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ABSTRACT

Building deep neural networks to control autonomous agents which have to in-
teract in real-time with the physical world, such as robots or automotive vehi-
cles, requires a seamless integration of time into a network’s architecture. The
central question of this work is, how the temporal nature of reality should be
reflected in the execution of a deep neural network and its components. Most
artificial deep neural networks are partitioned into a directed graph of connected
modules or layers and the layers themselves consist of elemental building blocks,
such as single units. For most deep neural networks, all units of a layer are pro-
cessed synchronously and in parallel, but layers themselves are processed in a
sequential manner. In contrast, all elements of a biological neural network are
processed in parallel. In this paper, we define a class of networks between these
two extreme cases. These networks are executed in a streaming or synchronous
layerwise-parallel manner, unlocking the layers of such networks for parallel pro-
cessing. Compared to the standard layerwise-sequential deep networks, these new
layerwise-parallel networks show a fundamentally different temporal behavior and
flow of information, especially for networks with skip or recurrent connections.
We argue that layerwise-parallel deep networks are better suited for future chal-
lenges of deep neural network design, such as large functional modularized and/or
recurrent architectures as well as networks allocating different network capacities
dependent on current stimulus and/or task complexity. We layout basic properties
and discuss major challenges for layerwise-parallel networks. Additionally, we
provide a toolbox to design, train, evaluate, and online-interact with layerwise-
parallel networks.

1 INTRODUCTION

Over the last years, the combination of newly available large datasets, parallel computing power,
and new techniques to design, implement, and train deep neural networks has led to significant
improvements and numerous newly enabled applications in various fields including vision, speech,
and reinforcement learning. Considering applications for which a neural network controls a system
that interacts in real-time with the physical world, ranging from robots and autonomous vehicles
to chat-bots and networks playing computer games, renders it essential to integrate time into the
network’s design.

In recent deep learning literature, enabling networks to learn and represent temporal features has
gained interest. Methods were presented leveraging short-term dynamic features to build temporal
consistent network responses (e.g. Ilg et al. (2017), Luc et al. (2017)) as well as networks learning to
store and utilize information over longer time periods (e.g. Neil et al. (2016), Graves et al. (2016)).

Two major aspects considering the role of time in neural networks can be distinguished: First, the
way neural networks and their components such as layers or single units, are implemented. For
example, network components could operate sequentially or in parallel, and in case of parallel eval-
uation, synchronous and asynchronous implementations can be distinguished. Second, the extent
to which the network through its architecture can form representations of temporal features. For
example, if the network has no mechanisms to integrate information over time, such as recurrent
connections, the network will not be able to represent temporal features, such as optic-flow. In this
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work, we focus on the implementation aspect but highly emphasise that our approach fundamentally
influences the network’s temporal behavior and the way information is integrated over time.

Whereas, biological neural networks and some realizations of neural networks in silicon (reviewed
in Indiveri et al. (2011), comparison in Farabet et al. (2012)) can operate on a continuous temporal
dimension, we will assume a discrete (frame-based) temporal domain throughout this paper.

1.1 LAYERWISE-PARALLEL DEEP NEURAL NETWORKS

Considering sequential and parallel realizations of artificial neural networks, at one end of the spec-
trum, biologically inspired models of spiking neural networks have been studied for a long time (e.g.
Liu et al. (2015)) and, in most cases, are simulated in a way that states of all neurons in a network
are updated in parallel and in a synchronous frame-based manner. In contrast to this parallel pro-
cessing of all neurons, modern deep neural networks are constructed using collections of neurons,
sometimes called layers, modules, or nodes, and while all neurons of the same layer are computed
in parallel, the layers themselves are computed sequentially.
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Figure 1: Three simple network examples, a pure feed forward F), a skip S), and a recurrent network
R), are shown (left most column), illustrating the difference between sequential (middle column)
and layerwise-parallel (right column) network execution. For both network types, inference on four
succeeding (from left to right) time frames (pictograms: empty - / - \ - empty) is drawn. Encircled
nodes indicate currently updated / computed / inferred layers and grey underlayed areas indicate
already computed network parts. Pictograms (empty, /, \) inside layers indicate information from
this stimulus in a layer at a specific time frame. To increase clarity for the layerwise-parallel case,
we omitted information from previous stimuli still memorized by the network. For the layerwise-
sequential recurrent network (bottom left network), we used a 1-step rollout window. Local frames
for layerwise-sequential networks differ between architectures (3 frames for F) and S), and 4 frames
for R).
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In this work, we argue for a network type between these two ends of the spectrum which we call
layerwise-parallel deep neural networks. The difference to the widely used layerwise-sequential
networks in deep learning is that layers have a memory of their previous state and compute their
next state on the basis of the (temporally) previous state of all (topologically) previous layers. A
schematic illustration of layerwise-sequential and layerwise-parallel networks is shown in Fig. 1.
We will call the part of a layer holding its current state neuron-pool (nodes in Fig. 1), parts of the
network holding information about transformations between neuron-pools synapse-pools (edges in
Fig. 1), and functions yielding updates for some network parameters also plasticities (not shown in
Fig. 1). In our definition, all responses of synapse-pools targeting the same neuron-pool are simply
added up. More thorough definitions are given in Section 2.

In Fig. 1, network inference is illustrated for the two network types over four succeeding time
frames. In this work, time frame refers always to the global time frame in which stimuli are pre-
sented to the network. For layerwise-sequential networks, we have another implicit type of local
frames due to their sequential nature, and the number of local frames depends on network archi-
tecture (compare Fig. 1: 3 local frames for F) and S), 4 local frames for R)). In contrast, for
layerwise-parallel networks all layers are updated in parallel, leading to two local frames (current
and updated). Information contained in the stimuli (squares) and neuron-pool states (circles) is
encoded as empty, /, or \. Simple forward architectures (example in first row) without skip or re-
current connections lead to similar temporal behavior for the two network types. Introducing skip
or recurrent connections (S) and R) example in Fig. 1) leads to potentially different temporal be-
havior for layerwise-sequential and layerwise-parallel networks. For example in Fig. 1, network
responses differ between layerwise-sequential and layerwise-parallel networks at the 2. frame for
the S) and R) networks (see different! in Fig. 1). This difference becomes more drastic considering
larger, more complex network architectures, for which information from different time frames is
integrated. Considering a layerwise-parallel network at a certain point in time, information from
different previous time frames is distributed across the network. The distribution pattern is directly
defined by the network’s architecture. The biological counterpart as well as recent deep learning
literature suggest to use gating mechanisms to guide content and time dependent information flow.

One aspect of layerwise-parallel networks is the synchronization of the parallel updated layers. This
is important especially considering neuron-pools representing temporal features, because these, by
definition, depend on temporal differences. In case of asynchronous parallelization of network parts,
one solution would be to provide time itself as a network input. We focused on the synchronized
approach, because otherwise networks would have to learn to use additionally provided input of time
and also temporal features would be harder to interpret.

Another property of layerwise-parallel networks is, that networks are parallelized independently of
their architecture. A layerwise-parallel network is designed using constrained shallow elements and
the network is parallelized across all elements. For example, we prohibit using an arbitrary deep net-
work as a synapse-pool connecting two neuron-pools. A detailed definition of neuron and synapse-
pool operations is given in Section 2. With respect to this architecture-independent parallelization,
layerwise-parallel networks also differ from other model-parallel approaches like synthetic gradients
(Jaderberg et al., 2017) or direct feedback alignment (Nøkland, 2016).

1.2 RELATION TO STATE-OF-THE-ART

One major advantage of layerwise-parallel over layerwise-sequential networks is that network ele-
ments such as neuron-pools and plasticities can be computed in parallel. As stated in Jaderberg et al.
(2017), the sequential nature of current deep networks results in computation locks, hindering effi-
cient execution. Several approaches were proposed to circumvent the backward lock, which locks
parameter updates due to the training procedure, providing auxiliary error signals for intermediate
layers (e.g. Lillicrap et al. (2016), Jaderberg et al. (2017), Nøkland (2016)). While these methods,
to some extent, solve some drawbacks of the most widely used and effective technique for neural
network training, namely backpropagation, they do not address the more fundamental difference be-
tween parallel and sequential network evaluation between biological and artificial neural networks:
the network’s integration of temporal information during inference stays the same as for layerwise-
sequential networks. Further, these approaches are not directly applicable for layerwise-parallel
networks and would have to take the temporal displacement between layers into account.
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Integration of temporal information in deep networks often is achieved using recurrent neural net-
works (RNN). For inference and training, these RNNs are normally converted into feed forward net-
works using network rollout and weight sharing over time (e.g. Hochreiter & Schmidhuber (1997)),
especially to use existing methods to train feed forward networks. Similar to previously mentioned
methods which target problems of backpropagation, also the idea of network rollout only tackles a
symptom arising from layerwise-sequential networks, while creating new challenges like network
initialization at beginning of rollout or scalability over time, which is not the case for our approach,
at least during inference.

Beside recurrent connections, also skip connections are widely used in deep networks, such as
ResNets (He et al., 2016). Especially used identity skip connections can be interpreted as a lo-
cal network rollout acting as a local filtering which could also be achieved through recurrent self
connections (Greff et al., 2017). Hence it seems, currently used skip connections are primarily used
to mitigate problems of backpropagation rather than to form early, temporally shallow representa-
tions in abstract layers on the basis of layers with lower abstraction, which would be biologically
plausible (Bullier, 2001).

The concept of layerwise-parallel networks is also strongly related to ideas like BranchyNet (Teer-
apittayanon et al., 2016), which use intermediate features for early classification and hence en-
able stimulus complexity dependent allocation of network resources. This is natively achieved with
layerwise-parallel networks using skip connections, which, for layerwise-parallel networks, intro-
duce temporal shortcuts. Hence in general, the network has shorter response times, using short
(in time and network architecture) pathways, for simple, and longer response times, using deeper
pathways, for complex stimuli. A simple example for this is given in Section 3.

Figure 2: Visualization example of a simple classification network using the provided toolbox (best
viewed in color). The network is shown as graph (green nodes are neuron-pools, blue nodes are
synapse-pools) together with information about the network.

The already mentioned different integration of information over time between layerwise-sequential
and layerwise-parallel networks causes also differences in network evaluation. For layerwise-
parallel networks, the response on a given stimulus is delayed in time dependent on the network
architecture. Hence on the one hand, existing performance measures for layerwise-sequential net-
works, for example, accuracies or confusion-matrices, must be adapted to take time into account,
while on the other hand, measures not available for layerwise-sequential networks, such as reaction
times, can now be employed.

Further, network training has to be adapted for layerwise-parallel networks. For layerwise-sequential
networks, normally an error is formulated for network outputs and back-propagated through the net-
work providing a signal to update parameters (Rumelhart et al. (1986)). To some extent, existing
training mechanisms for layerwise-sequential networks can be applied to layerwise-parallel net-
works by using local losses, and rolling out local parts of the network. Also biologically inspired
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training rules, such as Hebbian learning (Hebb, 1949), can be used. We provide more details on
solutions for evaluation and training of layerwise-parallel networks in sections 3.1 and 3.2.

In the previous paragraphs, we laid out some motivation for layerwise-parallel networks and com-
pared it to layerwise-sequential networks. And while we are not the first ones pointing out certain
drawbacks of layerwise-sequential networks (e.g. Jaderberg et al. (2017), Farabet et al. (2012)), it
is our understanding, that the underrepresentation of layerwise-parallel networks in deep learning
literature is due to a lack of tools to explore this class of networks.

One of the main contributions of this work, is to provide an open source toolbox (available at
http://bit.ly/2yNfroI) to design, train, evaluate, and interact with layerwise-parallel deep networks.
An example screenshot of the provided graphical user interface is shown in Fig. 2.

2 LAYERWISE-PARALLEL DEEP NETWORKS

In this section, we give a formal definition of layerwise-parallel networks and their elements.

2.1 NETWORK MODEL AND INFERENCE

We describe a neural network as a graph (V, E), with V = {vi|i = 1, ..., NV} being a set of vertices
and E = {ej |j = 1, ..., NE} being a set of directed (hyper-) edges with potentially multiple source
vertices srcj ⊂ V and a single target vertex tgtj ∈ V . Each vertex vi has a fixed dimensionality
Di = (Fi,Wi, Hi) ∈ N3, a state xti ∈ RDi = RFi ×RWi ×RHi at time t ∈ N, and a parameterized
mapping σiϑt

i
: RDi → RDi with some parameters ϑti. Each edge ej has a parameterized mapping

f j
θtj

:

 ∏
vi∈srcj

RDi

→ RDtgtj

with some parameters θtj . For a vertex vi, let inputi ⊂ E denote the set of all edges targeting vi. We
define a one-step temporal propagation for every vertex:

xt+1
i = Fi(xt, θt, ϑt) = σiϑt

i

 ∑
ej∈inputi

f j
θtj

({xtk}k∈srcj )


As stated earlier, we also refer to the vertices of the network graph as neuron-pools and to the edges
as synapse-pools.

Using this one-step temporal propagation, all network states xi can be updated independently of
each other and in parallel from time step to time step.

Although, the above definition is general, the provided toolbox introduces some restrictions on what
update functions can be specified. An explicit specification of the internal structure of the update
functions was chosen to include common elements of deep neural networks, such as convolutional
layers, inception mechanisms and gated connections. Please see Appendix 6.1 for more details.
We emphasize again that for layerwise-parallel networks, parallelization is independent from the
network architecture. The network is designed using certain elements and these are always par-
allelized. Hence, these elements have to be flexible to a certain extent, to enable users to design
various architectures.

2.2 NETWORK TRAINING

Let Ωt = (θt, ϑt) denote all current parameters. We refer to a mapping p that, on the basis of current
and previous states and parameters, produces a parameter update for some parameters ωp ⊂ Ω as a
plasticity:

∆ωp(t) = p(xτ≤t,Ωτ≤t)
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For a given set of plasticities P = {pi|i = 1, ..., NP}, we define a one-step parameter update
function for every single parameter w ∈ Ω:

wt+1 = wt +
∑

i with w∈ωpi

∆ωwpi

Note that all plasticities can be computed independently from each other only on the basis of pre-
vious states of neuron-pools and synapse-pools, and hence in parallel to the update functions for
network inference.

Beside this abstract definition, some more explicit examples of plasticities, which are provided with
the toolbox, are given below.

3 CHALLENGES

Most challenges working with layerwise-parallel networks are caused by the fact that at a given
point in time, information from different previous time frames is distributed across the network. The
distribution pattern is directly given by the network’s architecture and can be conveniently visualized
using a rolled out version of the network. In general, gating neuron-pools could guide, for example
dependent on changes in input stimuli, the information flow through this pattern.

A small example layerwise-parallel network for MNIST classification is illustrated in Fig. 3, show-
ing the network architecture in 3a and the rolled out network in Fig. 4 to visualize information flow.
Similar to the idea of BranchyNet (Teerapittayanon et al., 2016), the network uses two paths of dif-
ferent depths for classification. We use this small network to illustrate some important mechanisms
of layerwise-parallel networks.
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Figure 3: Illustration of a 2-path classification network. (a) The graph of the network.
The network consists of two stacked convolutions, for which neuron-pools conv1 and conv2
([rf, rf, features out, stride]) hold the resulting feature maps, and fully connected classification on
top of both of them, with pred1 and pred2 storing the intermediate classification results. These in-
termediate results are aggregated through summation in the final result (prediction). For training, a
one-step copy of the current ground-truth, which is stored in the neuron-pool label and label copy,
is needed. (b) Classification accuracies on MNIST test dataset, relative to temporal offset in frames
between stimulus (image and label) onset and network response (prediction).

3.1 PLASTICITIES

As stated above, plasticities operate in parallel to neuron-pools and while all neuron-pools are com-
puting the one-step update t→ t+ 1, all plasticities compute current parameter updates on the basis
of the current time step t. For most plasticities, the network is rolled out locally, considering only a
subset of all neuron-pools, and initialized with neuron-pool states at time t. This is illustrated in Fig.
4, where local rollouts are shown for the two used plasticities to train the example network in Fig. 3a.
After plasticities have computed parameter updates, these updates are aggregated by the synapse-
pools, and in the next step the plasticity operates on the states of the now updated neuron-pool states
and parameters from time t+ 1.
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Figure 4: Rolled out network for maximal path length 4 and the two sub-networks used to compute
the loss for the plasticities. All continuous lines represent synapse-pools which are initialized ran-
domly and trained by the plasticities. All dotted lines are initialized as identity and are not trained.

To increase transparency and re-usability, we separate plasticities into two parts: An update part,
which, state and memory free, computes a temporally local estimate of parameter updates and an
optimizer part which transforms the update estimates, for example, through temporal smoothing,
into a current update which is used for the actual update of parameters.

The toolbox provides some of the most widely used optimizers, such as stochastic gradient decent
and ADAM (Kingma & Ba, 2015) and can easily be extended with new ones. Additionally, three
types of update estimators are provided to specify plasticities:

Loss based update: To leverage the large amount of existing techniques for training of layerwise-
sequential deep networks, a loss can be defined on the basis of one or two neuron-pool states at a
certain temporal offset δt from the current time step δt = 0. For example, considering the network
from Fig. 4, two loss-based plasticities are used to train the network:

Lclass
(
xδt=1

pred1 , x
δt=0
label copy

)
= categorical-crossentropy

(
xδt=1

pred1 , x
δt=0
label copy

)
Ldeep-class

(
xδt=3

pred2 , x
δt=0
label

)
= categorical-crossentropy

(
xδt=3

pred2 , x
δt=0
label

)
Here, all losses are based on two neuron-pools. To compute the loss, the network is rolled back
locally from the neuron-pools until now (δt = 0), being transformed into a feed forward network, as
can be seen on the right side of Fig. 4. Training is done as usual for layerwise-sequential networks.

Note, that the validity and temporal properties of what we train, highly depend on the chosen neuron-
pools and temporal offsets. Concerning validity, for example for Ldeep-class we could not have chosen
neuron-pool states xδt=4

pred2 and xδt=1
label because then the rolled back network would have needed an

input image and label from the future time step δt = 1 which are not available now δt = 0.
Concerning temporal properties, for example, if we would define the loss Lclass on xδt=1

pred1 and xδt=0
label

we would have introduced a temporal offset of 1 between prediction and ground-truth, leading to
unintended behavior especially when the input changes.

In general, loss based plasticities are expensive in the sense that potentially, for large parts of the
network, the inference (forward) step is done twice, once in the neuron-pools and potentially more
than once due to the rollout in the plasticity. Hence, local plasticities are preferred, which only
operate on a small set of neuron-pools and do not need a deep rollout. To achieve this, we suggest
functional modularisation of the network which also increase network transparency and trainability.
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Hebbian based update: With some restrictions, we also provide the biologically more plausible
well known Hebbian learning rule (Hebb, 1949) and some of its variants as an update estimator. For
example, for a synapse wij , connecting some neuron xi with some neuron xj :

∆wtij = xtix
t+1
j

Note, that this is used as an estimate and could be used as input for some optimizer, such as ADAM.
Plasticities based on this estimator always use an internal one step rollout of the target neuron-pool
and hence provide rather local plasticities compared to loss based plasticities.

Parameter regularization update: Parameter update estimators can also directly be based on
parameters rather than states, which is the case for example using L1 or L2 regularization on certain
parameters.

3.2 NETWORK EVALUATION

Considering performance measures for layerwise-parallel networks, we follow general ideas from
the analysis of spiking neural networks and experimental psychology (e.g. Diehl et al. (2015),
Woods et al. (2015)).

Let m(x, y) denote any performance measure for a layerwise-sequential deep network, for example
a confusion-matrix or an accuracy value, where y is the network’s response for a stimulus x. This
can be converted into a performance measure for layerwise-parallel networks:

mδt(xtonset , ytonset+δt) = m(xtonset , ytonset+δt)

Where tonset denotes the time of a stimulus onset (first frame a stimulus is presented). We measure
current performance dependent on the temporal offset δt between the network’s current response
and previous stimuli. On the basis of this, a concept of reaction- or response times can be defined,
e.g. measuring the mean offset after which a certain performance measure reaches a given threshold.
An example of a time dependent accuracy evaluation for the 2-path network from Fig. 3a is given
in Fig. 3b. Due to the network’s architecture, performance is at chance level for the first three time
steps. Then information about the stimulus reaches the prediction neuron-pool through the short
path before, after one additional time step, also the longer path becomes active, from which on the
network reaches its highest accuracy. Stimuli were always presented for 12 consecutive frames.

4 THE STATESTREAM TOOLBOX

To explore layerwise-parallel deep networks, we provide an open source toolbox enabling design,
training, evaluation, and interaction with this kind of networks. Networks are specified in a text file,
and a core process distributes the network elements onto separate processes and/or GPUs. Elements
are executed with alternating read and write phases, synchronized via a core process, and operate
on a shared representation of the network. The toolbox is written in Python and uses the Theano
(Theano Development Team, 2016) backend. The shared representation enables parallelization of
operations across multiple processes and GPUs on one machine and enables online interaction.

An additional motivation for intuitive, direct, and adjustable interaction with networks is that current
deep learning literature (e.g. Vertens et al. (2017), Gupta et al. (2017), Marblestone et al. (2016))
suggests that network architectures will become more complex and heterogeneous. These functional
modularized architectures increase network understanding through transparent auxiliary neural in-
terfaces, such as occupancy grids or optic flows, and trainability, using local losses to train sub-
networks. Understanding of these network’s internal dynamics is important, concerning debugging
and optimizing architectures as well as safety aspects and to guide the design of future architectures.

The chosen implementation of layerwise-parallel networks favors certain network architectures. For
example, the overall frame rate of the network primarily depends on the slowest network element
(neuron-pool or plasticity) rather than on the overall number of elements, as long as sufficient com-
putation resources are available. With this toolbox, we did not intent to compete with existing deep
learning frameworks with respect to memory consumption or training speed but rather provide the
software infrastructure to explore layerwise-parallel deep networks, which, to our knowledge, other
deep learning software does not.
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5 CONCLUSION

In this paper, we defined and discussed layerwise-parallel deep neural networks, by which layerwise
model-parallelism is realized for deep networks independently of their architecture. We argued that
layerwise-parallel networks are beneficial for future trends in deep network design, such as large
functional modularized or recurrent architectures as well as for networks allocating different net-
work capacities dependent on stimulus and/or task complexity. Due to their biologically inspired
increased parallelizability, layerwise-parallel networks can be distributed across several processes
or GPUs natively without the need to explicitly specifying the network parts which should be par-
allelized. Finally, we presented an open source toolbox to explore layerwise-parallel networks pro-
viding design, training, evaluation, and interaction mechanisms.

We would like to think of this work as a step towards native model-parallel deep networks, connect-
ing the networks architecture directly to the temporal domain. For this, major challenges for the
future remain, such as a more general formulation of neuron and synapse-pools than the one used in
the provided toolbox, the design of new local plasticities, or designing more adequate tasks which
take the temporal domain into account.
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6 APPENDIX

6.1 COMPUTATION DIAGRAMS FOR NEURON AND SYNAPSE-POOLS

This section provides a detailed description of the computations performed in neuron and synapse-
pools. Dependent on their specification, for most pools, large parts of this computation will not be
executed.

In general, capital letters will denote some fixed dimensionality, and we will use the same capital
letter to denote this dimensionality as well as the set of possible indeeces N = {1, ..., N}.
Let BS, N, S, P ∈ N denote the number of samples in a batch, neuron-pools, synapse-pools, and
plasticities. For a neuron-pool n ∈ N , we notate:

• Features, Width and Height: Cn,Wn, Hn ∈ N.
• Layer activation: yn(t) ∈ Yn := RBS×Cn×Wn×Hn at frame t ∈ N.
• Activation function: σnp

n : Yn → Yn.
• Noise function: εnp

n : Yn → Yn.
• Bias btn ∈ RCn .
• Gain gtn ∈ RCn .

For synapse-pool s ∈ S, we denote:

• Number of input factors: Fs ∈ N.
• Number of summands for factor f ∈ Fs: As,f ∈ N.

• Target neuron-pool: nTGT
s ∈ N

• Source neuron-pools: nSRC
s,f,a ∈ N , for f ∈ Fs and a ∈ As,f

• Activation function for factor f ∈ Fs: σsp
s,f : YnTGT

s
→ YnTGT

s
.

• Synaptic weights: ws,f,a ∈ R
CnTGT

s
×C

nSRC
s,f,a

×rf×rf
, for f ∈ Fs and a ∈ As,f

• Pre-processing weights: ps,f,a ∈ R
CnTGT

s
×C

nSRC
s,f,a

×1×1
, for f ∈ Fs and a ∈ As,f

• Pool-conv-upsample pre-process function: pcu-ppp(.|w, p) : YnSRC
s,f,a
→ YnTGT

s
, with:

pcu-ppp(y‖w, p) = δpool (w ? δupsample(p ? y))

where ?means convolution, δpool means downsampling if target space is smaller than source
space using adequate strides, and δupsample means upsampling if target space is larger than
source space repeating activations in space.

As mentioned, all network elements operate synchronously alternating between a read and a write
phase. Considering only network inference, the following pseudocode describes the read operations
for all neuron-pools. Note, that the outer loop over neuron-pools parallelizes.

for n ∈ N do
# Read NP parameter: bias and gain.
b̃n ← btn
g̃n ← gtn
# Loop over all sources.
for s ∈ S do

if nTGT
s = n then
# Read input NP states and SP parameter.
for f ∈ Fs and a ∈ As,f do

ỹs,f,a ← yt
nSRC
s,f,a

w̃s,f,a ← wts,f,a
p̃s,f,a ← pts,f,a

end for
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end if
end for

end for

The execution / writing phase at frame t+ 1 for all neuron-pools:
1: for n ∈ N do
2: # Compute post-synaptics for input sps.
3: for s ∈ S do
4: if nTGT

s = n then

5: x̃s ←
∏
f∈Fs

σsp
s,f

 ∑
a∈As,f

pcu-ppp (ỹs,f,a‖w̃s,f,a, p̃s,f,a)


6: end if
7: end for
8: # Accumulate post-synaptics.
9: ỹn ← 0

10: for s ∈ S do
11: if nTGT

s = n then
12: ỹn ← ỹn + x̃s
13: end if
14: end for
15: # Normalization and gain.
16: ỹn ← gn(ỹn −mn)/sn
17: # Noise, activation, bias.
18: ỹn ← σn(εn(ỹn)) + bn
19: # Write to shared memory.
20: yt+1

n ← ỹn
21: end for

Additionally, neuron-pools and synapse-pools also aggregate and apply updates for their parameters
from plasticities.

6.2 EXAMPLE OF A YAML NETWORK SPECIFICATION

Here we show the specification file for the layerwise-parallel example in Fig. 3a:

# Demonstration example

name: demonstration_example
agents: 128
globals:

glob_input_size: 28
neuron_pools:

image:
shape: [1, glob_input_size, glob_input_size]

label:
shape: [10, 1, 1]

prediction:
tags: [prediction]

conv1:
shape: [32, glob_input_size // 2, glob_input_size // 2]
tags: [hidden]

conv2:
shape: [64, glob_input_size // 4, glob_input_size // 4]
tags: [hidden]

pred1:
tags: [prediction]

pred2:
tags: [prediction]
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label_copy:
shape: [10, 1, 1]

synapse_pools:
img_c1:

source: [[image]]
target: conv1
rf: [[5]]

c1_c2:
source: [[conv1]]
target: conv2
rf: [[5]]

c1_pred:
source: [[conv1]]
target: pred1

c2_pred:
source: [[conv2]]
target: pred2

pred_pred:
source: [[pred1, pred2]]
target: prediction
rf: [[1, 1]]
init W_0_0: id
init W_0_1: id

label_cp:
source: [[label]]
target: label_copy
rf: [[1]]
init W_0_0: id

plasticities:
class:

type: loss
loss_function: categorical_crossentropy
source: pred1
source_t: 1
target: label_copy
target_t: 0
lr: 1e-3
tags: [adam_optimizer]
parameter:
- [sp, c1_pred, W_0_0]

deep_class:
type: loss
loss_function: categorical_crossentropy
source: pred2
source_t: 3
target: label
target_t: 0
lr: 1e-4
tags: [adam_optimizer]
parameter:
- [sp, img_c1, W_0_0]
- [sp, c1_c2, W_0_0]
- [sp, c2_pred, W_0_0]
- [np, conv2, b]

interfaces:
mnist:

type: mnist
in: [mnist_pred]
out: [mnist_image, mnist_label]

14



Under review as a conference paper at ICLR 2018

remap:
mnist_image: image
mnist_label: label
mnist_pred: prediction

source_file: /opt/dl/data/mnist.pkl.gz
fading: 0

tag_specs:
hidden:

act: relu
dropout: 0.2
device: cuda0

prediction:
shape: [10, 1, 1]
act: softmax

adam_optimizer:
device: cuda0
optimizer: adam
decay: 0.999
momentum: 0.99
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