈ Pi (13)

wi,j =
1

|Ni|
β exp (β (si,j − γ))
1 + exp (β (si,j − γ))

, if j ∈ Ni (14)

We display its weight distribution in Figure (1d). Binomial deviance approach utilizes the sigmoid
function to replace the unit step function in contrastive loss, thus provides smoother weights. The
main drawback of binomial deviance is similar with lifted structure: It assigns all pairs with nonzero
weights, especially the numerous uninformative negative pairs, which brings side effect to model
training. Another drawback is that it solely takes the pair’s absolute similarity (si,j − γ) into con-
sideration, while ignoring the relative similarity compared with other pairs, which is contrary to
lifted structure loss.

To summarize, contrastive and triplet approaches are impeded by assigning all hard pairs with the
same weight without being aware of their different hardness. Lifted structure and binomial deviance
approaches mitigate the problem by assigning pairs with weights dynamically based on pairwise
similarities. However, they suffers from serious side effects e.g., numerous easy pairs, only consid-
ering the absolute or relative similarities of pairs.

5 WEIGHT ASSIGNMENT DESIGN

Theorem 3.1 bridges all the pair-based DML methods with weight assignment strategies of pairs,
which instructs that designing a powerful DML approach is equivalent to seeking a suitable weight
assignment. From the review of existing DML methods, we argue that an effective weight assign-
ment strategy should have two desirable properties: (1) Not involving uninformative pairs in the
learning process. (2) Assigning weight coefficients to pairs base on their both absolute and relative
similarities. In the following, we elaborate how to design such a DML method.

5.1 VALID TRIPLET BASED HARD MINING

As the model converges, most pairs, especially negative pairs, have been well addressed and cannot
further improve the model. In fact, these easy pairs without any useful information may bring side
effect to the training process. That is to say, only samples that can provide useful information
should be involved in the training. Then, it comes the problem mentioned frequently in recent
papers: hard mining, which is to exploit informative samples to promote the learning of an effective
network. Here we propose our hard mining approach that takes the local distribution of all the pairs
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Anchor Hardest Positive

Margin

Informative Negative Sample

Negative Sample

Positive Sample or Anchor

Margin

Informative Positive Sample

Hardest Negative

Figure 2: Valid triplet based hard mining: for any anchor point, every positive pair is compared with
the hardest negative pair, and vice versa.

of one anchor into consideration. First, for every sample xi as the anchor, and the hardest positive
sample of xi is defined as xp∗ := argminxk:k∈Pi

si,k, similarly, the hardest negative sample is
xn∗ := argmaxxk:k∈Ni

si,k. Second, we compare each negative sample xj with xp∗ . It is treated as
informative when si,j > si,p∗ −λ, and for any positive pair {xi,xj}, it is considered as informative
when si,j < si,n∗ + λ. The sampling process is shown in Figure (2). We call it valid triplet based
hard mining (VTHM), since only triplets involving these pairs may have nonzero triplet loss. The
index set of informative positive (or negative) samples of xi is denoted as P̃i (or Ñi).

Compared with the triplet approach selecting one pair only based on another randomly sampled
pair, our VTHM selects positive (negative) pair by comparing it with all the negative (positive) pairs
with the same anchor, which is stable and exploits more informative pairs. Compared with the hard
mining method in (Harwood et al. (2017)), VTHM doesn’t need off-line computation and can be
directly combined with existing pair-based losses to improve their performances. Compared with
the distance weighted sampling in Wu et al. (2017) that targets to select a wide range of negative
examples w.r.t. similarity, our method focuses on mining pairs with information.

We assign zero weights to these uninformative pairs which don’t belong to P̃i

⋃
Ñi. Next, we

describe our weight assignment strategy for the informative pairs in P̃i

⋃
Ñi.

5.2 RELATIVE AND ABSOLUTE SIMILARITY BASED WEIGHT ASSIGNMENT (RAW)

Our weight assignment strategy takes advantage of lifted structure and binomial deviance ap-
proaches as below:

wi,j =
1[∑

k∈P̃i
exp (α (si,j − si,k))

]
+ exp (α (si,j − γ))

if j ∈ P̃i (15)

wi,j =
1[∑

k∈Ñi
exp (−β (si,j − si,k))

]
+ exp (−β (si,j − γ))

if j ∈ Ñi, (16)

where α, β, γ are hype-parameters.

In Equation (15),
∑

k∈P̃i
exp (α (si,j − si,k)) captures relative similarity between the positive pair

{xi,xj} and other informative positive pairs, and exp (α (si,j − γ)) utilizes a fixed threshold γ
to evaluate its absolute similarity. Analysis is the same for negative pairs. We call it relative and
absolute similarity based weight assignment (RAW). Though RAW seems a simple combination of
lifted structure and binomial deviance, it is not trivial to derive without our unified view.

To avoid the computation of wi,j for each pair {xi,xj}, we obtain the loss function LRAW that is
gradient equivalent to our proposed weight assignment:

LRAW =
1

m

m∑
i=1

 1

α
log

1 + ∑
k∈P̃i

exp (−α(si,k − γ))

+
1

β
log

1 + ∑
k∈Ñi

exp (β(si,k − γ))

 (17)

6



Under review as a conference paper at ICLR 2019

Table 1: Ablation study on CUB-200, Cars-196, SOP, In-shop. Only Recall@1 is given.

CUB-200 Cars-196 SOP In-shop

Binomial 64.45 80.78 73.4 84.78

RAW 65.06 81.27 77.0 88.38

VTHM 61.55 76.61 76.82 88.72

Binomial+VTHM 65.34 81.48 77.22 88.87

RAW+DW 65.67 80.70 77.39 88.79

RAW + SemiHard 64.97 80.48 77.12 88.66

RAW+VTHM (ours ) 66.85 83.69 78.18 89.64

6 EXPERIMENTS

We use PyTorch to implement our model. For the network architecture, we use the Inception network
with batch normalization (Ioffe & Szegedy (2015)) pretrained on ImageNet. We add an FC layer
at the top of the network following the global pooling layer. L2 normalization is applied to the
embedding vectors. All the input images are first resized to 256×256 and then cropped to 227×227.
For data augmentation, we used random crop with random horizontal mirroring for training and only
one center crop for testing. The embedding dimension is set to 512. We use the Adam optimizer with
a fixed 10−5 learning rate for all experiments. We conduct the experiments on four standard datasets:
CUB-200-2011 (Wah et al. (2011)), Cars196 (Krause et al. (2013)), Stanford Online Products (SOP)
(Oh Song et al. (2016)) and In-shop Slothes (In-shop) (Liu et al. (2016b)) . We follow the data split
protocol proposed in Oh Song et al. (2016). For every mini-batch, we randomly choose a certain
number of classes, and then randomly sample K instances from each class. We set K = 5 for CUB
and Cars196, K = 4 for SOP and In-shop. The margin λ in VTHM is 0.1, and α = 2 , β = 50
and γ = 0.5 in both Equation (13) and Equation (17). Our proposed method is verified on image
retrieval task and evaluated by the standard performance metric: Recall@K as Oh Song et al. (2016).

6.1 ABLATION STUDY

We conduct an ablation study by comparing the following methods: Binomial applies binomial
deviance loss to all the pairs in the mini-batch. VTHM gives equal weights to the pairs selected by
our VTHM strategy. Binomial and RAW assign weights to all the pairs via binomial deviance and
RAW respectively. Binomial+VTHM utilizes the weight assignment of binomial deviance to the
selected pairs by our hard mining. RAW+VTHM represents our full method that assigns weights to
informative pairs via Equation (17) with VTHM. RAW+DW and RAW+SemiHard denote methods
that assign weight given by RAW to pairs sampled through distance weighted sampling (Wu et al.
(2017)) and semi-hard mining (Schroff et al. (2015)) respectively. For simplicity, only Recall@1 are
reported as shown in Table 1.

Sampling. From this table, VTHM leads to improvement on all datasets for Binomial and RAW.
It offers 3.8% improvement on SOP and 4.4% on In-shop for binomial deviance loss. For RAW, it
increases the Recall@1 by more than 2% on CUB-200 and Cars-196, while other sampling methods
like semi-hard and distance weight sampling do not have such a positive impact. This is because
VTHM mines as many informative pairs as possible. Therefore, we conclude that though Binomial
and RAW have already assigned easy pairs with small weight values, these samples still do harms
to the learning process because of their large number.

Weight Assignment. In Table 1, we find that Binomial+VTHM outperforms VTHM on all datasets
simultaneously through assigning pairs with weight base on their absolute similarity. Moreover,
our RAW+VTHM further improves the performance by considering the relative hardness of pairs.
For instance, on Cars-196, Binomial+VTHM achieves 6% higher Recall@1 than VTHM, and
RAW+VTHM further increases 2%.
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Table 2: Recall@K(%) performance on CUB-200 and Cars-196.

CUB-200-2011 Cars-196

Recall@K 1 2 4 8 16 32 1 2 4 8 16 32

HDC 53.6 65.7 77.0 85.6 91.5 95.5 73.7 83.2 89.5 93.8 96.7 98.4

Clustering 48.2 61.4 71.8 81.9 - - 58.1 70.6 80.3 87.8 - -

ProxyNCA 49.2 61.9 67.9 72.4 - - 73.2 82.4 86.4 87.8 - -

Smart Mining 49.8 62.3 74.1 83.3 - - 64.7 76.2 84.2 90.2 - -

Margin 63.6 74.4 83.1 90.0 94.2 - 79.6 86.5 91.9 95.1 97.3 -

HTL 57.1 68.8 78.7 86.5 92.5 95.5 81.4 88.0 92.7 95.7 97.4 99.0

ABIER 57.5 68.7 78.3 86.2 91.9 95.5 82.0 89.0 93.2 96.1 97.8 98.7

RAW+VTHM 66.85 77.84 85.8 91.29 94.94 97.42 83.69 90.27 94.53 97.16 98.65 99.36

Table 3: Recall@K(%) performance on SOP and In-shop.

SOP In-shop

Recall@K 1 10 100 1000 1 10 20 30 40 50

Clustering 67.0 83.7 93.2 - - - - - - -

HDC 69.5 84.4 92.8 97.7 62.1 84.9 89.0 91.2 92.3 93.1

Margin 72.7 86.2 93.8 98.0 - - - - - -

Proxy-NCA 73.7 - - - - - - - - -

ABIER 74.2 86.9 94.0 97.8 83.1 95.1 96.9 97.5 97.8 98.0

HTL 74.8 88.3 94.8 98.4 80.9 94.3 95.8 97.2 97.4 97.8

RAW+VTHM 78.18 90.47 96.0 98.74 89.64 97.87 98.47 98.84 99.05 99.20

6.2 COMPARISON WITH THE STATE-OF-THE-ART APPROACHES

We compare the results of our full method (RAW+VTHM) with current state-of-the-art techniques
in DML: Clustering (Song et al. (2017)), Proxy-NCA (Movshovitz-Attias et al. (2017)), HDC (Yuan
et al. (2016)), Sampling (Wu et al. (2017)), Smart Mining (Harwood et al. (2017)), ABIER (Opitz
et al. (2017; 2018)) and HTL (Ge et al. (2018)). Table 2 and Table 3 compare the performances
on CUB-200, Cars-196, SOP and In-shop respectively. Our method outperforms the sate-of-the-art
results by a large margin on all datasets: Recall@1 increases 3% on CUB-200, 1.7% on Cars-196,
3% on SOP and 6% on In-shop. The results exhibit the effectiveness of our proposed approach.

7 CONCLUSION

In the work, we focus on loss functions in deep metric learning (DML), and present a unified frame-
work for DML that expresses all pair-based approaches as different weight assignment strategies.
We disclose the hidden drawbacks of existing DML methods by analyzing their weight assignment
strategies. Moreover, we exploit two key points to design an effective DML approach: (1) avoiding
the side effect of easy pairs and assigning weight coefficients to informative pairs based their abso-
lute and (2) relative similarities. We then propose our DML approach under the direction of these
two points. We show the importance of these points respectively through an ablation study, Further,
we demonstrate through experiments that our approach improves the state-of-the-art performance
significantly.
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deep embedding learning. CoRR, abs/1706.07567, 2017. URL http://arxiv.org/abs/
1706.07567.

Dong Yi, Zhen Lei, and Stan Z. Li. Deep metric learning for practical person re-identification.
CoRR, abs/1407.4979, 2014. URL http://arxiv.org/abs/1407.4979.

Yuhui Yuan, Kuiyuan Yang, and Chao Zhang. Hard-aware deeply cascaded embedding. CoRR,
abs/1611.05720, 2016. URL http://arxiv.org/abs/1611.05720.

10

http://papers.nips.cc/paper/6200-improved-deep-metric-learning-with-multi-class-n-pair-loss-objective.pdf
http://papers.nips.cc/paper/6200-improved-deep-metric-learning-with-multi-class-n-pair-loss-objective.pdf
http://papers.nips.cc/paper/6200-improved-deep-metric-learning-with-multi-class-n-pair-loss-objective.pdf
http://papers.nips.cc/paper/6464-learning-deep-embeddings-with-histogram-loss.pdf
http://papers.nips.cc/paper/6464-learning-deep-embeddings-with-histogram-loss.pdf
http://arxiv.org/abs/1706.07567
http://arxiv.org/abs/1706.07567
http://arxiv.org/abs/1407.4979
http://arxiv.org/abs/1611.05720

	Introduction
	Related Work
	A Unified Weight Assignment View
	Rethinking Existing Methods
	 Weight Assignment Design
	Valid Triplet Based Hard Mining
	Relative and Absolute Similarity Based Weight Assignment (RAW)

	Experiments
	Ablation Study
	Comparison with the State-of-the-Art Approaches

	Conclusion

