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Abstract

Solving tasks in Reinforcement Learning is no easy feat. As the goal of
the agent is to maximize the accumulated reward, it often learns to ex-
ploit loopholes and misspecifications in the reward signal resulting in un-
wanted behavior. While constraints may solve this issue, there is no closed
form solution for general constraints. In this work, we present a novel
multi-timescale approach for constrained policy optimization, called ‘Re-
ward Constrained Policy Optimization’ (RCPO), which uses an alternative
penalty signal to guide the policy towards a constraint satisfying one. We
prove the convergence of our approach and provide empirical evidence of
its ability to train constraint satisfying policies.

1 Introduction

Applying Reinforcement Learning (RL) is generally a hard problem. At each state, the agent
performs an action which produces a reward. The goal is to maximize the accumulated
reward, hence the reward signal implicitly defines the behavior of the agent. While in
computer games (e.g. Bellemare et al. (2013)) there exists a pre-defined reward signal, it is
not such in many real applications.

An example is the Mujoco domain (Todorov et al., 2012), in which the goal is to learn
to control robotic agents in tasks such as: standing up, walking, navigation and more.
Considering the Humanoid domain, the agent is a 3 dimensional humanoid and the task is
to walk forward as far as possible (without falling down) within a fixed amount of time.
Naturally, a reward is provided based on the forward velocity in order to encourage a larger
distance; however, additional reward signals are provided in order to guide the agent, for
instance a bonus for staying alive, a penalty for energy usage and a penalty based on the
force of impact between the feet and the floor (which should encourage less erratic behavior).
Each signal is multiplied by it’s own coefficient, which controls the emphasis placed on it.

This approach is a multi-objective problem (Mannor and Shimkin, 2004); in which for each
set of penalty coefficients, there exists a different, optimal solution, also known as Pareto
optimality (Van Moffaert and Nowé, 2014). In practice, the exact coefficient is selected
through a time consuming and a computationally intensive process of hyper-parameter tun-
ing. As our experiments show, the coefficient is not shared across domains, a coefficient
which leads to a satisfying behavior on one domain may lead to catastrophic failure on the
other (issues also seen in Leike et al. (2017) and Mania et al. (2018)). Constraints are a
natural and consistent approach, an approach which ensures a satisfying behavior without
the need for manually selecting the penalty coefficients.

In constrained optimization, the task is to maximize a target function f(x) while satisfying
an inequality constraint g(x) ≤ α. While constraints are a promising solution to ensuring
a satisfying behavior, existing methods are limited in the type of constraints they are able
to handle and the algorithms that they may support - they require a parametrization of
the policy (policy gradient methods) and propagation of the constraint violation signal over
the entire trajectory (e.g. Prashanth and Ghavamzadeh (2016)). This poses an issue, as
Q-learning algorithms such as DQN (Mnih et al., 2015) do not learn a parametrization of the
policy, and common Actor-Critic methods (e.g. (Schulman et al., 2015a; Mnih et al., 2016;
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Table 1: Comparison between various approaches.

Handles discounted
sum constraints

Handles mean
value1constraints

Requires
no prior

knowledge

Reward
agnostic

RCPO (this paper) 3 32 3 3

Dalal et al. (2018) 7 7 7 3

Achiam et al. (2017) 3 7 3 3

Reward shaping 3 3 3 7

Schulman et al. (2017)3 7 7 7 7

Schulman et al., 2017)) build the reward-to-go based on an N-step sample and a bootstrap
update from the critic.

In this paper, we propose the ‘Reward Constrained Policy Optimization’ (RCPO) algo-
rithm. RCPO incorporates the constraint as a penalty signal into the reward function. This
penalty signal guides the policy towards a constraint satisfying solution. We prove that
RCPO converges almost surely, under mild assumptions, to a constraint satisfying solution
(Theorem 2). In addition; we show, empirically on a toy domain and six robotics domains,
that RCPO results in a constraint satisfying solution while demonstrating faster convergence
and improved stability (compared to the standard constraint optimization methods).

Related work: Constrained Markov Decision Processes (Altman, 1999) are an active field
of research. CMDP applications cover a vast number of topics, such as: electric grids
(Koutsopoulos and Tassiulas, 2011), networking (Hou and Zhao, 2017), robotics (Chow
et al., 2015; Gu et al., 2017; Achiam et al., 2017; Dalal et al., 2018) and finance (Krokhmal
et al., 2002; Tamar et al., 2012).

The main approaches to solving such problems are (i) Lagrange multipliers (Borkar, 2005;
Bhatnagar and Lakshmanan, 2012), (ii) Trust Region (Achiam et al., 2017), (iii) integrating
prior knowledge (Dalal et al., 2018) and (iv) manual selection of the penalty coefficient
(Tamar and Mannor, 2013; Levine and Koltun, 2013; Peng et al., 2018).

Novelty: The novelty of our work lies in the ability to tackle (1) general constraints (both
discounted sum and mean value constraints), not only constraints which satisfy the recursive
Bellman equation (i.e, discounted sum constraints) as in previous work. The algorithm is
(2) reward agnostic. That is, invariant to scaling of the underlying reward signal, and (3)
does not require the use of prior knowledge. A comparison with the different approaches is
provided in Table 1.

2 Preliminaries

2.1 Markov Decision Process (MDP)

A Markov Decision ProcessesM is defined by the tuple (S,A,R, P, µ, γ) (Sutton and Barto,
1998). Where S is the set of states, A the available actions, R : S × A × S 7→ R is the
reward function, P : S × A × S 7→ [0, 1] is the transition matrix, where P (s′|s, a) is the
probability of transitioning from state s to s′ assuming action a was taken, µ : S 7→ [0, 1] is
the initial state distribution and γ ∈ [0, 1) is the discount factor for future rewards. A policy
π : S 7→ ∆A is a probability distribution over actions and π(a|s) denotes the probability of
taking action a at state s. For each state s, the value of following policy π is denoted by:

V πR (s) = Eπ[
∑
t

γtr(st, at)|s0 = s] .

1A mean valued constraint takes the form of E[ 1
T

∑T−1
t=0 ct] ≤ α, as seen in Section 5.2.

2Under the appropriate assumptions.
3Algorithms such as PPO are not intended to consider or satisfy constraints.
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An important property of the value function is that it solves the recursive Bellman equation:

V πR (s) = Eπ[r(s, a) + γV πR (s′)|s] .

The goal is then to maximize the expectation of the reward-to-go, given the initial state
distribution µ:

max
π∈Π

JπR , where JπR = Eπs∼µ[

∞∑
t=0

γtrt] =
∑
s∈S

µ(s)V πR (s) . (1)

2.2 Constrained MDPs

A Constrained Markov Decision Process (CMDP) extends the MDP framework by intro-
ducing a penalty c(s, a), a constraint C(st) = F (c(st, at), ..., c(sN , aN )) and a threshold
α ∈ [0, 1]. A constraint may be a discounted sum (similar to the reward-to-go), the average
sum and more (see Altman (1999) for additional examples). Throughout the paper we will
refer to the collection of these constraints as general constraints.

We denote the expectation over the constraint by:

JπC = Eπs∼µ[C(s)] . (2)

The problem thus becomes:

max
π∈Π

JπR , s.t. JπC ≤ α . (3)

2.3 Parametrized Policies

In this work we consider parametrized policies, such as neural networks. The parameters
of the policy are denoted by θ and a parametrized policy as πθ. We make the following
assumptions in order to ensure convergence to a constraint satisfying policy:

Assumption 1. The value V πR (s) is bounded for all policies π ∈ Π.

Assumption 2. Every local minima of JπθC is a feasible solution.

Assumption 2 is the minimal requirement in order to ensure convergence, given a general
constraint, of a gradient algorithm to a feasible solution. Stricter assumptions, such as
convexity, may ensure convergence to the optimal solution; however, in practice constraints
are non-convex and such assumptions do not hold.

3 Constrained Policy Optimization

Constrained MDP’s are often solved using the Lagrange relaxation technique (Bertesekas,
1999). In Lagrange relaxation, the CMDP is converted into an equivalent unconstrained
problem. In addition to the objective, a penalty term is added for infeasibility, thus making
infeasible solutions sub-optimal. Given a CMDP (3), the unconstrained problem is

min
λ≥0

max
θ
L(λ, θ) = min

λ≥0
max
θ

[JπθR − λ · (J
πθ
C − α)] , (4)

where L is the Lagrangian and λ ≥ 0 is the Lagrange multiplier (a penalty coefficient).
Notice, as λ increases, the solution to (4) converges to that of (3). This suggests a two-
timescale approach: on the faster timescale, θ is found by solving (4), while on the slower
timescale, λ is increased until the constraint is satisfied. The goal is to find a saddle point
(θ∗(λ∗), λ∗) of (4), which is a feasible solution.

Definition 1. A feasible solution of the CMDP is a solution which satisfies JπC ≤ α.
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3.1 Estimating the gradient

We assume there isn’t access to the MDP itself, but rather samples are obtained via simu-
lation. The simulation based algorithm for the constrained optimization problem (3) is:

λk+1 = Γλ[λk − η1(k)∇λL(λk, θk)] , (5)

θk+1 = Γθ[θk + η2(k)∇θL(λk, θk)] , (6)

where Γθ is a projection operator, which keeps the iterate θk stable by projecting onto a
compact and convex set. Γλ projects λ into the range [0, λmax

4]. ∇θL and ∇λL are derived
from (4), where the formulation for ∇θL is derivied using the log-likelihood trick (Williams,
1992):

∇θL(λ, θ) = ∇θEπθs∼µ [log π(s, a; θ) [R(s)− λ · C(s)]] , (7)

∇λL(λ, θ) = −(Eπθs∼µ[C(s)]− α) , (8)

η1(k), η2(k) are step-sizes which ensure that the policy update is performed on a faster
timescale than that of the penalty coefficient λ.

Assumption 3.

∞∑
k=0

η1(k) =

∞∑
k=0

η2(k) =∞,
∞∑
k=0

(
η1(k)2 + η2(k)2

)
<∞ and

η1(k)

η2(k)
→ 0 .

Theorem 1. Under Assumption 3, as well as the standard stability assumption for the
iterates and bounded noise (Borkar et al., 2008), the iterates (θn, λn) converge to a fixed
point (a local minima) almost surely.

Lemma 1. Under assumptions 1 and 2, the fixed point of Theorem 1 is a feasible solution.

The proof to Theorem 1 is provided in Appendix C and to Lemma 1 in Appendix D.

4 Reward Constrained Policy Optimization

4.1 Actor Critic Requirements

Recently there has been a rise in the use of Actor-Critic based approaches, for example:
A3C (Mnih et al., 2016), TRPO (Schulman et al., 2015a) and PPO (Schulman et al., 2017).
The actor learns a policy π, whereas the critic learns the value (using temporal-difference
learning - the recursive Bellman equation). While the original use of the critic was for
variance reduction, it also enables training using a finite number of samples (as opposed to
Monte-Carlo sampling).

Our goal is to tackle general constraints (Section 2.2), as such, they are not ensured to
satisfy the recursive property required to train a critic.

4.2 Penalized reward functions

We overcome this issue by training the actor (and critic) using an alternative, guiding,
penalty - the discounted penalty. The appropriate assumptions under which the process
converges to a feasible solution are provided in Theorem 2. It is important to note that; in
order to ensure constraint satisfaction, λ is still optimized using Monte-Carlo sampling on
the original constraint (8).

Definition 2. The value of the discounted (guiding) penalty is defined as:

V πCγ (s) , Eπ
[ ∞∑
t=0

γtc(st, at)|s0 = s

]
. (9)

4When Assumption 2 holds, λmax can be set to ∞.
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Definition 3. The penalized reward functions are defined as:

r̂(λ, s, a) , r(s, a)− λc(s, a) , (10)

V̂ π(λ, s) , Eπ
[ ∞∑
t=0

γtr̂(λ, st, at)|s0 = s

]

= Eπ
[ ∞∑
t=0

γt (r(st, at)− λc(st, at)) |s0 = s

]
= V πR (s)− λV πCγ (s) . (11)

As opposed to (4), for a fixed π and λ, the penalized value (11) can be estimated using
TD-learning critic. We denote a three-timescale (Constrained Actor Critic) process, in
which the actor and critic are updated following (11) and λ is updated following (5), as the
‘Reward Constrained Policy Optimization’ (RCPO) algorithm. Algorithm 1 illustrates such
a procedure and a full RCPO Advantage-Actor-Critic algorithm is provided in Appendix A.

Algorithm 1 Template for an RCPO implementation

1: Input: penalty c(·), constraint C(·), threshold α, learning rates η1(k) < η2(k) < η3(k)
2: Initialize actor parameters θ = θ0, critic parameters v = v0, Lagrange multipliers and
λ = 0

3: for k = 0, 1, ... do
4: Initialize state s0 ∼ µ
5: for t = 0, 1, ..., T − 1 do
6: Sample action at ∼ π, observe next state st+1, reward rt and penalties ct
7: R̂t = rt − λkct + γV̂ (λ, st; vk) . Equation 10

8: Critic update: vk+1 ← vk − η3(k)
[
∂(R̂t − V̂ (λ, st; vk))2/∂vk

]
. Equation 11

9: Actor update: θk+1 ← Γθ

[
θk + η2(k)∇θV̂ (λ, s)

]
. Equation 6

10: Lagrange multiplier update: λk+1 ← Γλ [λk + η1(k) (JπθC − α)] . Equation 8

11: return policy parameters θ

Theorem 2. Denote by Θ = {θ : JπθC ≤ α} the set of feasible solutions and the set of local-
minimas of JπθCγ as Θγ . Assuming that Θγ ⊆ Θ then the ‘Reward Constrained Policy Opti-

mization’ (RCPO) algorithm converges almost surely to a fixed point (θ∗(λ∗, v∗), v∗(λ∗), λ∗)
which is a feasible solution (e.g. θ∗ ∈ Θ).

The proof to Theorem 2 is provided in Appendix E.

The assumption in Theorem 2 demands a specific correlation between the guiding penalty
signal Cγ and the constraint C. Consider a robot with an average torque constraint. A policy
which uses 0 torque at each time-step is a feasible solution and in turn is a local minimum
of both JC and JCγ . If such a policy is reachable from any θ (via gradient descent), this is
enough in order to provide a theoretical guarantee such that JCγ may be used as a guiding
signal in order to converge to a fixed-point, which is a feasible solution.

5 Experiments

We test the RCPO algorithm in various domains: a grid-world, and 6 tasks in the Mujoco
simulator (Todorov et al., 2012). The grid-world serves as an experiment to show the
benefits of RCPO over the standard Primal-Dual approach (solving (4) using Monte-Carlo
simulations), whereas in the Mujoco domains we compare RCPO to reward shaping, a
simpler (yet common) approach, and show the benefits of an adaptive approach to defining
the cost value.

While we consider mean value constraints (robotics experiments) and probabilistic con-
straints (i.e., Mars rover), discounted sum constraints can be immediately incorporated into
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(a) α = 0.01 (b) α = 0.5

Figure 1: Mars Rover domain and policy illustration. As α decreases, the agent is required
to learn a safer policy.

Figure 2: RCPO vs Lagrange comparison. The reward is (−) the average number of steps
it takes to reach the goal. Results are considered valid if and only if they are at or below
the threshold.

our setup. We compare our approach with relevant baselines that can support these con-
straints. Discounted sum approaches such as Achiam et al. (2017) and per-state constraints
such as Dalal et al. (2018) are unsuitable for comparison given the considered constraints.
See Table 1 for more details.

For clarity, we provide exact details in Appendix B (architecture and simulation specifics).

5.1 Mars Rover

5.1.1 Domain Description

The rover (red square) starts at the top left, a safe region of the grid, and is required to
travel to the goal (orange square) which is located in the top right corner. The transition
function is stochastic, the rover will move in the selected direction with probability 1 − δ
and randomly otherwise. On each step, the agent receives a small negative reward rstep

and upon reaching the goal state a reward rgoal. Crashing into a rock (yellow) causes the
episode to terminate and provides a negative reward −λ. The domain is inspired by the
Mars Rover domain presented in Chow et al. (2015). It is important to note that the domain
is built such that a shorter path induces higher risk (more rocks along the path). Given
a minimal failure threshold (α ∈ (0, 1)), the task is to find λ, such that when solving for
parameters δ, rstep, rgoal and λ, the policy will induce a path with Pπθµ (failure) ≤ α; e.g.,
find the shortest path while ensuring that the probability of failure is less or equal to α.

5.1.2 Experiment Description

As this domain is characterized by a discrete action space, we solve it using the A2C algo-
rithm (a synchronous version of A3C (Mnih et al., 2016)). We compare RCPO, using the
discounted penalty Cγ , with direct optimization of the Lagrange dual form (4).

5.1.3 Experiment Analysis

Figure 1 illustrates the domain and the policies the agent has learned based on different
safety requirements. Learning curves are provided in Figure 2. The experiments show that,
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Table 2: Comparison between RCPO and reward shaping with a torque constraint < 25%.

Swimmer-v2 Walker2d-v2 Hopper-v2
Torque Reward Torque Reward Torque Reward

λ = 0 30.4% 94.4 24.6% 3364.1 31.5% 2610.7
λ = 0.00001 37.4% 65.1 28.4% 3198.9 31.4% 1768.2

λ = 0.1 32.8% 16.5 13.6% 823.5 15.7% 865.95

λ = 100 2.4% 11.7 17.8% 266.1 14.3% 329.4

RCPO (ours) 24% 72.7 25.2% 591.6 26% 1138.55

Humanoid-v2 HalfCheetah-v2 Ant-v2
Torque Reward Torque Reward Torque Reward

λ = 0 28.6% 617.1 37.8% 2989.5 36.7% 1313.1
λ = 0.00001 28.1% 617.1 40.8% 2462.3 35.9% 1233.5
λ = 0.1 28.5% 1151.8 13.87% -0.4 16.6% 1012.2
λ = 100 30.5% 119.4 13.9% -2.4 16.7% 957.2

RCPO (ours) 24.3% 606.1 26.7% 1547.1 15.2% 1031.5

for both scenarios α = 0.01 and α = 0.5, RCPO is characterized by faster convergence
(improved sample efficiency) and lower variance (a stabler learning regime).

5.2 Robotics

5.2.1 Domain Description

Todorov et al. (2012); Brockman et al. (2016) and OpenAI (2017) provide interfaces for
training agents in complex control problems. These tasks attempt to imitate scenarios
encountered by robots in real life, tasks such as teaching a humanoid robot to stand up,
walk, and more. The robot is composed of n joints; the state S ∈ Rn×5 is composed of
the coordinates (x, y, z) and angular velocity (ωθ, ωφ) of each joint. At each step the agent
selects the amount of torque to apply to each joint. We chose to use PPO (Schulman et al.,
2017) in order to cope with the continuous action space.

5.2.2 Experiment Description

In the following experiments; the aim is to prolong the motor life of the various robots,
while still enabling the robot to perform the task at hand. To do so, the robot motors
need to be constrained from using high torque values. This is accomplished by defining the
constraint C as the average torque the agent has applied to each motor, and the per-state
penalty c(s, a) becomes the amount of torque the agent decided to apply at each time step.
We compare RCPO to the reward shaping approach, in which the different values of λ are
selected apriori and remain constant.

5.2.3 Experiment Analysis

Learning curves are provided in Figure 3 and the final values in Table 2. It is important to
note that by preventing the agent from using high torque levels (limit the space of admissible
policies), the agent may only be able to achieve a sub-optimal policy. RCPO aims to find
the best performing policy given the constraints; that is, the policy that achieves maximal
value while at the same time satisfying the constraints. Our experiments show that:

1. In all domains, RCPO finds a feasible (or near feasible) solution, and, besides the
Walker2d-v2 domain, exhibits superior performance when compared to the relevant
reward shaping variants (constant λ values resulting in constraint satisfaction).

5In the Hopper-v2 domain, it is not clear which is the superior method RCPO or the λ = 0.1
reward shaping variant.
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Figure 3: Mujoco with torque constraints. The dashed line represents the maximal allowed
value. Results are considered valid only if they are at or below the threshold. RCPO is our
approach, whereas each λ value is a PPO simulation with a fixed penalty coefficient. Y axis
is the average reward and the X axis represents the number of samples (steps).

2. Selecting a constant coefficient λ such that the policy satisfies the constraint is not
a trivial task, resulting in different results across domains (Achiam et al., 2017).

5.2.4 The Drawbacks of Reward Shaping

When performing reward shaping (selecting a fixed λ value), the experiments show that in
domains where the agent attains a high value, the penalty coefficient is required to be larger
in order for the solution to satisfy the constraints. However, in domains where the agent
attains a relatively low value, the same penalty coefficients can lead to drastically different
behavior - often with severely sub-optimal solutions (e.g. Ant-v2 compared to Swimmer-v2).

Additionally, in RL, the value (JπR) increases as training progresses, this suggests that a
non-adaptive approach is prone to converge to sub-optimal solutions; when the penalty is
large, it is plausible that at the beginning of training the agent will only focus on constraint
satisfaction and ignore the underlying reward signal, quickly converging to a local minima.
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6 Discussion

We introduced a novel constrained actor-critic approach, named ‘Reward Constrained Pol-
icy Optimization’ (RCPO). RCPO uses a multi-timescale approach; on the fast timescale
an alternative, discounted, objective is estimated using a TD-critic; on the intermediate
timescale the policy is learned using policy gradient methods; and on the slow timescale
the penalty coefficient λ is learned by ascending on the original constraint. We validate our
approach using simulations on both grid-world and robotics domains and show that RCPO
converges in a stable and sample efficient manner to a constraint satisfying policy.

An exciting extension of this work is the combination of RCPO with CPO (Achiam et al.,
2017). As they consider the discounted penalty, our guiding signal, it might be possible to
combine both approaches. Such an approach will be able to solve complex constraints while
enjoying feasibility guarantees during training.
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A RCPO Algorithm

Algorithm 2 RCPO Advantage Actor Critic

The original Advantage Actor Critic algorithm is in gray, whereas our additions are highlighted in
black.

1: Input: penalty function C(·), threshold α and learning rates η1, η2, η3
2: Initialize actor π(·|·; θp) and critic V (·; θv) with random weights
3: Initialize λ = 0, t = 0, s0 ∼ µ . Restart
4: for T = 1, 2, ..., Tmax do
5: Reset gradients dθv ← 0, dθp ← 0 and ∀i : dλi ← 0
6: tstart = t
7: while st not terminal and t− tstart < tmax do
8: Perform at according to policy π(at|st; θp)
9: Receive rt, st+1 and penalty score Ĉt
10: t← t+ 1

11: R =

{
0 , for terminal st
V (st, θv) , otherwise

12: for τ = t− 1, t− 2, ..., tstart do

13: R← rτ − λ · Ĉτ+γR . Equation 10
14: dθp ← dθp +∇θp log π(aτ |sτ ; θp)(R− V (sτ ; θv))

15: dθv ← dθv + ∂(R− V (sτ ; θv))
2/∂θv

16: if st is terminal state then
17: dλ← −(C − α) . Equation 8
18: t← 0
19: s0 ∼ µ
20: Update θv, θp and λ
21: Set λ = max(λ, 0) . Ensure weights are non-negative (Equation 4)

B Experiment details

B.1 Mars Rover

The MDP was defined as follows:

rstep = −0.01, rgoal = 0, δ = 0.05, γ = 0.99 .

In order to avoid the issue of exploration in this domain, we employ a linearly decaying
random restart (Kakade and Langford, 2002). µ, the initial state distribution, follows the
following rule:

µ =

{
uniform(s ∈ S) w.p. 1

#iteration

s∗ else

where S denotes all the non-terminal states in the state space and s∗ is the state at the
top left corner (red in Figure 1). Initially the agent starts at a random state, effectively
improving the exploration and reducing convergence time. As training progresses, with
increasing probability, the agent starts at the top left corner, the state which we test against.

The A2C architecture is the standard non-recurrent architecture, where the actor and critic
share the internal representation and only hold a separate final projection layer. The input
is fully-observable, being the whole grid. The network is as follows:

Layer Actor Critic
1 CNN (input layers = 1, output layers = 16, kernel size = 5, stride = 3)
2 CNN (input layers = 16, output layers = 32, kernel size = 3, stride = 2)
3 CNN (input layers = 32, output layers = 32, kernel size = 2, stride = 1)
4 Linear(input = 288, output = 64) Linear(input = 288, output = 64)
5 Linear(input = 64, output = 4) Linear(input = 64, output = 1)

LR 1e-3 5e-4
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between the layers we apply a ReLU non-linearity.

As performance is noisy on such risk-sensitive environments, we evaluated the agent every
5120 episodes for a length of 1024 episodes. To reduce the initial convergence time, we start
λ at 0.6 and use a learning rate lrλ = 0.000025.

B.2 Robotics

For these experiments we used a PyTorch (Paszke et al., 2017) implementation of PPO
(Kostrikov, 2018). Notice that as in each domain the state represents the location and
velocity of each joint, the number of inputs differs between domains. The network is as
follows:

Layer Actor Critic
1 Linear(input = x, output = 64) Linear(input = x, output = 64)
2 Linear(input = 64, output = 64) Linear(input = 64, output = 64)
3 DiagGaussian(input = 64, output = y) Linear(input = 64, output = 1)

LR 3e-4 1.5e-4

where DiagGaussian is a multivariate Gaussian distribution layer which learns a mean (as
a function of the previous layers output) and std, per each motor, from which the torque is
sampled. Between each layer, a Tanh non-linearity is applied.

We report the online performance of the agent and run each test for a total of 1M samples.
In these domains we start λ at 0 and use a learning rate lrλ = 5e− 7 which decays at a rate
of κ = (1− 1e− 9) in order to avoid oscillations.

The simulations were run using Generalized Advantage Estimation (Schulman et al., 2015b)
with coefficient τ = 0.95 and discount factor γ = 0.99.

C Proof of Theorem 1

We provide a brief proof for clarity. We refer the reader to Chapter 6 of Borkar et al. (2008)
for a full proof of convergence for two-timescale stochastic approximation processes.

Initially, we assume nothing regarding the structure of the constraint as such λmax is given
some finite value. The special case in which Assumption 2 holds is handled in Lemma 1.

The proof of convergence to a local saddle point of the Lagrangian (4) contains the following
main steps:

1. Convergence of θ-recursion: We utilize the fact that owing to projection, the θ
parameter is stable. We show that the θ-recursion tracks an ODE in the asymptotic
limit, for any given value of λ on the slowest timescale.

2. Convergence of λ-recursion: This step is similar to earlier analysis for con-
strained MDPs. In particular, we show that λ-recursion in (4) converges and the
overall convergence of (θk, λk) is to a local saddle point (θ∗(λ∗, λ∗) of L(λ, θ).

Step 1: Due to the timescale separation, we can assume that the value of λ (updated on
the slower timescale) is constant. As such it is clear that the following ODE governs the
evolution of θ:

θ̇t = Γθ(∇θL(λ, θt)) (12)

where Γθ is a projection operator which ensures that the evolution of the ODE stays within
the compact and convex set Θ := Πk

i=1

[
θimin, θ

i
max

]
.

As λ is considered constant, the process over θ is:

θk+1 = Γθ[θk + η2(k)∇θL(λ, θk)]

= Γθ[θk + η2(k)∇θEπθs∼µ [log π(s, a; θ) [R(s)− λ · C(s)]]]
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Thus (6) can be seen as a discretization of the ODE (12). Finally, using the standard
stochastic approximation arguments from Borkar et al. (2008) concludes step 1.

Step 2: We start by showing that the λ-recursion converges and then show that the whole
process converges to a local saddle point of L(λ, θ).

The process governing the evolution of λ:

λk+1 = Γλ[λk − η1(k)∇λL(λk, θ(λk))]

= Γλ[λk + η1(k)(Eπθ(λk)

s∼µ [C(s)]− α)]

where θ(λk) is the limiting point of the θ-recursion corresponding to λk, can be seen as the
following ODE:

λ̇t = Γλ(∇λL(λt, θ(λt))) . (13)

As shown in Borkar et al. (2008) chapter 6, (λn, θn) converges to the internally chain tran-

sitive invariant sets of the ODE (13), θ̇t = 0. Thus, (λn, θn) → {(λ(θ), θ) : θ ∈ Rk} almost
surely.

Finally, as seen in Theorem 2 of Chapter 2 of Borkar et al. (2008), θn → θ∗ a.s. then
λn → λ(θ∗) a.s. which completes the proof.

D Proof of Lemma 1

The proof is obtained by a simple extension to that of Theorem 1. Assumption 2 states
that any local minima πθ of 2 satisfies the constraints, e.g. JπθC ≤ α; additionally, Lee et al.
(2017) show that first order methods such as gradient descent, converge almost surely to a
local minima (avoiding saddle points and local maxima). Hence for λmax =∞ (unbounded
Lagrange multiplier), the process converges to a fixed point (θ∗(λ∗), λ∗) which is a feasible
solution.

E Proof of Theorem 2

As opposed to Theorem 1, in this case we are considering a three-timescale stochastic ap-
proximation scheme (the previous Theorem considered two-timescales). The proof is similar
in essence to that of Prashanth and Ghavamzadeh (2016).

The full process is described as follows:

λk+1 = Γλ[λk + η1(k)(Eπθ(λk)

s∼µ [C(s)]− α)]

θk+1 = Γθ[θk + η2(k)∇θEπθs∼µ
[
log π(s, a; θ)V̂ (λ, st; vk)

]
]

vk+1 = vk − η3(k)
[
∂(r̂ + γV̂ (λ, s′; vk)− V̂ (λ, s; vk))2/∂vk

]
Step 1: The value vk runs on the fastest timescale, hence it observes θ and λ as static. As
the TD operator is a contraction we conclude that vk → v(λ, θ).

Step 2: For the policy recursion θk, due to the timescale differences, we can assume that
the critic v has converged and that λ is static. Thus as seen in the proof of Theorem 1, θk
converges to the fixed point θ(λ, v).

Step 3: As shown previously (and in Prashanth and Ghavamzadeh (2016)), (λn, θn, vn)→
(λ(θ∗), θ∗, v(θ∗)) a.s.

Denoting by Θ = {θ : JπθC ≤ α} the set of feasible solutions and the set of local-minimas of
JπθCγ as Θγ . We recall the assumption stated in Theorem 2:

Assumption 4. Θγ ⊆ Θ.

Given that the assumption above holds, we may conclude that for λmax → ∞, the set of
stationary points of the process are limited to a sub-set of feasible solutions of (4). As such
the process converges a.s. to a feasible solution.
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We finish by providing intuition regarding the behavior in case the assumptions do not hold.

1. Assumption 2 does not hold: As gradient descent algorithms descend until
reaching a (local) stationary point. In such a scenario, the algorithm is only ensured
to converge to some stationary solution, yet said solution is not necessarily a feasible
one.

As such we can only treat the constraint as a regularizing term for the policy in
which λmax defines the maximal regularization allowed.

2. Assumption 4 does not hold: In this case, it is not safe to assume that the
gradient of (2) may be used as a guide for solving (3). A Monte-Carlo approach
may be used (as seen in Section 5.1) to approximate the gradients, however this
does not enjoy the benefits of reduced variance and smaller samples (due to the
lack of a critic).
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