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ABSTRACT

We consider a setting where biases are involved when agents internalise an envi-
ronment. Agents have different biases, all of which resulting in imperfect evidence
collected for taking optimal actions. Throughout the interactions, each agent asyn-
chronously internalises their own predictive model of the environment and forms
a virtual simulation within which the agent plays trials of the episodes in entirety.
In this research, we focus on developing a collective policy trained solely inside
agents’ simulations, which can then be transferred to the real-world environment.
The key idea is to let agents imagine together; make them take turns to host virtual
episodes within which all agents participate and interact with their own biased
representations. Since agents’ biases vary, the collective policy developed while
sequentially visiting the internal simulations complement one another’s shortcom-
ings. In our experiment, the collective policies consistently achieve significantly
higher returns than the best individually trained policies.

1 INTRODUCTION

We look at the world through our own lenses. Two people with the same exact observations create
different internalizations of the world through their own mental models, collect different amounts of
evidence, take different actions, and end up with different outcomes. For example, students attending
a lecture look at different parts of the presentation slides, and doctors looking at the clinical log of a
patient focus on different data and statistics and make different diagnoses.

In model-based reinforcement learning (RL) (Kaelbling et al., 1996; Sutton & Barto, 1998), agents
interact with an environment through models that are analogous to the human mental models (Hamrick,
2019). However, just as our decisions governed by our mental models are often far from perfect, the
agents’ policies that are designed upon the models are suboptimal (Box, 1976; 1979), as the inductive
biases used to learn such models are not guaranteed to be correct (Griffiths et al., 2010).

In this research, we propose a learning algorithm of a collective policy that leverages multiple agents’
biased representations encoded from their internal models. Like humans who often compensate for
their cognitive biases through collaboration (Woolley et al., 2010; Muchnik et al., 2013), the goal
of the collective policy is to make use of multiple internal models so that the biased representation
formulated by each internal model complements one another to achieve higher returns than the best-
performing individual policy. The collective policy in this research has the following characteristics:

— Asynchronous shaping of agents’ internal models: The collective policy operates on agents’
preestablished internal models. Prior to learning the collective policy, agents construct their internal
models over the course of their own interactions with the environment, which can be done asyn-
chronously and independent of other agents. Note that this learning process of the collective policy
does not fall into the conventional multi-agent RL settings, where agents are concurrently situated in
the same environment (Littman, 1994; Panait & Luke, 2005; Bu et al., 2008; Buşoniu et al., 2010).

— Collective policy learned solely inside agents’ internal simulations: In model-free and model-based
RL, policy learning typically requires a large amount of interaction with the environment, which
hampers feasibility, time-efficiency (Guez et al., 2018), and safety (Garcıa & Fernández, 2015). This
is particularly prohibitive in our setting, as during the collective policy learning, we need to force
the agents to go through the same rollouts together, coordinate their actions, and interact with the
environment in algorithmically intended ways (see e.g., Yahya et al. (2017); Rubenstein et al. (2014);
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Nagpal (2016)). To overcome this, we propose a learning algorithm of the collective policy that
involves zero interaction with the real environment; instead, the collective policy is trained solely
inside agents’ simulations, analogous to human’s mental simulation or imagination (Hamrick, 2019).
In our learning algorithm, agents take turns to be the host that generates a virtual rollout, within
which all agents participate in and learn the collective policy together.

— Minimal number of parameters to learn the collective policy: In the proposed algorithm, the
number of parameters and the training iterations of the collective policy function is same as those of
the individual policy functions. This not only allows the efficient training, but also assures that the
performance edge of the collective policy over the individual policies is not attributable to the model
complexity but to the complementing evidences provided by the multiple internal models. Moreover,
learning of the collective policy can precede learning of the individual policies.

We make the following contributions in this paper:

I. We present a novel problem setting in model-based RL that resembles the human cognitive bias
of imperfect information. Note that our setting is clearly different from the partial observation
settings in RL (Astrom, 1965; Kaelbling et al., 1998); in our setting, two agents at the same exact
time and location in the environment encode different representations from the same observation.

II. We compare the real environment and the internal simulation generated by agent models for
training a policy. With appropriate early stopping epoch and τ , we can achieve much better scores
at a fraction of the training time.

III. We present a learning algorithm of the collective policy that operates on the simulations generated
from internal models of agents and complements their biased representations, thereby achieving
higher scores than that of the best-performing individual policy.

IV. We experiment with VIZDOOM, a different environment in which we observe an unexpected
behavior of agents becoming delusional, i.e., having the false belief about the reward system,
preventing us from learning the collective policy in simulation.

V. We release our source code, visual demonstrations, additional results, and in-depth discussions in
a separate link 1.

2 COLLECTIVE POLICY TRAINING ALGORITHM

Here, we describe the process of training a collective policy by leveraging multiple agents’ internal
models that create their own biased representations given the same observation as inputs. We start by
describing the components of agents’ internal models and explain how each agent creates its own
biased representation of an observation inside the model. Then, we introduce additional components
required for training the collective policy inside the agents’ simulations.

2.1 INTERNAL MODELS OF AGENTS

We use world models (Ha & Schmidhuber, 2018a;b; Schmidhuber, 2015) as agents’ internal models.
World model abstracts spatio-temporal features of the environment in a compact representation that
is used for policy learning after the model training. The left panel of Figure 1 illustrates the two
components of the world model along with the environment and the controller C that learns the
policy after the world model is trained. First, at each time step t, the visual sensory component V
abstracts a high dimensional input observation from the environment into a compressed representation.
Variational autoencoder (VAE) (Kingma & Welling, 2014; Rezende et al., 2014) is used to encode
a 2D image input frame into a latent vector zt. Then, the latent vector zt as well as the following
action at are used as inputs for the memory component M, which outputs a prediction of the next
encoding zt+1. Mixture-density recurrent neural network (MD-RNN) (Bishop, 1995; 1994; Graves,
2013; Ha & Eck, 2018; Graves, 2015) is used for this component for the stochastic prediction of the
future, i.e., P (zt+1|zt, ht, at), where ht is the hidden state variable at time t. V and M use sequential
image frame data from multiple rollouts from a random policy and apply variational inference and
backpropagation algorithm for inference and learning.
After the two components of the world model are trained, the parameters of C are optimised online dur-
ing the following rollouts using covariance matrix adaptation evolution strategy (CMA-ES) (Hansen

1http://s000.tinyupload.com/?file_id=54935721167326296555

2

http://s000.tinyupload.com/?file_id=54935721167326296555


Under review as a conference paper at ICLR 2020

V↓
z

C

M
h

h
a

Env. r

(a) Policy learning
in environment

V↑
z

C

M
h

z, h
a

r

R

(b) Policy learning
in simulation

C

h

z, h

r

RM
h

M
h

M

A

…

zc, hc

a

T zzz

z, hz, h

Host

(c) Collective policy learning in simulation

Figure 1: Flow diagrams of policy learning of (a) an individual policy while interacting with an
environment, (b) individual policy learning inside internal simulation, (c) collective policy learning
involving multiple agents’ internal models. Note that for (b) and (c), there is no interaction with the
environment. For collective world model, we omit the decoding part of V for clear presentation.

& Ostermeier, 2001; Hansen, 2006; 2016) which is shown to be the method-of-choice for small
solution spaces up to few thousand parameters (Salimans et al., 2017; Loshchilov & Hutter, 2016).

Training policy inside an agent’s simulation The memory component M predicts the latent
representation of the next frame and allows an agent to take an action based on the agent’s prediction
of the near future as well as the current situation. Further, one can generate multiple future frames,
even the whole episode from start to finish (Figure 1b). Then, C is trained inside this virtually
generated environment (Ha & Schmidhuber, 2018a;b). MD-RNN, which is the realisation of M, can
endow a desirable level of uncertainty in the simulation by adjusting the temperature parameter τ .

Biased representations We hypothesize that when an agent’s model internalizes the observation
through V, the agent from collecting the full evidence needed to learn the optimal policy because of
bias. The bias, which persists throughout the experiment, can be that certain parts of the frame are
left out (occlusion), or only a certain part of the frame is accessible (magnification). 2

Asynchronous shaping of agents’ world models Prior to our merging of agents’ simulations, we
assume that agents preestablish their internal models (M and V) asynchronously, based on their
imperfect evidence accumulated. However, it is necessary to ensure there are environment states
that all agents share, e.g., few frames that all agents co-observe, to train the translator component.
This will be further explained in the following subsection. Unlike the typical distributed ML
systems (Chen et al., 2012; Deisenroth & Ng, 2015; Low et al., 2015), each internal model can
be trained independently without broadcasting or establishing the communication protocol among
agents, i.e., each agent’s encoded representations from V can be done using independent VAEs, each
with different initialisations. This is because the collective controller and all individual controllers
are trained independently of each other Cs, as well as the remaining components V and M.

2.2 COMPONENTS FOR LEARNING THE COLLECTIVE POLICY

We gather up agents’ biased representations created inside the individual world models and train a
collective policy in the internal simulations generated from the agent models so that each model’s
biased representation complements others’ shortfalls and the virtual return per episode is maximised
in a collective manner. Here, the key idea is to make agents be in the same internal simulation at
the same time, where each agent’s model takes a turn to be the host of the virtual rollout using her
respective memory component M (Figure 1c). Throughout this section, we suppose that there are
a total of N internal models in a system, and the hosting agent per virtual rollout is denoted by H .
Added components for the collective policy learning are explained as follows:

2By design, our algorithm can operate on different kinds of biases, e.g., temporal distortions, although we
did not empirically test the performance under such conditions.

3



Under review as a conference paper at ICLR 2020

Rule component (R) When learning a policy in the environment, we automatically retrieve reward
signals from the environment. However, when the (collective) policy is trained in simulation, we need
to learn how the reward is given using previous and current state representations. Within each agent’s
model, we only preserve the memory component M and introduce an additional component R that
understands the rule of the reward system. For every virtual rollout we have a hosting agent H whose
rule component RH returns a virtual score which is instantly transferred to the controller component
C so that C can assess the quality of the current policy solely inside simulation and without the need
to interact with the actual environment. For this component, we use RNN that takes previous and
current biased representations as inputs and returns the estimated reward for each time step.

Translator component (T) In our setting, agents’ visual sensory components create different repre-
sentations from the same observation. While we train the collective policy inside agents’ simulations,
the translator component T converts biased representations between two agents. For every virtual roll-
out generated by the hosting agent H , we need N − 1 translators TH,a for a ∈ {1, 2, . . . , N}\{H},
which are the functions TH,a(zH) = za. In our setting, the internal representations are much smaller
in dimensionality than the original observations, and representations are highly intercorrelated among
different internal models. Therefore, we apply meta-learning (Finn et al., 2017; 2018; Kim et al.,
2018; Nichol et al., 2018) to speed-up the training of T and reduce the training data.

Aggregator component (A) To train a collective policy, there is an aggregator component A which
is a permutation-invariant function that takes representations from agents’ internal models as inputs
and returns their summarisations of the same shape. Here, we take the summation function as an
aggregator which simple but effective (Ali et al., 2018; Garnelo et al., 2018a;b; Soelch et al., 2019).

Algorithm 1: Collective policy learning algorithm
Input: N trained memory components components M

1 N trained rule components R
2 N2 trained translator components T
3 Initialize parameters for the collective policy function;
4 while not converged do
5 Set RewardTotal← 0;
6 for hosting agent a = 1, . . . , N do
7 Set the hosting agent H ← a;
8 Retrieve an initial encoding for the first time step zH,0;
9 for time t until episode terminates do

10 Generate encodings of other agents za,t,∀a ∈ {1, 2, . . . , N}\{H} using zH,t from T;
11 Generate ha,t for all agents using their respective M and aggregate N concatenated

vectors [za,t;ha,t] using A to return [zc,t;hc,t];
12 Insert the aggregated vector[zc,t;hc,t] in the controller C to get an action at time t;
13 Execute the action inside the hosting agent’s simulation M to infer the next encoding

zH,t+1 and to get a reward r from R;
14 end
15 Set RewardTotal← RewardTotal + r;
16 end
17 Update the parameters for the collective policy using CMA-ES and RewardTotal;
18 end

Training scheme for C We use CMA-ES that operates on a state space to optimise the parameters
of C. To use the simulations of all hosting agents, for each training iteration, we define a single episode
by concatenating multiple virtual rollouts and use the sum of the cumulative rewards calculated from
the hosting agent’s rule component RH . Aside from making use of all agents’ simulations, combining
multiple rollouts as a single episode is shown to stabilise policy learning throughout the training (Ha,
2017). We highlight that the number of parameters for C as well as the number of training iterations
are identical to those of the individual controllers.

For each iteration, the controller component C operates on exactly the same input space as the
individual model as we take the summation function and |[zc;hc]| = |[za;ha]|,∀a ∈ {1, . . . , N}.
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Figure 2: (a): Relationship between the temperature parameter τ of MD-RNN in internal simulation
and the score received from the real environment. τ governs the stochasticitiy of the virtual environ-
ment generation, and there is an optimal value, 1.7 that gives the best score. (b): As τ increases, the
simulated environment becomes more unpredictable and we accordingly need more training epochs.

Table 1: Comparison between training the policy inside real environment and inside an agent’s
internal simulation. ± is followed by one standard error.

# Env. interaction # Epoch Time / Pop. size Mean Median
Model tr. Policy lr. epoch (min.)

Env. 10 K 1.84 M 1,800 42 64 900.0 ± 5.2 911.9
Sim. 10 K 0 225 0.8 32 851.9 ± 9.8 875.1

Therefore, the only added terms in the time complexity of collective world model come from T and
A, where for T, we need N − 1 forward passes of RNNs and A that aggregates N input vectors.

In algorithm 1, we summarise how the learning of the collective policy works inside agents’ simula-
tions using trained components M, R, and T along with the aggregator A.

3 EXPERIMENT

In this section, we answer the following questions: First, how does training a policy in internal
simulation compare to training a policy in the real environment? What specifications do we need for
comparable performance in the simulation? Second, how much do we gain from the collective policy
trained within the simulations of agents’ internal models whose biased representations complement
one another? What causes the collective policy to perform better than the individual policies? In
addition, we introduce another environment where when bias is involved during the internalization,
agents in the environment become delusional, not being able to understand the rule of the environment.

3.1 EXPERIMENTAL SETUP

Agents learn to drive in OpenAI gym CARRACING environment (Brockman et al., 2016; Klimov,
2016). Each trial consists of 1,000 image frames, and while agents are driving a car, the score is
calculated as the total number of tiles, i.e., the gray area in Figure 3a, the car visited. Thus, agents
need to keep moving forward without derailing from the track until the trial ends in order to maximise
the return. For each time step, agents can take three continuous actions: steer left/right and accelerate.
Throughout the experiment, we report an average score over 100 trials with one standard error.
Following the previous setting by Ha and Schmidhuber (Ha & Schmidhuber, 2018a;b), we train each
internal model’s components using 10,000 rollouts with random policy. As displayed in Figure 3a,
we make each agent’s observations imperfect by 1) occluding a certain part of the frame or 2)
only showing a magnified portion of the frame. Here, we conserve the car image (in red) for all
agents’ observations, as this image portion is critical for the rule component to calculate the virtual
score. Also, we highlight that this data-gathering phase is the only time interacting with the real
environment throughout the experiment, except for the testing trials. Finally, we keep the same
number of parameters and maximum training iterations for both individual and collective policies.

3.2 EXPERIMENTAL RESULTS

Policy learning in simulation Figure 2 describes how the temperature parameter τ of MD-RNN
(M component) affect the policy learning inside simulation. As τ increases, the virtual environment
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Table 2: Results of the collective policy learning. When multiple agents’ internal models provide
complementary evidences from their biased representations, the collective policy achieves higher
real-environment scores than that of the best performing individual internal model.

Bias # M Overlap (%) Cov. (%) Indiv. policy Collective
type Worst Mean Best Policy
Occ. 2 0 100 615.2 ± 22.7 618.4 621.6 ± 7.9 750.8 ± 12.3
Mag. 2 12.5 37.5 494.3 ± 16.5 558.7 623.0 ± 22.9 733.8 ± 19.9
Mag. 3 18.8 37.5 494.3 ± 16.5 602.1 688.7 ± 17.4 744.6 ± 10.2
O.,M. 4 100 100 494.3 ± 16.5 581.0 623.0 ± 22.9 742.1 ± 08.8

Occ. 2 100 62.5 468.4 ± 21.9 541.8 615.2 ± 22.7 629.1 ± 15.5
Mag. 2 100 39.1 571.9 ± 21.4 678.3 784.7 ± 9.3 769.8 ± 16.3
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Figure 3: (a): Original observation (top) with decodings of the biased representations of different
internal models (occlusion and magnification). (b) – (c): Virtual scores when the policy is trained
inside its own internal simulation (left bars), when using the policy that is trained in other’s internal
simulation (center bars), and when the collective policy is used (right bars). If other’s policy is used
in the virtual environment generated by oneself, the virtual score decreases catastrophically, whereas
the collective policy gives reasonable scores inside all simulations. (d): "Joint" is the collective
policy without T and A components; when the collective policy is trained without co-observation, it
performs worse than individual policies.

generated by the internal model becomes more unpredictable. In Figure 2a, we observe that there is an
optimal temperature parameter, which is 1.7 in CARRACING environment, that gives the score when
the policy learned in simulation is transferred to the real environment. This result is in accordance
with the result reported by Ha & Schmidhuber (2018a), where they experimented in the VIZDOOM
environment. In Figure 2b, we observe that there is an additional trend that incorporates τ ; With all τ ,
we observe that when we train the policy in simulation for too long, the policy overfits the virtual
environment so that the virtual score monotonically increases as the training epoch increases but
performs worse when the policy is transferred to the real environment. Thus, the early stopping is
required when training the policy in simulation, and the early stopping epoch generally increases as
we increase τ , meaning that we need more training iterations until we transfer the policy to the real
environment when the virtual environment is more unpredictable.
From Table 1, We report that with an appropriate early stopping epoch and τ , we can achieve a score
of 851± 9.8 in CARRACING environment with the policy that is trained only in simulation and then
transfered to the real environment, compared to the score of 900.0 ± 5.2 when trained in the real
environment. When the policy is trained in simulation, the training time per epoch is approximately
53 times faster, total train time changes from 52 days to 3 hours, and the number of rollouts generated
in the environment is reduced from 1.84 million to zero during the policy training. 3

Collective policy Table 2 shows the results of the collective policy compared with the individual
policies whose internal models that are integrated. Here, #M is the number of internal models
used for training, Overlap is the maximum percentage of frame overlaps between agents’ biased
representations in terms of pixel count, and Cov. is the percentage of total coverage when all biased
representations are superimposed in terms of pixel count. From the first four rows in Table 2, we

3 To our knowledge, there is no previous research that trained policies for a single task in both real and
virtual game environments; in the original world models paper, the CARRACING experiment is done in the actual
environment, and the VIZDOOM experiment is done inside simulation, but not the other way around.
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Figure 4: (a): Biased representation (occlusion) in VIZDOOM environment. (b) – (e): 4 different
agents’ internal models with the bias setting given in (a). Although trained under exactly the same
setting, internal models (b) and (d) learns reasonable policies inside simulation, while (c) and (d)
became delusional. For all four internal models, their virtual scores are similar (blue bar), but the
actual score significantly varies between normal and delusional agents. Also, once an agent’s model
is trained, delusional agents do not become normal during the policy training phase and vice versa.

confirm that when we train the collective policy that integrates multiple internal models whose biased
representations complement one another, we can achieve higher scores than that achieved by the
best-performing individual policy in the real environment. In the last two rows, we do not observe any
significant increase in the score when the collective policy is compared with the individual policies,
because one internal model’s biased representation is a proper superset of that of the other’s.
Figures 3b – 3c show the virtual scores of individual and collective policies. When an individual
policy is trained inside the simulation generated by its own model, we achieve the best score. However,
when the trained policy is executed in the simulation generated by another model, the score decreases
catastrophically. In comparison, the collective policy returns reasonable scores in all simulations,
although the score is less then the one achieved by the individual policy in its own simulation.
Figure 3d highlights the necessity of the model structures proposed in this research for learning the
collective policy. Here, "Joint" corresponds to real-environment score achieved by the collective
policy jointly trained by sequentially visiting multiple internal simulations, but while doing so, the
agents other then the host does not participate in the simulation. In other words, its the collective
policy without the T and A components. From this result, we confirm that the main performance edge
of the collective policy comes from the "co-observation" during the policy learning.
Delusional agents We report that in the VIZDOOM environment (Paquette, 2016; Kempka et al.,
2016), an environment where the rules of the game and the other aspects of the environment are
tightly coupled, agents randomly become delusional when the bias is involved in their internal models
(4). Here, the rule that governs the reward system of the game is highly intertwined with physics of
the system (movement and perspective of the fireball, explosion of the fireball when the ball contacts
the agent) and is potentially affected by every pixel of the frame, and therefore the rule component R
inevitably has to be incorporated within the memory component M (this phenomenon is extensively
studied by Ellefsen et al. (2019)). In this case, some agents’ internal model will falsely believe that
they will be rewarded not by dodging the fireball but by going inside the occluded region and stay
there until the trial ends. To our knowledge, this type of delusion has previously not been observed;
in the world models paper, agents will sometimes cheat inside simulation by creating an easy virtual
environment when the temperature parameter is set to a low value but clearly it is a different type of
behaviour. This abnormal behaviour is remarkable in two ways. First, an agent falling into a delusion
happens completely at random at the training phase of the memory component. Thus, for the same
exact training data, methods, and iterations, some agent will behave normally (treating the distortion
as part of the environment) while some will be delusional. Second, once the memory component is
trained and the agent shows delusional behaviour, it can never get out of this however many times we
train the policy with different initialisations. On the other hand, in the car racing task, this issue can be
resolved because the reward system is only governed by a regional area surrounding the car; therefore,
if we do not distort this part and train R and M separately, we can prevent agents from falling into
this type of delusion. In our collective setting, this issue is particularly problematic because, for
delusional agents, the degree of agents’ bias do not directly transfer to their performances.

4 RELATED WORK

Machine learning (ML) and RL researchers propose internal models of the agents that is analogous to
humans’ mental models (see the work of Hamrick (2019) for the review), and the concept of learning
a policy solely inside an agent’s simulation using recurrent structures was proposed by Schmidhuber
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in 1990s (Schmidhuber, 1970; 1991; 1990) and recently been reviewed in the name of learning
to think (Schmidhuber, 2015; Lake et al., 2017). Also, Racanière et al. (2017) develop a neural
architecture that leverage internalisations of the world on top of the real-environment interactions,
and Ha & Schmidhuber (2018a;b) propose world models that enable full operationalisation inside
simulation. Additionally, the idea of internalising the world is adopted for meta-control and to
optimise and computation based on task difficulty and compexity (Hamrick et al., 2017; Pascanu
et al., 2017). Finally, there is a recent approach in model-based RL that further develops and applies
the idea of simulation or imagination to achieve better results. Nair et al. (2018) and Hafner et al.
(2019) make use of agents’ internal models to pre-determine the long-term outcomes (e.g., imagined
outcomes) and develops a policy based on such outcomes.
In this research, the environments that we experiment on has state spaces that are accommodable for
the internal models to capture with random policies. Orthogonal to our research, Hafner et al. (2019)
advances the idea of training a policy inside a simulation by proposing an end-to-end framework
that incorporates simulations in environments that cannot be fully explored and described by random
policies, and by doing so, balances out the optimizations of the exploration policies and the model
learning while minimizing the number of interactions with the environment.
Close to our research in terms of conceptual proximity and motivation is a study by Bard et al.
(2019), In their work, authors focus on a board game called Hanabi in which agents operate in a
cooperative fashion to solve a task. Similar to our work, agents in the Hanabi game only has access
to imperfect information, and their information can be complemented only by interacting with other
agents. Here, the most critical diverging point is that the Hanabi challenge seeks an optimal policy
for each individual, which ideally mimics human’s sophisticated behaviours such as the theory of
mind (Premack & Woodruff, 1978), and the authors do so by interacting with the actual environment.
On the other hand, we focus on designing a specific model structure that can be solely operationalised
in multiple agents’ simulations and deriving a collective policy that gives better performance than
individual ones. On a related note, Battaglia et al. (2018) proposes a general framework that discovers
structural, relational, and compositional representations of an arbitrary system that builds upon graph
networks and complements each entity’s inductive biases, which can be applied to our setting with
more entities and with relational information.

5 DISCUSSIONS

We postulate a scenario in which each agent’s internalisation of the world is biased, resulting in
imperfect evidence collected at each timestep. Our goal is to simultaneously superimpose agents’
biased representations portrayed by their internal models to learn a collective policy so that agents’
defective simulations can be complemented by others. In our experiment, we used the CARRACING
platform with a maximum of four agents and showed that the collective policy with integrated
simulations give better performance for the car driving task. However, a few outstanding questions
remain that need further exploration to better comprehend the overall process of learning a collective
policy inside simulation and make it more effective and scalable.
The first direction is to find an optimal group composition that maximises the score of the collective
world model when the number of agents is fixed. Coordinating an ideal group is a non-trivial task
because the collective performance depends not only on each individual’s ability but also on the
degree of each agent’s feature complementing one another (Kim et al., 2016) and the needs for
optimal coordination among agents will become more salient in massive settings (Suarez et al.,
2019). In our task, we tried to investigate the relationship between the number of total pixels
covered by the group of agents and the performance but were unsuccessful at finding any significant
correlations. The second approach is improving the model architecture to overcome the performance
degrade, especially in the aggregator component. We conjecture that our current setting of naively
superimposing internal representations might potentially "dilute" useful bits of information as the
number of agents grows. Recently, simple aggregator architectures, such as summation or mean
functions have been implemented in previous research (Ali et al., 2018; Garnelo et al., 2018a;b) and
extended by adopting e.g., attention mechanisms (Bahdanau et al., 2015; Xu et al., 2015; Wang et al.,
2018; Vaswani et al., 2017) as by Kim et al. (Kim et al., 2019) or tower representation architectures
by Eslami et al. (Ali et al., 2018). Finally, we tried finding the complete observation "frame-wise"
(rather than directly finding the optimal collective policy), with agents’ scores and their encodings
at every time step and using Bayesian optimisation (Mockus, 2012; Shahriari et al., 2015; Močkus,
1975) with neural processes (Garnelo et al., 2018a;b; Kim et al., 2019) as the surrogate function, but
was unsuccessful because of time complexity.
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A doom-based AI research platform for visual reinforcement learning. In CIG, 2016.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
Vinyals, and Yee Whye Teh. Attentive neural processes. In ICLR, 2019.

Jooyeon Kim, Brian Keegan, Sungjoon Park, and Alice Oh. The proficiency-congruency dilemma:
Virtual team design and performance in multiplayer online games. In CHI, 2016.

Taesup Kim, Jaesik Yoon, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, and Sungjin Ahn.
Bayesian model-agnostic meta-learning. In NeurIPS, 2018.

Diederik Kingma and Max Welling. Auto-encoding variational Bayes. In ICLR, 2014.

Oleg Klimov. Carracing-v0. https://gym.openai.com/envs/CarRacing-v0/, 2016.

Brenden Lake, Tomer Ullman, Joshua Tenenbaum, and Samuel Gershman. Building machines that
learn and think like people. Behavioral and brain sciences, 40, 2017.

Fatimah Lateef. Simulation-based learning: Just like the real thing. Journal of Emergencies, Trauma
and Shock, 3(4):348, 2010.

Felix Leibfried, Nate Kushman, and Katja Hofmann. A deep learning approach for joint video frame
and reward prediction in Atari games. In ICLR, 2017.

Michael Littman. Markov games as a framework for multi-agent reinforcement learning. In ICML,
1994.

Ilya Loshchilov and Frank Hutter. CMA-ES for hyperparameter optimization of deep neural networks.
arXiv preprint arXiv:1604.07269, 2016.

Kian Hsiang Low, Jiangbo Yu, Jie Chen, and Patrick Jaillet. Parallel Gaussian process regression for
big data: Low-rank representation meets Markov approximation. In AAAI, 2015.

Ingo Meister, Timo Krings, Henrik Foltys, Babak Boroojerdi, Mareike Müller, Rudolf Töpper, and
Armin Thron. Playing piano in the mind—an fmri study on music imagery and performance in
pianists. Cognitive Brain Research, 19(3):219–228, 2004.
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A LINKS FOR VIDEO TRIALS AND SIMULATIONS

In supplementary material, we attach videos for actual trials and simulations.

A.1 CARRACING

CarRacing collective trial carracing_collective_1.gif and carracing_collective_2.gif files
are the real-environment trial using collective policy with 2 agents’ internal models. Since we cannot
visualise the decoding of the superimposed biased representations, we present the viewpoint of each
agent. The performance of this collective policy is reflected in the main draft.

CarRacing individual trial carracing_individual_1.gif file is the real environment trials using
individual internal model.

A.2 VIZDOOM

We demonstrate the delusion of agents in simulation under biased representations, which is reported
and discussed in section 3.2.

Normal agent in simulation vizdoom_normal_agent.mp4 file is simulation of normal agent
with occlusion.

Delusional agent in simulation vizdoom_delusional_agent.mp4 file is simulation of delusional
agent with occlusion. These two agents are trained with exactly the same specification. We tried the
same specification for not just these two agents, but with 6 more, confirmed that this delusion occurs
randomly.

B ADDITIONAL RELATED WORK

Nascent development of simulation in ML In reinforcement learning (RL) (Kaelbling et al., 1996;
Sutton & Barto, 1998), the concept of simulation develops from prediction. Model-based RL builds a
predictive model that abstracts key features of observations and leverage the state space to predict
future observations for planning. For example, there is a line of work that uses such predictive powers
of the world for short-step lookaheads using FNNs (Guzdial et al., 2017) and RNNs (Sutton, 1990;
Werbos, 1987; Dosovitskiy & Koltun, 2017), while another branch focuses on generating longer-range
predictions conditioned on time step-wise actions using raw pixel image frames as inputs, but without
policy learning (Chiappa et al., 2017; Oh et al., 2015; Leibfried et al., 2017; Denton & Birodkar,
2017; Watters et al., 2017). Model-free RL also benefits from exploiting the predictive power by
directly predicting future rewards or values using deep neural nets (Silver et al., 2017; Oh et al., 2017;
Tamar et al., 2016).

Humans’ efficacy of imagination For humans, the benefit of imagination, in the names of mental
practice, mental training and cognitive rehearsal, is empirically demonstrated in varying fields of
learning e.g., musical instruments (Meister et al., 2004), physical actions (Premack & Woodruff, 1978),
and social interactions (Decety & Grèzes, 2006; Lateef, 2010) and validated with neurological (Cisek
& Kalaska, 2004) and cognitive (Driskell et al., 1994) evidence.

Distributed ML Finally, in terms of model architecture, our research falls into the branch of
distributed ML, and specifically, into recently proposed model fusion (Hoang et al., 2019a) and
collective machine learning (Hoang et al., 2019b). Similar to ours, Hoang et al. focuses on a setting
where there are multiple independent experts, and the objective is to uncover the communication
protocol among them in a distributed manner to reach the consensus prediction. However, the target
domains of this line of research and other recent advances in distributed machine learning (Feraud
et al., 2019; Qu et al., 2019) mainly lie in privacy and security (e.g., a setting where each expert
treats confidential information) or reducing the overload of the central server. On the other hand,
in our research, the communication protocol issue among agents’ internal models is structurally
negated since although we train each agents’ V component (VAE) independently, there’s a collective
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controller C that’s also trained independently to all the individual V components and also to the
individual C components.

C TRAINING SPECIFICATIONS

We used the same setting as in the original world models paper for training the individual components
V and M.

C.1 CONTROLLER COMPONENT C

For C, we used CMA-ES for training. We concatenated 16 rollouts to define one episode, and each
virtual rollout is hosted by an agent in the collective system. We made sure that the number of rollouts
in the episode can be exactly divided by the total number of agents in collective world model with
remainder of 0, so that all agents can be hosts the same number of times. Also, with this setting, we
manage to keep the training iteration of collective policy exactly the same with the individual policies.
For example, if there are 8 agents in total, each can host simulations 2 times in a single episode; if
there are 4 agents in total, each can host simulations 4 times in a single episode, and so forth.

We set the population size to 32, and each population is assigned with a single CPU. We set the
initial sigma value of CMA to 0.1, and set all solution values to 0 for initialisation. Finally, for every
training, we used random seed numbers.

C.2 RULE COMPONENT R

For the rule component R, we used RNN with 2 hidden layers, each layer with the same size of 256.
We used Adam as optimizer, with initial learning rate of 0.001, and used mean squared error for the
loss function. We also used dropout for all hidden layers with the value 0.1, gradient clipping value
of 0.25, batch size of 100, and training epochs of 500. For inputs, for every time step t, we used
generated encodings of the current as well as the 10 previously generated encodings, so in total of
352-dimensional input space was used, and scalar value of the instant reward was returned.

Here, we note that in our setting, the model complexity of R is generously set. Since training of this
component was not the bottleneck of our computation, we did not try to shrink the model architecture,
as only focused on the model returning low training/testing errors. Therefore, the current model size
might be overly large, and we believe that this size can be drastically reduced without significant loss
in accuracy.

C.3 TRANSLATOR COMPONENT T

For the trainslator component T, we used FNN with 4 hidden layers, each layer with sizes 1024, 512,
256, and 128. We used Adam as optimizer, with initial learning rate of 0.001, and used mean squared
error for the loss function. We also used dropout for all hidden layers with the value 0.1, batch size of
10,000, and training epochs of 250. Inputs and outputs are both 32-dimensions, which corresponds to
the size of the encoding z.

As in the rule component R, we believe that model size of T can also be drastically reduced.

C.4 COMPUTING INFRASTRUCTURE

Our model is programmed using python Tensorflow.

Training C is done in multi-CPU environment, as CMA-ES can be effectively implemented in parallel
computations. We used 32 CPU cores for training both collective and individual C, where each core
is assigned with a single population in CMA-ES.

For training V (VAE), M (MD-RNN), T(FNN), R(RNN), we used a single GPU GTX-1080 Ti for
training each component.
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