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ABSTRACT

One of the key challenges of session-based recommender systems is to enhance
users’ purchase intentions. In this paper, we formulate the sequential interactions
between user sessions and a recommender agent as a Markov Decision Process
(MDP). In practice, the purchase reward is delayed and sparse, and may be buried
by clicks, making it an impoverished signal for policy learning. Inspired by the
prediction error minimization (PEM) and embodied cognition, we propose a sim-
ple architecture to augment reward, namely Imagination Reconstruction Network
(IRN). Specifically, IRN enables the agent to explore its environment and learn pre-
dictive representations via three key components. The imagination core generates
predicted trajectories, i.e., imagined items that users may purchase. The trajectory
manager controls the granularity of imagined trajectories using the planning strate-
gies, which balances the long-term rewards and short-term rewards. To optimize
the action policy, the imagination-augmented executor minimizes the intrinsic
imagination error of simulated trajectories by self-supervised reconstruction, while
maximizing the extrinsic reward using model-free algorithms. Empirically, IRN
promotes quicker adaptation to user interest, and shows improved robustness to
the cold-start scenario and ultimately higher purchase performance compared to
several baselines. Somewhat surprisingly, IRN using only the purchase reward
achieves excellent next-click prediction performance, demonstrating that the agent
can "guess what you like" via internal planning.

1 INTRODUCTION

A good recommender system can enhance both satisfaction for users and profit for content providers
(Gomez-Uribe & Hunt, 2016). In many real-world scenarios, the recommender systems make
recommendations based only on the current browsing session, given the absence of user profiles
(because the user is new or not tracked or not logged in, till the final purchase step). A session is a
group of sequential interactions between a user and the system within a short period of time. To model
this phenomenon, Recurrent Neural Networks (RNNs) were recently employed as session-based
recommenders (Hidasi et al., 2016; Jannach & Ludewig, 2017). For instance, GRU4Rec (Hidasi et al.,
2016) utilizes the session-parallel mini-batch training to handle the variable lengths of sessions, and
predicts the next action given the sequence of items in the current session. However, these approaches
primarily focus on next-click prediction and model the session data via sequential classification, and
thus cannot distinguish the different effects of user clicks and purchases.

In this paper, we consider the session-based recommendation as a Markov Decision Process (MDP),
which can take into account both the click reward and the purchase reward (see Figure 1), and leverage
Reinforcement Learning (RL) to learn the recommendation strategy. In practice, several challenges
need to be addressed. First, the recommender systems involve large numbers of discrete actions (i.e.,
items), making current RL algorithms difficult to apply (Dulac-Arnold et al., 2015; Sunehag et al.,
2015). This requires the agent to explore its environment for action feature learning and develop an
ability to generalize over unseen actions. Second, we found it difficult to specify the click reward
and the purchase reward; the policy may be biased by long sessions that contain many user clicks,
as RL algorithms maximize the accumulated reward. Besides, real-world recommender systems
require quick adaptation to user interest and robustness to the cold-start scenario (i.e., enhancing the
purchase performance of short sessions). Therefore, we will be particularly interested in a case where
only the purchase is used as reward (click sequences are used as inputs of the imagination core for
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exploration).1 However, the purchase reward is delayed and sparse (one session may contain only
one purchase), making it a difficult signal for policy learning.

To augment reward and encourage exploration, we present the Imagination Reconstruction Network
(IRN), which is inspired by the prediction error minimization (PEM) (Hohwy, 2016; Friston, 2010;
Lotter et al., 2017) and embodied cognition (Clark, 2013; Burr & Jones, 2016; Seth, 2014; de Bruin
& Michael, 2017) from the neuroscience literature. The PEM is an increasingly influential theory that
stresses the importance of brain-body-world interactions in cognitive processes, involving perception,
action and learning. In particular, IRN can be regarded as a proof-of-concept for the PEM from the
recommendation perspective, following the ideas in Burr & Jones (2016) and Seth (2014) — the brain
utilizes active sensorimotor predictions (or counterfactual predictions) to represent states of affairs in
the world in an action-oriented manner. Specifically, the imagination core of IRN that predicts the
future trajectories (i.e., a set of imagined items that user may purchase) conditioned on actions sampled
from the imagination policy, can be considered as the generative model of the brain that simulates
sensorimotor predictions. To update the action policy, the imagination-augmented executor minimizes
the intrinsic imagination error of predicted trajectories by self-supervised reconstruction, while
maximizing the extrinsic reward using RL, with shared input state or output action representations
for predictive learning. This simulates the active perception (a key aspect of embodied cognition)
of the body under the PEM framework, which adapts the agent to possible changes that arise from
the ongoing exploratory action. Note that the imagination policy imitates the action policy through
distillation or a delayed target network, and thus IRN constructs a loop between brain and body,
encouraging the agent to perform actions that can reduce the error in the agent’s ability to predict the
future events (Pathak et al., 2017). IRN equips the agent with a planning module, trajectory manager,
that controls the granularity of imagined trajectories using the planning strategies (e.g., breadth-n
and depth-m). Besides, IRN is a combination of model-based planning and self-supervised RL, as
the imagined trajectories provide dense training signals for auxiliary task learning (see section 2).

The key contributions of this paper are summarized as follows:

• We formulate the session-based recommendation as a MDP, and leverage deep RL to learn
the optimal recommendation policy, and also discuss several challenges when RL is applied.

• We consider a special case where only the purchase is used as reward, and then propose the
IRN architecture to optimize the sparser but more business-critical purchase signals, which
draws inspiration from the theories of cognition science.

• We present a self-supervised reconstruction method for predictive learning, which minimizes
the imagination error of simulated trajectories over time. IRN achieves excellent click and
purchase performance even without any external reward (predictive perception (Seth, 2014)).

• We conduct a comprehensive set of experiments to demonstrate the effectiveness of IRN.
Compared to several baselines, IRN improves data efficiency, promotes quicker adaptation
to user interest, and shows improved robustness to the cold-start scenario and ultimately
higher purchase performance. These are highly valuable properties in an industrial context.

2 RELATED WORK

Session-based Recommenders Classical latent factor models (e.g., matrix factorization) break
down in the session-based setting, given the absence of user profiles. A natural solution is the
neighborhood approach like item-to-item recommendation (Mirowski et al., 2016). In this setting,
an item similarity matrix can be precomputed based on co-occurrences of clicked items in sessions.
However, this method only considers the last clicked item of the browsing session for recommen-
dations, ignoring the sequential information of the previous events. Previous works also attempt to
apply MDPs in the recommendation systems (Shani et al., 2002; Tavakol & Brefeld, 2014). The
main issue is that the state space quickly becomes unmanageable due to the large number of items
(IRN employs deep learning to overcome this problem and thus generalizes well to unseen states).
Recently, RNNs have been used with success in this area (Hidasi et al., 2016; Hidasi & Karatzoglou,
2017; Jannach & Ludewig, 2017). GRU4Rec (Hidasi et al., 2016) is the first application of RNNs
to model the session data, which can provide recommendations after each click for new sessions.

1We also conduct experiments that take into account the click reward.
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Figure 2: IRN architecture. s shown in Figure 2, where IC is imagination core to generate trajectories,
and N-step imagination rollout, using these trajectories to perform encoder-decoder.

4 IRN Architecture116

In this section we incorporate the imagination reconstruction module into the model-free agents117

(e.g., A3C) in order to enhance data efficiency, promote more robust learning and ultimately higher118

performance under the sparse extrinsic rewards. Our IRN implements an imagination-augmented119

policy via three key components (Fig 2). The imagination core (IC) predicts next time steps120

conditioned on actions sampled from the imagination policy ⇡̂. At a time step t, the trajectory121

manager (TM) determines how to roll out the IC under the planning strategy, and then produces122

imagined trajectories T̂1, . . . , T̂n of an observable world state st. Each trajectory T̂ is a sequence123

of items {̂it, ît+1, . . .}, that the agent may purchase (or click) from the current time t. Finally,124

the Imagination-augmented Executor (I2E) aggregates the internal data resulting from imagination125

and external rewarding data to update its action policy ⇡. Specifically, I2E optimizes the policy126

⇡ by maximizing the extrinsic rewards while minimizing the intrinsic imagination errors, L =127

LA3C +LIRN . In principle, IRN encourages exploration (on the output layer, i.e., item representation)128

and implicitly learns to plan ("guess what you like") via imagination rollouts, and therefore promotes129

quick adaptation to user interest.130

Imagination Core. In order to simulate imagined trajectories, we rely on environment models that,131

given the present state and a candidate action, make predictions about the future states.2 In general,132

we can employ an environment model that build on recent popular action-conditional next-step133

predictors [], and train it in an unsupervised fashion from agent experiences. However, the predictors134

usually suffer from model errors, resulting in poor agent performance, and need extra computational135

cost (e.g., pre-training) [error][cost]. Besides, the predictors may learn a trivial identical function,136

since the state transition in agent trajectories is deterministic, i.e., st+1 = st [ {it} and at = it. In137

this work, we derive a static environment model from the state transition: ŝt+⌧+1 = ŝt+⌧ [ {̂it+⌧},138

ît+⌧ = ât+⌧ and ŝt = st, where ⌧ is the length of the imagined rollout, ât+⌧ the output action of the139

imagination policy ⇡̂. During training, the generated item ît+⌧ may not be the true purchase, but we140

still use it for self-supervised reconstruction of I2E. This makes the action policy ⇡ more robust to141

intrinsic errors and forces the imagination policy ⇡̂ to generate more accurate actions.142

In practice, the imagination policy ⇡̂ can be obtained from policy distillation [] or fixed target network143

like DQN []. The former distills the action policy ⇡(st; ✓) into a smaller rollout network ⇡̂(st; ✓̂),144

using a cross-entropy loss, l⇡,⇡̂(st) =
P

a ⇡(a|st)log⇡̂(a|st; ✓̂). The latter uses a shared but slowly145

changing target network ⇡̂(st; ✓
�), where ✓� are previous parameters in ⇡(st; ✓). By imitating the146

action policy ⇡, the imagined trajectories will be similar to agent experiences in the real environment;147

this also helps I2E learn a predictive representation of rewarding states, and in turn should allow the148

easy learning of the action policy under the sparse reward signals.149

2IRN do not predict the rewards, since it is not useful as reported in []. and in RS, rewards of different actions
are hard to specify

4

Figure 2: IRN architecture. s shown in Figure 2, where IC is imagination core to generate trajectories,
and N-step imagination rollout, using these trajectories to perform encoder-decoder.

4 IRN Architecture116

In this section we incorporate the imagination reconstruction module into the model-free agents117

(e.g., A3C) in order to enhance data efficiency, promote more robust learning and ultimately higher118

performance under the sparse extrinsic rewards. Our IRN implements an imagination-augmented119

policy via three key components (Fig 2). The imagination core (IC) predicts next time steps120

conditioned on actions sampled from the imagination policy ⇡̂. At a time step t, the trajectory121

manager (TM) determines how to roll out the IC under the planning strategy, and then produces122

imagined trajectories T̂1, . . . , T̂n of an observable world state st. Each trajectory T̂ is a sequence123

of items {̂it, ît+1, . . .}, that the agent may purchase (or click) from the current time t. Finally,124

the Imagination-augmented Executor (I2E) aggregates the internal data resulting from imagination125

and external rewarding data to update its action policy ⇡. Specifically, I2E optimizes the policy126

⇡ by maximizing the extrinsic rewards while minimizing the intrinsic imagination errors, L =127

LA3C +LIRN . In principle, IRN encourages exploration (on the output layer, i.e., item representation)128

and implicitly learns to plan ("guess what you like") via imagination rollouts, and therefore promotes129

quick adaptation to user interest.130

Imagination Core. In order to simulate imagined trajectories, we rely on environment models that,131

given the present state and a candidate action, make predictions about the future states.2 In general,132

we can employ an environment model that build on recent popular action-conditional next-step133

predictors [], and train it in an unsupervised fashion from agent experiences. However, the predictors134

usually suffer from model errors, resulting in poor agent performance, and need extra computational135

cost (e.g., pre-training) [error][cost]. Besides, the predictors may learn a trivial identical function,136

since the state transition in agent trajectories is deterministic, i.e., st+1 = st [ {it} and at = it. In137

this work, we derive a static environment model from the state transition: ŝt+⌧+1 = ŝt+⌧ [ {̂it+⌧},138
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ît+⌧ = ât+⌧ and ŝt = st, where ⌧ is the length of the imagined rollout, ât+⌧ the output action of the139
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ŝt+⌧+1 = ŝt+⌧ [ {̂it+⌧},21

ît+⌧ = ât+⌧22
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Figure 2: IRN architecture. s shown in Figure 2, where IC is imagination core to generate trajectories,
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performance under the sparse extrinsic rewards. Our IRN implements an imagination-augmented119

policy via three key components (Fig 2). The imagination core (IC) predicts next time steps120

conditioned on actions sampled from the imagination policy ⇡̂. At a time step t, the trajectory121

manager (TM) determines how to roll out the IC under the planning strategy, and then produces122

imagined trajectories T̂1, . . . , T̂n of an observable world state st. Each trajectory T̂ is a sequence123

of items {̂it, ît+1, . . .}, that the agent may purchase (or click) from the current time t. Finally,124

the Imagination-augmented Executor (I2E) aggregates the internal data resulting from imagination125

and external rewarding data to update its action policy ⇡. Specifically, I2E optimizes the policy126

⇡ by maximizing the extrinsic rewards while minimizing the intrinsic imagination errors, L =127

LA3C +LIRN . In principle, IRN encourages exploration (on the output layer, i.e., item representation)128

and implicitly learns to plan ("guess what you like") via imagination rollouts, and therefore promotes129

quick adaptation to user interest.130

Imagination Core. In order to simulate imagined trajectories, we rely on environment models that,131

given the present state and a candidate action, make predictions about the future states.2 In general,132

we can employ an environment model that build on recent popular action-conditional next-step133

predictors [], and train it in an unsupervised fashion from agent experiences. However, the predictors134

usually suffer from model errors, resulting in poor agent performance, and need extra computational135

cost (e.g., pre-training) [error][cost]. Besides, the predictors may learn a trivial identical function,136

since the state transition in agent trajectories is deterministic, i.e., st+1 = st [ {it} and at = it. In137

this work, we derive a static environment model from the state transition: ŝt+⌧+1 = ŝt+⌧ [ {̂it+⌧},138

ît+⌧ = ât+⌧ and ŝt = st, where ⌧ is the length of the imagined rollout, ât+⌧ the output action of the139

imagination policy ⇡̂. During training, the generated item ît+⌧ may not be the true purchase, but we140

still use it for self-supervised reconstruction of I2E. This makes the action policy ⇡ more robust to141

intrinsic errors and forces the imagination policy ⇡̂ to generate more accurate actions.142

In practice, the imagination policy ⇡̂ can be obtained from policy distillation [] or fixed target network143

like DQN []. The former distills the action policy ⇡(st; ✓) into a smaller rollout network ⇡̂(st; ✓̂),144

using a cross-entropy loss, l⇡,⇡̂(st) =
P

a ⇡(a|st)log⇡̂(a|st; ✓̂). The latter uses a shared but slowly145

changing target network ⇡̂(st; ✓
�), where ✓� are previous parameters in ⇡(st; ✓). By imitating the146

action policy ⇡, the imagined trajectories will be similar to agent experiences in the real environment;147

this also helps I2E learn a predictive representation of rewarding states, and in turn should allow the148

easy learning of the action policy under the sparse reward signals.149

2IRN do not predict the rewards, since it is not useful as reported in []. and in RS, rewards of different actions
are hard to specify
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still use it for self-supervised reconstruction of I2E. This makes the action policy ⇡ more robust to141

intrinsic errors and forces the imagination policy ⇡̂ to generate more accurate actions.142

In practice, the imagination policy ⇡̂ can be obtained from policy distillation [] or fixed target network143

like DQN []. The former distills the action policy ⇡(st; ✓) into a smaller rollout network ⇡̂(st; ✓̂),144

using a cross-entropy loss, l⇡,⇡̂(st) =
P

a ⇡(a|st)log⇡̂(a|st; ✓̂). The latter uses a shared but slowly145

changing target network ⇡̂(st; ✓
�), where ✓� are previous parameters in ⇡(st; ✓). By imitating the146

action policy ⇡, the imagined trajectories will be similar to agent experiences in the real environment;147

this also helps I2E learn a predictive representation of rewarding states, and in turn should allow the148

easy learning of the action policy under the sparse reward signals.149

2IRN do not predict the rewards, since it is not useful as reported in []. and in RS, rewards of different actions
are hard to specify

4

RA

{item 8, item 5, item 1, item 2}

S4

not reward click purchase

item 2

v1

v2

…

vn

v2
candidate

items

Figure 1: The agent-user interactions in MDP: the recommender agent (RA) generates a list of
candidate items after each user click (green) or purchase (red).

However, GRU4Rec utilizes the session-parallel mini-batch training to handle the variable lengths of
sessions; this trick cannot effectively capture sequentiality of sessions, since the network is trained
using the BP algorithm (not BPTT for RNNs). These models primarily focus on next-click prediction
and model the click-streams via sequential classification, while here we aim at modeling the purchase
behavior and enhancing users’ purchase intentions. Besides, IRN is built on RL, which encodes
sequentiality of states into the value function.

Imagination-augmented Agents All approaches incorporating off-policy experience (e.g., imag-
ined trajectories) generated by a learned model can be categorized into model-based reinforcement
learning (Racanière et al., 2017; Pascanu et al., 2017; Silver et al., 2017; Sutton, 1991). By using an
internal model of the world, the agent can generalize to unseen states, remain valid in the real envi-
ronment, and exploit additional training signals to improve data efficiency. However, the performance
of model-based agents usually suffers from model errors resulting from function approximation.
I2As (Racanière et al., 2017) were proposed to address this issue. I2As augment model-free agents
with imagination and use an interpretation module to handle imperfect predictions. The imagined
trajectories of I2As are provided as additional context (i.e., input features) to a policy network, while
the proposed IRN uses the trajectories as additional training signals for self-supervised reconstruction.

Self-supervised Reinforcement Learning In many real-world scenarios, reward is extremely
sparse and delayed, and the agent updates its policy only if it reaches a pre-defined goal state. To model
this phenomenon, self-supervised reinforcement learning have often been used, which accelerates the
acquisition of a useful representation with auxiliary task learning (Jaderberg et al., 2016; Pathak et al.,
2017; Mirowski et al., 2016; Shelhamer et al., 2016). Specifically, auxiliary tasks provide additional
losses for feature learning, and can be trained instantaneously using the self-supervision from the
environment. For instance, UNREAL (Jaderberg et al., 2016) maximizes many other pseudo-reward
functions simultaneously, e.g., pixel change control, with a common representation shared by all
tasks. In contrast, the proposed IRN do not require the external supervision from the environment,
i.e., self-supervised reconstruction is performed on internal imagined trajectories.

3 PRELIMINARIES

We interpret the sequential recommendation task based on the standard reinforcement learning setting:
An recommender agent (RA) interacts with an environment E (or user sessions) by sequentially
choosing a list of recommendation items over a number of discrete time steps, so as to maximize
its cumulative reward. As shown in Figure 1, we model this problem as a Markov Decision Process
(MDP), which consists of a tuple of five elements (S,A, P,R, γ):

State space S: A state st ∈ S is defined as the previous items that a user clicked/purchased in
one session. Specifically, the initial state s1 contains the first item i0 of one session. The items in
st = {i0, i1, ..., it−1} are sorted in chronological order.

Action space A: An action at ∈ A is to recommend items to a user at time t according to its policy
π, where π is a mapping from st to at. We assume that the RA only recommends one item to the
user each time, since we use the observed click/purchase sequences for off-policy training. During
off-policy evaluation, we can recommend a list of K candidates to the user.
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Reward R: After the RA takes an action at at the state st , i.e., recommending an item to a user, the
user browses this item and provides her feedback (click or purchase). The agent receives a scalar
reward r(st, at) according to the user’s feedback. We also define the k-step return starting from state
st as Gt,t+k(st) =

∑t+k
j=t γ

j−tr(sj , aj), where γ ∈ [0, 1] is a discounting factor.

Transition probability P : Transition probability p(st+1|st, at) defines the probability of state transi-
tion from st to st+1 when the RA takes action at. In this case, the state transition is deterministic
after taking the ground-true action at = it, i.e., p(st+1|st, it) = 1 and st+1 = st ∪ {it}.
The goal of the RA is to find an optimal policy π∗, such that V π

∗
(s1) ≥ V π(s1) for all policies π

and start state s1, where V π(st) is the expected return for a state st when following a policy π, i.e.,
V π(st) = Esj>t∼S,aj>t∼π[Gt,∞(st)] (or Es∼π[Gt,∞(st)] for simplicity).

Asynchronous Advantage Actor-Critic. This paper builds upon the A3C algorithm, an actor-
critic approach that constructs a policy network π(a|s; θ) and a value function network V (s; θv),
with all non-output layers shared (Mnih et al., 2016). The policy and the value function are adjusted
towards the bootstrapped k-step returnGt,t+k(st)+γk+1V (st+k+1; θv), LA3C = Lπ+LV R, where
Lπ = −Es∼π [G1,∞(s1)] and LV R = Es∼π [A(st, at)]. The advantage function A(st, at) (Baird III,
1993) is computed as the difference of the bootstrapped k-step return and the current state value
estimate:

A(st, at) = Gt,t+k(st) + γk+1V (st+k+1; θ
−
v )− V (st; θv), (1)

where θ−v are the parameters of the previous target network. To increase the probability of rewarding
actions, A3C applies an update g(θ) to the parameters θ using an unbiased estimation (Sutton et al.,
2000):

g(θ) = ∇θ log π(at|st; θ)A(st, at). (2)

The value function V (s; θv) is updated following the recursive definition of the Bellman Equation,
V (st; θv) = Es∼π

[
Gt,t+k(st) + γk+1V (st+k+1; θv)

]
. Then g(θv) is obtained by minimizing a

squared error between the target return and the current value estimate:

g(θv) = −A(st, at)
∂

∂θv
V (st; θv). (3)

In A3C multiple agents interact in parallel, with multiple instances of the environment. The asyn-
chronous execution accelerates and stabilizes learning. In practice, we combine A3C with the
session-parallel mini-batches proposed in (Hidasi et al., 2016). Each instance of the agent interacts
with multiple sessions simultaneously, gathering M samples from different sessions at a time step.
After k steps, the agent updates its policy and value network according to Eq. (2)(3), using k ∗M
samples. This decorrelates updates between samples of one session in the instance level. Besides, to
build the A3C agent, we employ an LSTM that jointly approximates both policy π and value function
V , given the one-hot vectors of previous items clicked/purchased as inputs.

4 IRN ARCHITECTURE

In this section we incorporate the imagination reconstruction module into the model-free agents
(e.g., A3C) in order to enhance data efficiency, promote more robust learning and ultimately higher
performance under the sparse extrinsic reward. Our IRN implements an imagination-augmented
policy via three key components (Figure 2). The imagination core (IC) predicts the next time steps
conditioned on actions sampled from the imagination policy π̂. At a time step t, the trajectory
manager (TM) determines how to roll out the IC under the planning strategy, and then produces
imagined trajectories T̂1, . . . , T̂n of an observable world state st. Each trajectory T̂j is a sequence of
items {̂ij,t, îj,t+1, . . .}, that users may purchase (or click) from the current time t. The Imagination-
augmented Executor (IAE) aggregates the internal data resulting from imagination and external
rewarding data to update its action policy π. Specifically, the IAE optimizes the policy π by
maximizing the extrinsic reward while minimizing the intrinsic imagination error. In principle, IRN
encourages exploration and learns predictive representations via imagination rollouts, which promotes
quick adaptation to user interest and robustness to the cold-start scenario.
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ît+⌧ = ât+⌧ and ŝt = st, where ⌧ is the length of the imagined rollout, ât+⌧ the output action of the139
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session-based recommendation (end with buy). using GRU4REC classification problem do not23

differentiate the click and purchase, in practice, we may pay more attention to the improvements of24

purchase.25

Compared with state-of-the-art methods that consider users’ sequential behavior for recommendation,26

e.g., sequential recommenders with recurrent neural networks (RNN) or Markov chains, our method27

achieves significantly and consistently better performance on four real-world datasets.28

In many real-world applications, users’ current interests are influenced by their historical behaviors.29

To model this phenomenon, previous sequential recommenders with user historical records. For30

example, [23] adopted Markov chain to model user behavior sequences, and [19, 31] leveraged31

recurrent neural networks (RNNs) to embed previously purchased products for current interest32

prediction.33

Submitted to 32nd Conference on Neural Information Processing Systems (NIPS 2018). Do not distribute.

Purchase as Reward: Session-based Recommendation
with Imagination Reconstruction Network

Anonymous Author(s)
Affiliation
Address
email

Abstract

For sequential recommendations, it is important to enhance the purchase willing of1

users. Recent popular session-based models use classification methods to model2

the sequential actions classification, which do not explicit differentiate the click and3

purchase reward. In this paper, we formulate sequential recommendation as MDP,4

where the purchase is used as the reward signal for recommender agent and user5

sessions are treated as external environment. To handle the sparse purchase reward,6

we propose a simple architecture, namely Imagination Reconstruction Network7

(IRN), which is inspired from the neu-science Prediction Error Minimization.8

IRN distill a roll-out policy from action policy and combine it with a static9

environment model to predict the future observations. Imaginations are then10

used as self-supervised reconstruction signal for action policy when there is no11

purchase reward. By minimizing the intrinsic imagination error and maximizing the12

extrinsic purchase probability, IRN can automatically balance EE and learn a better13

predictive representations, resulting in a more robust action policy. Experiments14

show that IRN can significantly enhance the purchase, and achieve a satisfactory15

click performance even when we do not treat click as rewards.16

robust to the cold-start scenario (short sessions).17

improve the data efficiency.18

do exploration when item space is huge.19

1 Introduction20
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imagination policy ⇡̂. During training, the generated item ît+⌧ may not be the true purchase, but we140
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Figure 2: IRN architecture: a) the imagination core (IC) predicts the next time step and then generates
the imagined trajectories T̂ ; b) the trajectory manager (TM) employs various planning strategies (e.g.,
depth-m here) to control the granularity of T̂ ; c) the imagination-augmented executor (IAE) optimizes
the network using the internal imagination data and external rewarding data (e.g., purchases).

Imagination Core In order to simulate imagined trajectories, we rely on environment models that,
given the present state and a candidate action, make predictions about the future states. In general,
we can employ an environment model that build on action-conditional next-step predictors (Oh et al.,
2015), and train it in an unsupervised fashion from agent experiences. However, the predictors usually
suffer from model errors, resulting in poor agent performance, and require extra computational cost
(e.g., pre-training). Besides, the predictors may learn a trivial identical function, since the state
transition in agent trajectories (or session data) is deterministic, i.e., st+1 = st ∪ {it} and it = at. In
this work, we derive a static environment model from the state transition: ŝt+τ+1 = ŝt+τ ∪ {̂it+τ},
ît+τ = ât+τ and ŝt = st, where τ is the length of the imagined rollout, ât+τ the output action of the
imagination policy π̂. During training, the generated item ît+τ may not be the true purchase/click,
but we still use it for self-supervised reconstruction. This makes the action policy π more robust to
intrinsic errors and forces the imagination policy π̂ to generate more accurate actions.

In practice, the imagination policy π̂ can be obtained from policy distillation (Racanière et al., 2017) or
a fixed target network like DQN (Mnih et al., 2015). The former distills the action policy π(st; θ) into
a smaller rollout network π̂(st; θ̂), using a cross-entropy loss, lπ,π̂(st) =

∑
a π(a|st)logπ̂(a|st; θ̂).

The latter uses a shared but slowly changing network π̂(st; θ−), where θ− are previous parameters
in π(st; θ). By imitating the action policy π, the imagined trajectories will be similar to agent
experiences in the real environment; this also helps IAE learn predictive representations of rewarding
states, and in turn should allow the easy learning of the action policy under the sparse reward signals.

Trajectory Manager The TM rolls out the IC over multiple time steps into the future, generating
multiple imagined trajectories with the present information. Additionally, various planning strategies
are supported for trajectory simulation: breadth-n, depth-m and their combination. For breadth-n
imagination, the TM generates n trajectories, T̂1, . . . , T̂n, over one time step from the current state st,
i.e., T̂j = {̂ij,t}. Empirically, the IAE using breadth-n imagination will motivate the agent to focus on
short-term events and predict the next step more accurately (e.g., enhancing the next-click prediction
performance even when we do not formalize the click event as reward). For depth-m imagination,
the TM generates only one trajectory T̂1 through m time steps, i.e., T̂1 = {̂i1,t, . . . , î1,t+m−1}. This
enables the agent to learn to plan the long-term future, and thus recommend items that yield high
rewards (purchases). Finally, we can also achieve the trade-off between breadth-n and depth-m to
balance the long-term rewards and short-term rewards. Specifically, we generate n trajectories, and
each has a depth m, i.e., {T̂ } = {{̂i1,t, . . . , î1,t+m−1}, . . . , {̂in,t, . . . , în,t+m−1}}.

Imagination-augmented Executor As mentioned before, the IAE uses external rewarding data
and internal imagined trajectories to update its action policy π. For the j-th trajectory, T̂j =

{̂ij,t, . . . , îj,t+m−1}, we define a multi-step reconstruction objective using the mean squared error:
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Lj =
m∑

τ=1

γτ ||AE(φ(T̂j,τ ))− φ(T̂j,τ )||2, (4)

where T̂j,τ is the τ -th imagined item, φ(·) is the input encoder shared by π (for joint feature learning),
AE is the autoencoder that reconstructs the input feature, and the discounting factor γ is used to
mimic Bellman type operations. In practice, we found that action representation learning (i.e., the
output weights of π) is crucial to the final performance due to the large size of candidate items.
Therefore, we use the one-hot transformation as φ(·) and replace AE with the policy π (excluding
the final softmax function), and only back-propagate errors in the positions of imagined items.
Specifically, for an imagined item, the mean squared error is computed between one and its activation
value through π; errors for other items are turned to be zero. In this case, the policy π is optimized
not only to predict purchases accurately but also to minimize the reconstruction error of imagined
items over time. Take a session for example, {i0, i1, ..., iq−1, iq} (iq is the final purchased item), π is
trained t+ 1 times using imagination reconstruction and once using A3C updating (for the purchase
event); the overall reconstruction loss for this session is defined as LIRN =

∑q
t=0

∑n
j=1 Lj(st).

There are several advantages associated with the imagination reconstruction. First, imagined trajecto-
ries provide auxiliary signals for reward augmentation. This speeds up policy learning when extrinsic
reward is delayed and sparse. Second, by using a shared policy network, IAE enables exploration
and exploitation, and thus improves feature learning when the number of actions is large. Third,
compared with agents that predict the next observations for robust learning (Mirowski et al., 2016),
our IAE reconstructs the imagined trajectories generated by the TM over time for predictive learning.
When external reward is provided, IAE can be considered as a process of goal-oriented learning or
semi-supervised learning. This self-supervised reconstruction approach also achieves excellent click
and purchase prediction performance even without any external reward (unsupervised learning in this
case, where inputs and output targets used for training π are all counterfactual predictions, and the
input states are transformed through actions in order to match predictions, i.e., predictive perception
in Seth (2014)).

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We evaluate the proposed model on the dataset of ACM RecSys 2015 Challenge2, which contains
click-streams that sometimes end with purchase events. The purchase reward and the click reward (if
used) are empirically set as 5 and 1, respectively. Focusing on the most recent events has shown to
be effective (Jannach & Ludewig, 2017); therefore we collect the latest one month of data and keep
sessions that contain purchases. We follow the preprocessing steps in Hidasi et al. (2016) and use
the sessions of the last three day for testing (we also trained IRN and baselines on the full six month
training set, with slightly poorer results; the relative improvements remained similar). The training
set contains 72274 sessions of 683530 events, and the test set contains 7223 sessions of 63100 events,
and the number of items is 9167. We also derive a separate validation set from the training set,
with sessions of the last day in the training set. The evaluation is done by incrementally adding the
previous observed event to the session and checking the rank of the next event. We adopt Recall and
Mean Reciprocal Rank (MRR) for top-K evaluations, and take the averaged scores over all events in
the test set. We repeat this procedure 5 times and report the average performance. Without special
mention, we set K to 5 for both metrics. Besides, we build an environment using session-parallel
mini-batches, where the agent interacts with multiple sessions simultaneously (see section 3).

Baselines We choose various baseline agents for comparison, including: (1) BPR (Rendle et al.,
2009), a pairwise ranking approach, widely applied as a benchmark; (2) GRU4Rec (Hidasi et al.,
2016), a RNN-based approach for session-based recommendations with a BPR-max loss function
(note that original GRU4Rec gives much lower purchase performance, thus we only use the clicked
items from the same mini-batch as negative examples); (3) CKNN (Jannach & Ludewig, 2017),
a session-based KNN method, which incorporates heuristics to sample similar past sessions as
neighbors; (4) A3C-F and A3C-P, the base agents without imagination, using the click and purchase

2http://2015.recsyschallenge.com/
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Table 1: Recommendation performance for purchase and click events.
Purchase Recall@3 Recall@5 Recall@10 MRR@3 MRR@5 MRR@10
BPR 0.471 0.679 0.820 0.372 0.434 0.458
CKNN 0.519 0.685 0.805 0.420 0.470 0.490
GRU4Rec 0.500 0.675 0.788 0.404 0.457 0.475

A3C-F 0.505 0.684 0.813 0.405 0.458 0.479
A3C-P 0.512 0.704 0.828 0.411 0.469 0.489
IRN-F 0.525 0.734 0.879 0.419 0.482 0.506
PRN-P 0.515 0.718 0.867 0.409 0.471 0.492
IRN-P 0.537 0.752 0.908 0.427 0.490 0.514

Click Recall@3 Recall@5 Recall@10 MRR@3 MRR@5 MRR@10
BPR 0.198 0.249 0.276 0.168 0.182 0.187
CKNN 0.206 0.292 0.383 0.167 0.190 0.207
GRU4Rec 0.201 0.297 0.413 0.162 0.192 0.209
A3C-F 0.207 0.313 0.437 0.168 0.200 0.218
A3C-P 0.197 0.277 0.367 0.160 0.184 0.198
IRN-F 0.210 0.310 0.422 0.171 0.198 0.216
PRN-P 0.185 0.255 0.328 0.154 0.172 0.184
IRN-P 0.212 0.306 0.406 0.173 0.200 0.215

reward (-F) or only the purchase reward (-P); (5) IRN-F and IRN-P, the proposed models that augment
A3C with imagiantion; (6) PRN-P, an A3C agent that reconstructs the previous observed trajectories
(i.e., click/purchase sequences), using the purchase reward.

Architecture We implemented IRN via Tensorflow3, which will be released publicly upon accep-
tance. We use grid search to tune hyperparameters of IRN and compared baselines on the validation
set. Specifically, the input state st is passed through a LSTM with 256 units which takes in the
one-hot representation of recent clicked/purchased items. The output of the LSTM layer is fed into
two separate fully connected layers with linear projections, to predict the value function and the
action. A softmax layer is added on top of the action output to generate the probability of 9167 actions.
The discounting value γ is 0.99. The imagination policy π̂ is obtained from π using the fixed target
network, and the weights of π̂ are updated after every 500 iterations. Without special mentioned, TM
employs the combination of breadth-2 and width-2 for internal planning. The imagination recon-
struction is performed every one environment step. The A3C updating is performed with immediate
purchase reward (when found) or 3-step returns (when click reward is used). Besides, weights of
IRN are initialized using Xavier-initializer (Glorot & Bengio, 2010) and trained via Adam optimizer
(Kingma & Ba, 2014) with the learning rate and the batch size set to 0.001 and 128, respectively.

5.2 RESULTS

We first evaluate the top-K recommendation performance. The experimental results are summarized
in Table 1. From the purchase performance comparison, we get:

• A3C-P has already outperformed classical session-based recommenders (BPR, CKNN and
GRU4Rec) on Recall metrics and achieved comparable results on MRR metrics. GRU4Rec
gives poor purchase performance, as it focuses on next-click prediction.
• Comparing IRN-P with A3C-P, we can see that the purchase (and click) performance can

be significantly improved with imagination reconstruction, demonstrating that IRN-P can
guess what you like via internal planning and learn predictive representations.
• IRN-P consistently outperforms IRN-F, and A3C-P also outperforms A3C-F for purchase

prediction. This demonstrates that purchase events can better characterize user interest, and
the agents may be biased if clicks are used as reward.

3https://www.tensorflow.org
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Figure 3: Possibility of being stuck in an non-optimal policy with varying reward sparsity for IRN.

Table 2: Purchase performance comparison with varying reward density d.
Recall@5 MRR@5

Algorithm d = 0.1 d = 0.05 d = 0.0 d = 0.1 d = 0.05 d = 0.0

A3C-F 0.679 0.676 0.674 0.460 0.459 0.459
A3C-P 0.687 0.578 – 0.464 0.398 –
IRN-F 0.730 0.726 0.720 0.480 0.478 0.473
IRN-P 0.735 0.725 0.653 0.482 0.475 0.432

• Comparing PRN-P with A3C-P and IRN-P, we found that reconstructing the previous actual
trajectories (i.e., click-streams) also improves the purchase performance (compared to A3C-
P). This is because that PRN-P can learn better representations for clicked items, and user
purchases are sometimes contained in the click-streams. Besides, IRN-P outperforms PRN-P,
since PRN-P introduces stronger supervision and may not know what is the final goal, while
the imagination reconstruction (without any real trajectories) performs semi-supervised
learning, which promotes more robust policy learning.

From the click performance comparison, we get:

• GRU4Rec achieves excellent next-click performance (e.g., top-5 and top-10) compared to
BPR and CKNN, as it models the session data via sequential classification.
• A3C-F performs much better than A3C-P and GRU4Rec. This indicates that RL-based

recommenders trained on clicks can generate actions that better preserve the sequential
property, possibly due to the accumulated click reward (of longer sessions).
• Somewhat interesting, IRN-P significantly outperforms A3C-P, and gets comparable results

like IRN-F and A3C-F. This demonstrates that the IRN-P agent may learn to plan and
reconstruct the previous clicked trajectories even when only the purchase reward is provided.

Varying the degree of purchase reward sparsity We now explore the robustness of four RL-
based recommenders to different purchase reward density. We randomly sample a d proportion of
purchase events from the training set. The click events remain unchanged. As shown in Table 2,
A3C-F and IRN-F are robust to different purchase sparsity, since purchases are sometimes contained
in the click sequences. IRN using only the click reward for policy learning can also enhance the
purchase prediction performance (see d = 0). While the performance of A3C-P degrades with
sparser purchase reward, the proposed IRN-P achieves comparable performance; the imagination
reconstruction promotes predictive learning of rewarding states. To our surprise, we have found
that IRN-P performs well even without any external reward from the environment (i.e., predictive
perception, see A3C-F and IRN-P with d = 0). Minimizing the imagination error of predictive
trajectories over time enables the agent to learn sequential patterns in an unsupervised fashion. Figure
3 compares the performance of IRN-P on different reward sparsity setting, where one epoch contains
nearly 5000 iterations. We can observe that the performance of all models is gradually improved, and
IRN-P with a larger d learns faster, indicating better exploration and exploitation. Note that IRN-P
with d = 0 will adversely decrease the performance due to the local over-training. In extreme cases,
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Figure 4: Purchase performance comparison on Recall@5 and MRR@5 metrics. (a, b) Results under
the cold-start scenarios. (c, d) Results in online learning.

Table 3: Performance of IRN-P with different planning strategies (breadth-n and depth-m).
Recall@5 MRR@5

n, m First Click Purchase First Click Purchase

1, 1 0.397 0.307 0.733 0.299 0.199 0.477
2, 1 0.413 0.316 0.736 0.308 0.205 0.479
1, 2 0.344 0.294 0.755 0.280 0.190 0.488
2, 2 0.372 0.306 0.752 0.290 0.200 0.490

a final purchase decision would be unknown, the imagination reconstruction may be applied without
external reward, but we can use the click prediction performance for validation and early stopping.

Effectiveness of the trajectory manager We then analyze the effectiveness of different planners
of the TM. Table 3 shows the best results obtained with IRN-P when using alternative measurements.
Note that the purchase event in one session is usually the last user interaction, and "First" means
that the second event is evaluated separately (the first clicked item is used as the initial state). We
can observe that, different planners equip the agent with different prediction capacity. For instance,
IRN-P with a larger n performs better on First and Click metrics, indicating that the agent with
breadth-n planning focuses more on short-term rewards. On the contrary, a larger m can improve the
purchase performance at a cost of lower First and Click results, since depth-m planning enables the
agent to imagine the longer future. The combination of breadth-n and depth-m can better balance the
long-term rewards and short-term rewards. Besides, for IRN-P without any external reward (d = 0.0),
the depth-2 planner gives better performance than depth-1 and breadth-2 on three measurements
(by 2-5%), possibly due to the more predictive representations learned after unsupervised training.
However, for IRN with purchase reward (semi-supervised learning), the purchase performance cannot
be improved using longer imagined trajectories. One possible reason is that two steps of imagination
reconstruction is sufficient for learning to predict the future events recursively; the first step of IRN
learns to capture the difference of adjacent input states, and the second step learns to look ahead the
future purchase signal accurately.

Robustness to the cold-start scenario We simulate a cold-start scenario using the test set. Specifi-
cally, we use a parameter c to control the number of items in the input state (a set of one-hot vectors
of clicked items), i.e., new events will not be added to the input state if the number of items exceeds c,
but are still used for evaluations. Figure 4 (a,b) shows the purchase performance w.r.t. the cold-start
parameter c. We can see that IRN-P outperforms A3C-P and A3C-F over all ranges of c, verifying the
effectiveness of imagination reconstruction. In other words, IRN-P can guess what you like (or learn
predictive representations) and obtain a better user (or session) profile. Besides, A3C-F achieves
slightly better results than A3C-P, which is different from that in Table 1. A3C-F that trained with the
click reward can preserve the sequential property of sessions, and thus provide auxiliary (implicit)
information under the cold-start setting (in the warm-start setting, the agent using more clicked items
as input may be biased and thus focuses on next-click prediction).

Adaptation to user interest To demonstrate that IRN can improve data efficiency and promote
quick adaptation to user interest, we create a more realistic scenario for online learning. Specifically,
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the training set is sorted in chronological order, and each event is used only once for training. The test
set remains unchanged. Figure 4 (c,d) shows the purchase performance that is evaluated on both the
training set ("-tr", averaged over a batch of training purchases) and the test set ("-te", averaged over
all test purchases); for a given purchase event in the training set, the model first checks its rank and
then uses it for an incremental update (measuring the short-term interest). We can see that, IRN-P
promotes quick adaptation to user interest (after 2000 iterations) compared to A3C-P and A3C-F on
the two datasets, and IRN-P-te shows improved data efficiency and purchase performance compared
to A3C-F-te and A3C-P-te after online learning. Different from IRN-P, A3C-F and A3C-P perform
poorly on the test set (compared to that of the last training batch); this highlights the importance of
most recent events and demonstrates that IRN-P can capture user’s long-term interest ahead of time.

6 CONCLUSION

In this paper, we propose the IRN architecture for session-based recommendation, which is inspired
by the theories of cognition science. IRN can be regarded as a combination of model-based planning
and self-supervised reinforcement learning, which employs a self-supervised reconstruction method
for predictive learning, using the imagined trajectories generated by the internal model. We conducted
experiments to study the impacts of difference components under different scenarios, verifying the
effectiveness of our IRN architecture. We believe this kind of approaches has the potential to make a
shift in the way we use recommender systems.
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