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Abstract 

With a neural sequence generation model, 

this study aims to develop a method writing 

patient clinical texts given brief medical 

history. As a proof-of-a-concept, we have 

demonstrated that it can be workable to use 

medical concept embedding in clinical text 

generation. Our model was based on the 

Sequence-to-Sequence architecture and 

trained with a large set of de-identified 

clinical text data. The quantitative result 

shows that our concept embedding method 

decreased the perplexity of the baseline 

architecture. Also, we discuss the analyzed 

results from human evaluation performed 

by medical doctors. 

1 Introduction 

Clinical texts have the potential to contain private 

information that can be used for identifying the 

patient of the document. Also, it is required social 

consensus and stakeholder's agreement to open 

and share healthcare data to the public (Kostkova 

et al., 2016). These barriers hinder natural 

language processing researchers from accessing a 

large-scale clinical document set. 

Our aim is to utilize neural language models in 

producing a large amount of virtual clinical texts 

that are not only seemed to be written by medical 

doctors but also free to the mandatory of personal 

privacy protection as well as ownership issue. 

Also, the current large-scale medical corpus is 

based on English in terms of language, we would 

improve our model to apply for other languages 

such as Asian and European in the future. 

In the medical domain, clinical text generation 

is in the initial stage to the best of our knowledge. 

A recent study demonstrated the Chinese medical 

record generation (Guan et al., 2019) based on 

generative adversarial nets (GAN) (Goodfellow et 

al., 2014). Though the GAN is known to generate 

more readable texts than other models, it is known 

to be unstable at the training. 

Sequence-to-Sequence (Seq2Seq) (Sutskever et 

al., 2014) with Attention mechanism (Bahdanau et 

al., 2015) can be an alternative choice in terms of 

stability and the model's simplicity. We tested the 

Seq2Seq for the generation of clinical texts in this 

study. Seq2Seq is based on the encoder-decoder 

structure consisting of two recurrent neural 

networks (RNNs); the encoder provides the 

decoder a context vector consisting of 

summarized representations of the input. Given 

several sentences in the beginning part of a clinical 

note, our model was trained with the objective to 

generate the rest part of the document in this study. 

Because clinicians tend to freely use medical 

terms in various forms for presenting an individual 

medical concept, we assumed medical knowledge 

would be required to augment the context of 

sentences beyond the word itself. Thus, we 

leveraged the medical concept unique identifiers 

(CUIs) from the UMLS (unified medical language 

system) (Lindberg et al., 1993) for the domain 

knowledge. 

The medical domain knowledge would be 

provided into the model as an auxiliary. According 

to what (Dušek and Jurčíček, 2016) demonstrated, 

the auxiliary context may be either encoded by 

appended to the original word sequence in the form 

of a token sequence or separately encoded in 

another encoder. Thus, we tested both Seq2Seq 

encoder structures in order to provide the context 

from the CUIs appropriately for the decoder RNN. 

For the proof of concept, we demonstrate an 

approach of the clinical text generation handling 

clinical concepts in a medical thesaurus and 

embedding the concepts from the hierarchy tree. 

Clinical Text Generation through  

Leveraging Medical Concept and Relations 
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2 Clinical text and medical thesaurus 

Two databases were used in this study: MIMIC-III 

(Medical Information Mart for Intensive Care) and 

UMLS. The MIMIC-III is a large-scale health-

related database (Johnson et al., 2016). It contains 

clinical notes having narrative descriptions of 

patients' previous history and current progress. 

The UMLS is a thesaurus consisting of multiple 

medical terminology systems. The CUI is a 

concept identifier in the system. For the naming 

convention, a CUI consists of eight characters: the 

letter 'C' and seven numbers following the letter. 

The CUI in the UMLS represents the highly 

specific concept of a medical entity. Because a 

concept has multiple different names, a single CUI 

can be representative of multiple medical names. 

We embedded the CUIs by utilizing the 

semantic relationship between medical concepts in 

the UMLS. In a simplified abstraction, we may say 

the relationships can be written in the form of a 

triple having elements as two CUIs and one 

relation label. For instance, 'Breast carcinoma' 

(C0678222) has child-parent (PAR) relationship 

with both 'Malignant neoplasms' (C0006142) and 

'Breast diseases' (C0006145), then, these 

relationships can be written as (C0678222, 

C0006142, PAR) and (C0678222, C0006145, PAR). 

We mainly used this triple for our CUI embedding. 

2.1 Data preprocessing 

The de-identified clinical notes are preprocessed in 

multiple steps. SpaCy (Honnibal and Montani, 

2017) was used in order to extract sentences from 

the documents. The sentence boundary detection 

module of the SpaCy was applied onto the text. 

With the syntactic parsing module, we selected 

narrative sentences satisfying sentence structure 

that contains either subject or object element. 

After that, we tried to winnow sentences to have 

informative contents. At the first step, CUIs were 

extracted from sentences for mapping medical 

knowledge that is latent throughout a sentence into 

codes. MetaMap (Aronson, 2001) was utilized for 

identifying UMLS concepts from the text. At this 

process, sentences having at least one UMLS CUI 

were selected. Then, we extracted informative 

sentences in a document based on the Shannon 

entropy. 

3 Hierarchical concept embedding 

Our clinical text generation pipeline was based on 

the Seq2Seq. In order to make context beyond the 

word itself at the encoding phase, we used medical 

concept information that is a set of CUIs mapped 

to the texts. To use the concept, it was necessary to 

make embedding of the concepts. Figure 1 shows 

the abstraction of our concept embedding approach. 

3.1 Concept embedding 

Our neural architecture making an embedding for 

individual concepts consists of one input, one 

hidden, and one output layers. Given one concept 

for the input, it is trained to bring another CUI 

having any relationship with the input, and, jointly, 

to bring the corresponding relation label. The 

weight vector between the input and the hidden 

layer is used as the embedding of the CUIs. 

Figure 1-a shows the concept embedding 

architecture. The kth triple can be a form (C1
(k), C2

(k), 

R(k)) and each notation is for the first CUI, the 

second CUI, and the relation label respectively. 

The set of the C1 is obtained from the training data 

and the C2s are ones having relationships with the 

C1 in UMLS. We would note that our procedure is 

motivated by the Skip-gram (Mikolov et al., 2013): 

instead of recalling neighbor words in the Skip-

gram, our approach pursues the objective of jointly 

recalling the related CUI and the relation label. 

Because our architecture cooperatively produces 

two outputs, the final cost is the average of the 

intermediate costs calculated with cross-entropy 

using one-hot encoding. 

 

Figure 1. Graphical abstraction of the concept embedding. 
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3.2 Enriching the concept embedding 

The concept embedding approach in the §3.1 is 

based on the idea that the vector representation of 

an individual concept should be closer to others if 

they share more entities in terms of a relationship. 

Our idea enriching the concept embedding is to 

make the vector of a specific concept be close with 

the vectors of its parents in a hierarchy tree. 

This idea is motivated by FastText (Bojanowski 

et al., 2017). Because the skip-gram model ignores 

the morphology of words, the FastText makes a 

word vector as the sum of vectors of sub-words. 

Instead of summing vectors of sub-words, our 

hierarchical concept embedding algorithm sums up 

embedding vectors of parent concepts and the 

vector of the concept itself. We initially have a 

vector 𝒄𝑖 for the ith CUI from the skip-gram based 

concept embedding. Then, 𝒄′𝑖, the updated vector 

of the 𝒄𝑖 is calculated as follows (Eq. 1). 

 𝒄′𝑖 =
1

2
(𝒄𝑖 +

1

|𝑃𝑎𝑟𝑖|
∑ 𝒄𝒑𝑝∈𝑃𝑎𝑟𝑖

)  (1), 

where Pari is the parent set of 𝒄𝑖  (Figure 2-b). 

Embedding of unknown concepts are dynamically 

calculated by l2-normalization of the vector sum of 

concepts having a common prefix (length=7) with 

the unknown concept in addition to the vectors of 

the concepts that occur once. 

4 Model design 

The basis of our model is Seq2Seq with Attention 

mechanism. We noticed some sentences in the 

beginning part of a clinical text gives a more 

generalized description on a patient than the latter 

part. Thus, we set the encoder input as the first five 

sentences of a clinical note, and this is expected to 

provide the decoder a summarized representation 

of the patient’s general description as a context 

vector. The decoder output was the rest part of the 

clinical note during the training time. 

4.1 Incorporating medical concepts 

We fed word sequence as well as a CUI sequence 

extracted from the source sentences with MetaMap 

into the encoder. The CUI is expected to lead the 

decoder in word selection to be close to the input 

in terms of semantics from the domain knowledge. 

We tested two types of encoder structures 

demonstrated in (Dušek and Jurčíček, 2016) to 

provide auxiliary information. The first one is to 

concatenate the CUI sequence at the end of the 

word sequence in a single encoder (CS; 

Concept+Seq2Seq). The second structure is a 

Seq2Seq having dual encoders (CSD; 

Concept+SeqSeq with dual encoders). One 

encoder of the CSD makes a context vector from 

the first five sentences and another one makes a 

context vector from the CUI sequence. The 

encoded results from each encoder in the CSD are 

concatenated before going inward the decoder. 

5 Evaluation settings and results 

Our task was to generate clinical descriptions 

given the first introductory part of the full 

description. Thus, the source was the first five 

sentences and the target was the rest sentences. The 

embedding vectors were trained with 100,000 

training set. FastText was used for the word 

embedding to cover out-of-vocabulary tokens 

prevalent in clinical notes. The vocabulary sizes 

were 46,975 and 49,758 for source and target 

respectively. For the concept embedding, the CUIs 

were from the training data, and the number of 

relationships extracted from the UMLS was 

61,299,702 consisting of 50,942 CUIs for the C1, 

1,005,865 for the C2, and 672 relation labels. 

The language models were trained with 35,000 

notes selected from the training set and validated 

with 8,603 notes from another set. The number of 

test set was 8,578. We evaluated five settings: they 

were named according to the method of the 

concept embedding. The baseline was the Seq2Seq 

with Attention mechanism. The baseline was 

trained without concepts. The others were given 

the sentence as well as the CUI information with 

different model structures and different CUI 

embedding methods. The second and the third 

models (CS, CSD) were tested in order to compare 

the encoder structure (single vs. dual). The CUI 

embedding method for the models was the skip-

gram based concept embedding (§3.1). The last 

two models (HCSD and HCSD_T) used the 

hierarchical concept embedding (§3.2) in the dual 

encoder structure, and the last one simultaneously 

utilized CUI information from both of the source 

and the target texts. The RNN unit was three-layer 

Bi-LSTM and the RNN size was 400. 

Table 1 shows the models’ perplexity. Because 

the text generation task is an open-ended problem, 

a common evaluation method for this task is the 

perplexity. We observed some models using the 

concept showed lower perplexity than the Seq2Seq 

trained without the domain knowledge. The model 

CS using concepts in single encoder reduced the 
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test perplexity by 0.432 than the baseline. The 

HCSD using the hierarchical concept embedding 

in dual encoder showed subtle improvement. 

Human evaluation with medical experts: Four 

human experts in Medicine evaluated the clinical 

notes in terms of quality. The expert group consists 

of four medical doctors having 10-years working 

experience on average. Duplicates in the generated 

texts were removed for this human evaluation. The 

questionnaire consists of two chapters: the first part 

asks evaluators to rate how much the generated 

texts are appropriate given the first five sentences 

in terms of clinical commonsense, and the second 

part asks them to identify a paragraph written by a 

human in a set of texts. Each part consists of ten 

questions (the full document is in the Appendix.) 

For the first chapter, the evaluators were given 

separate paragraphs produced by the five models 

as well as human writers and independently rated 

texts in 5-point scale (1: very awkward, 5: strongly 

likely.) To prevent bias, we did not provide them 

the models’ information as well as the fact that the 

paragraphs include humans’ writings. Figure 2 

shows boxplots summarizing the ratings from the 

evaluators. the plots show that the models using the 

concepts were rated higher than the basic model, 

and the best model (HCSD) achieved a median 

value of the rate that is equal to the median value 

for the human’s writings (median rate=4). The 

models using hierarchical concept embedding also 

seem to achieve better performance than the 

models not using the hierarchy. The shape of the 

box for the HCSD indicates the rating scores were 

more closely distributed to the median than other 

models. An interesting point was that the humans’ 

writings were sometimes rated low (outlier circles 

under the bar): we interpret this phenomenon may 

show the human’s clinical writings sometimes do 

not seem to be formal and contain unaccustomed 

expressions even for experts. 

For the second part, the evaluators were given a 

set of three separate texts produced by either the 

generation models or human writer, and they were 

asked to identify a paragraph which was written by 

a human. We measured error rates of the evaluators 

for the identification of human’s writing and the 

error rate was 65% on average (Table 2). Also, the 

evaluators reported they struggled to perform this 

task (2.63 is close to the highest level of difficulty.) 

For the purpose of comparison, the error rate from 

four non-experts are presented (who are graduate 

students in Biomedical Engineering.) This result 

may indicate the clinical text generation models 

can produce virtual texts seeming analogous with 

real ones for humans. 

Some evaluators reported the reason for their 

answers. Significant evidence for recognizing 

artificial writers were that repetitive sentence 

structure and ridiculous expression (e.g., 'the left 

ventricle is not clearly seen, but the left ventricle is 

not clearly seen.'). Also, they thought a text was 

written by a human writer when the text contains 

causal relationships or when the description was in 

chronological order. This observation may provide 

clues for planning the direction of further study. 

6 Conclusion 

In this paper, we demonstrate a clinical text 

generation method based on the Seq2Seq model. 

Because this is a preliminary study, the current 

model seems to have more rooms for improvement, 

though, our method using concept embedding in 

the generation would be considered to lead the 

model to produce clinical texts looking the one 

existing in real-world. We plan to study the concept 

embedding method more in-depth with cutting 

edge models on the same task in the future. 

Table 1. Perplexities of the clinical text generation 

models on MIMIC-III. 

Model Valid perplexity Test perplexity  

Seq2Seq 3.423 3.800  

CS 3.360 3.368  

CSD 3.822 4.195  

HCSD 3.702 3.764  

HCSD_T 3.830 4.197  
 

Table 2. Error rates (%) for the identification of 

human’s writing and the difficulty level reported 

by evaluators (1: easy, 3: confused.) 

 Expert Non-expert 

Error rate (average) 65 75 

Level of difficulty (1-3) 2.63 2.58 

 

 

Figure 2. Box plots of the experts’ ratings in terms 

of logical appropriateness of the clinical texts. 
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