
Under review as a conference paper at ICLR 2020

WHEN DO VARIATIONAL AUTOENCODERS
KNOW WHAT THEY DON’T KNOW?

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, the ability of deep generative models to detect outliers has been called
into question because of the demonstration that they frequently assign higher prob-
ability density to samples from completely different data sets than were used for
training. For example, a model trained on CIFAR-10 may counter-intuitively at-
tribute higher likelihood to samples obtained from SVHN. In this work, we closely
examine this phenomena in the specific context of variational autoencoders, a
commonly-used approach for anomaly detection. In particular, we demonstrate
that VAEs, when appropriately designed and trained, are in fact often proficient
in differentiating inlier and outlier distributions, e.g., FashionMNIST vs MNIST,
CIFAR-10 vs SVHN and CelebA. We describe various mechanisms that mitigate
this capability, including the paradoxical necessity of large or unbounded gradi-
ents, which have sometimes been observed to occur during training of VAE mod-
els.

1 INTRODUCTION

Suppose we have access to continuous variables x ∈ χ that are assumed to be drawn from ground-
truth measure µgt. This measure assigns probability mass µgt(dx) to the infinitesimal dx residing
within χ ⊆ Rd such that we have

∫
χ µgt(dx) = 1. This formalism allows us to consider data that

may lie on or near an r-dimensional manifold embedded in Rd (implying r ≤ d), capturing the
notion of low-dimensional structure relative to the high-dimensional ambient space.

Because of the possibility of low-dimensional latent structure, it is common to approximate the un-
known ground-truth measure via a density model parameterized as pθ(x) =

∫
pθ(x|z)p(z)dz. In

this expression θ are trainable parameters and z ∈ Rκ serves as a low-dimensional latent represen-
tation, with fixed prior p(z) = N (z|0, I) and ideally κ ≈ r. If some θ∗ were available such that∫
A
pθ∗(x)dx ≈

∫
A
µgt(dx) for any measurable A ⊆ χ, then the model would adequately reflect

the intrinsic underlying distribution.

In practice then, we could generate new samples from pθ∗(x) by drawing znew ∼ N (z|0, I) and
then xnew ∼ pθ∗(x|znew). Alternatively, we could evaluate the negative log-likelihood (NLL) of
a test sample xtest, meaning − log pθ∗(xtest), which could in turn be applied to various tasks such
as outlier/anomaly detection. In terms of the latter, a low NLL should ostensibly be associated with
inliers, while high values would distinguish outliers.

Of course we will generally not know in advance the value of θ∗, but in principle we might consider
minimizing − log pθ(x) averaged across a set of training samples {x(i)}ni=1 drawn from µgt, i.e.,
minimize 1

n

∑
i− log

[
pθ
(
x(i)

)]
≈

∫
− log [pθ(x)]µgt(dx) over θ. Unfortunately though, the

marginalization required to produce pθ
(
x(i)

)
is generally intractable for models of sufficient repre-

sentational power. To circumvent this issue, the variational autoencoder (VAE) (Kingma & Welling,
2014; Rezende et al., 2014) instead optimizes the tractable variational bound L(θ, φ) ,

1
n

n∑
i=1

{
−Eqφ(z|x(i))

[
log pθ

(
x(i)|z

)]
+ KL

[
qφ(z|x(i))||p(z)

]}
≥ 1

n

n∑
i−1
− log

[
pθ

(
x(i)

)]
.

(1)
Here qφ(z|x) represents a tractable variational approximation to pθ(z|x) with additional parameters
φ governing the tightness of the bound. It is commonly referred to as an encoder distribution since
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it quantifies the mapping from x to the latent code z. For analogous reasons, pθ(x|z) is labeled
as the decoder distribution. When combined, the data-dependent factor −Eqφ(z|x) [log pθ (x|z)]
can be viewed as instantiating a form of stochastic autoencoder (AE) structure, which attempts to
assign high probability to accurate reconstructions of each x; if qφ (z|x) is Dirac delta function,
then a regular deterministic AE emerges with loss dictated by the decoder negative log-likelihood
− log pθ(x|z). Beyond this, KL [qφ(z|x)||p(z)] serves as a regularization factor that pushes the
encoder distribution towards the prior. The bound (1) can be minimized over {θ, φ} using SGD and
a simple reparameterization trick (Kingma & Welling, 2014; Rezende et al., 2014).

The latter requires that we assume specific function forms for the encoder and decoder distributions.
In this regard, it is common to select qφ (z|x) = N (z|µz, diag[σz]

2), where the Gaussian moment
vectors µz and σz are functions of model parameters φ and the random variable x, i.e., µz ≡
µz (x;φ), and σz ≡ σz (x;φ). Similarly, for continuous data the decoder model is conventionally
parameterized as pθ (x|z) = N (x;µx, γI), with mean defined analogously as µx ≡ µx (z; θ) and
scalar, trainable variance parameter γ > 0. The functions µz (x;φ), σz (x;φ), and µx (z; θ) are all
instantiated using deep neural network layers.

Although VAEs can be applied to a variety of practical problems (Li & She, 2017; Schott et al., 2018;
Walker et al., 2016), our focus herein will be on accurately detecting anomalous out-of-distribution
samples. This endeavor serves two interrelated purposes. First, isolating and removing outliers
represents an important component of many real-world machine learning pipelines in and of itself.
For example, as pointed out in Nalisnick et al. (2019), generative models or related have frequently
been proposed as a means of removing problematic outlier samples that may prove difficult for
downstream classifiers (Bishop, 1994).

Secondly though, the ability of deep generative models to successfully detect samples completely
different from the training set has recently been called into question by multiple studies (Choi &
Jang, 2018; Hendrycks et al., 2018; Nalisnick et al., 2019; Shafaei et al., 2018; Škvára et al., 2018).
In particular, when trained on CIFAR-10 data, VAEs, as well as alternative autoregressive (van den
Oord et al., 2016) and flow-based generative models (Kingma & Dhariwal, 2018), were all shown
to assign a lower NLL (i.e., higher density) to SVHN samples than the actual training set (Nalisnick
et al., 2019). This obviously undercuts the value of these models in detecting outlier distributions,
but it is also quite counter-intuitive given that SVHN house number images are visually different
from those contained within CIFAR-10 (e.g., cats, dogs, cars, etc.) and should therefore ostensibly
be easy to differentiate. Some compelling, plausible arguments also exist as to how this might
happen within the specific context of invertible flow-based models (Nalisnick et al., 2019).

We attempt to expand on this work by providing complementary analysis and perspective specifi-
cally regarding the VAE within the context of robust detection of out-of-distribution data. Beginning
in Section 2, we discuss the importance of closely aligning the support of pθ(x) to the ground-truth
µgt when low-dimensional manifold structure is present as is typical with natural image data. Sec-
tion 3 then analyzes VAE capabilities in this regard as the dimensionality of z and the capacity
of µx (z; θ) and therefore pθ(x) are varied, differentiating likely success and failure regimes. We
also formally demonstrate the underappreciated yet unavoidable emergence of unbounded gradients
when training a broad class of autoencoder-based models, VAE or otherwise, designed to match
ground-truth manifolds. Finally, we corroborate the analysis from Section 3 with a series of experi-
ments in Section 4, demonstrating that VAE strengths can in fact often be leveraged to differentiate
samples from an outlier distribution, i.e., know what they don’t know. Overall, the results we present
contribute to a better understanding of relevant capabilities such that VAE models are not underuti-
lized within common practical application domains such as anomaly detection (An & Cho, 2015;
Xu et al., 2018).

2 PROPER ALIGNMENT OF INLIER MODELS WITH THE DATA MANIFOLD

In this section we argue that the support of pθ(x), meaning the set Sx , {x : pθ(x) > 0} is
critical in differentiating outliers.1 To begin, consider the illustrative example where µgt assigns all
of its probability mass uniformly to the perimeter of a circle centered at zero. If model capacity is
limited such that pθ(x) = N (x|µ,Σ), with µ and Σ assumed to be fixed parameters for present

1The same basic intuitions would also hold if we relax this definition to Sx , {x : pθ(x) > ε}, for ε
sufficiently small.
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purposes, then the maximum likelihood values are µ = 0 and Σ = I . But now suppose there exists
an arbitrary outlier distribution with nonzero support within the aforementioned circle. Any such
outlier sample will necessarily have a higher probability under the stated Gaussian model than any
of the true inlier data spread around the circumference of the circle. The problem is that the assumed
inlier distribution does not have sufficient capacity to learn the ground-truth support pattern of the
data, and is therefore susceptible to inadvertently assigning higher probability to regions that do not
actually contain inliers (in this case, the center of the circle).

In differentiating outliers then, we must ultimately navigate between two extremes. First, as moti-
vated above, we should supply our model with sufficient capacity such that probability mass can be
confined to regions of x-space that closely surround the training data manifold, and avoid leaving
probability mass in regions vulnerable to outliers. But secondly, we must also ensure that we do not
grossly include superfluous capacity such that we simply memorize the data by parking a delta func-
tion with infinite density at each training sample. In this case, both outliers and inlier test samples
would occupy areas of zero density and would therefore be indistinguishable. Fortunately, within
these extremes there exists ample opportunity for an effective balance via an appropriate modeling
framework.

That being said, flow-based likelihood models have no mechanism for explicitly reflecting low-
dimensional support structure because the assumed class of distributions must be homeomorphic
to Rd. More precisely, these methods transform a latent code z ∈ Rd drawn from N (z|0, I) to a
more complex distribution pθ(x) through a series of invertible transformations (Dinh et al., 2016;
Kingma & Dhariwal, 2018). However, there is no invertible mapping betweenN (z|0, I) and µgt if
the manifold χ has zero Lebesgue measure in Rd (e.g., low-dimensional manifold structure exists).
This is not to say that flow-based models can never at least approximate a low-dimensional manifold,
but the basic parameterization is counter to this assumption, and there is no clear indicator within
the model of which latent degrees-of-freedom are superfluous. In this regard though, the VAE is
decidedly different as discussed next.

3 IMPLICATIONS FOR THE VAE
With a typical Gaussian VAE model of continuous data as we have adopted, the support of pθ(x)
is explicitly controlled by two interpretable factors: (i) the variance γ of the decoder distribu-
tion pθ(x|z), and (ii) the number of dimensions within z that contain useful information about
x. Both of these complementary factors can be monitored to evaluate the intrinsic data dimen-
sionality. For example, if during training γ → 0, by design pθ(x|z) collapses to a deterministic
mapping µx (z; θ) from Rκ to Rd. The resulting probability mass assigned by the model will thus
be caged within a κ-dimensional manifold assuming κ < d. But suppose also that the ground-truth
data manifold is such that r < κ, implying that all degrees-of-freedom within z are not needed. If
µz(x

(i);φ)2k/σz(x
(i);φ)2k → 0 during training, then no information pertaining to x(i) is preserved

by the k-th latent dimension of z.

Per these two considerations, it has been demonstrated in Dai & Wipf (2019) that indeed, when
granted sufficient capacity, Gaussian VAEs will produce near perfect reconstructions of the training
data, while pushing γ → 0 and µz(x(i);φ)2k/σz(x

(i);φ)2k → 0 for useless dimensions, both of
which allow the model to tighten its probability assignment to a minimal support pattern containing
the training data. We conjecture that this mechanism should be helpful in allowing the VAE to
isolate outliers.

Figure 1 illustrates this claim via a series of hypothetical scenarios as the VAE capacity and latent
dimensionality κ are varied. In this narrow context, capacity refers to the complexity of the decoder
mean network µx(z; θ) which controls the flexibility of pθ(x); we assume that the encoder network
maintains sufficient complexity to produce a reasonably tight variational bound given the decoder.
The predicted behavior can be described and contrasted in the following three regimes: (i) insuffi-
cient capacity, (ii) suitable capacity, and (iii) excessive capacity. In each case the impact of the latent
dimensionality will be different as described next.

3.1 ANALYSES WITH RESPECT TO VARYING NETWORK ARCHITECTURE

Insufficient Network Capacity: If the latent dimension is small relative to the data manifold, mean-
ing dim[z] = κ < dim[χ] = r, then there is no way for the VAE to produce small reconstruction
errors with a low-capacity decoder meanµx(z; θ). This ensures that γ will necessarily become large
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𝜅 < 𝑟
𝑟 = 2

𝜅 ≥ 𝑟
𝑟 = 1

Insufficient capacity Suitable capacity Excessive capacity

(a) (c) (e)

(b) (d) (f)

Figure 1: Illustration of VAE modeling behavior as dim[z] = κ and the capacity of µx(z; θ∗) are
varied. Blue dots and dashed blue circles represent training and testing samples located within the
ground-truth data manifold shown in blue. Analogously, red dots are outliers. The learned manifold
as produced by µx(z; θ∗) is shown in green, with dashed green lines denoting spread around the
manifold from γ � 0 in subplots (a) and (b). In the top row, the support of µgt is a 2D blob (i.e.,
r = 2); for the bottom row it is 1D curve (i.e., r = 1). See Section 3.1 for a detailed explanation.

during training given that, with all other parameters fixed, the optimal value of γ is related to the
reconstruction fidelity via2

γ = − 1
nd

n∑
i=1

Eqφ(z|x(i))

[
log pθ

(
x(i)|z

)]
= 1

nd

n∑
i=1

Eqφ(z|x(i))

[∥∥∥x(i) − µx(z; θ)
∥∥∥2
2

]
. (2)

Consequently, the resulting density estimate

pθ∗(x) =

∫
pθ∗(x|z)p(z)dz =

∫
N (x|µx(z; θ∗), γI)N (z|0, I)dz, (3)

with optimized parameters θ∗, will be spread broadly around µx(z; θ∗) between the dashed green
lines in Figure 1(a). It then follows that outlier samples may well receive high likelihood or a low
NLL. Additionally, if we force κ = 0, then µx(z; θ∗) becomes a constant and the situation mirrors
the toy example described in Section 2.

In contrast, with κ > r, the VAE with limited capacity can just assign density to a simpler but
higher-dimensional approximate manifold or subspace that subsumes the more complex, yet lower-
dimensional ground-truth manifold. This allows for low reconstruction errors and γ → 0. However,
as shown in Figure 1(b), the resulting approximate density will also be incapable of properly differ-
entiating outliers. So in the end, without adequate capacity, the VAE is likely to fail in consistently
distinguishing outliers regardless of κ.

Suitable Network Capacity: When the network capacity is well-calibrated to the complexity of the
ground-truth data manifold, the situation may not actually change dramatically if κ specifically is
still too small. For example, as shown in Figure 1(c), with κ < r, the decoder mean µx(z; θ∗) can
better reflect the shape of the inlier data distribution than was possible in 1(a). However, without
sufficient degrees-of-freedom within the latent code, the reconstruction errors will still be high, and
γ will remain large. Consequently, pθ∗(x) may not be fully segregated from regions that contain
outliers.

But with κ ≥ r, the situation is much more favorable. The available network capacity can be
leveraged to produce near perfect reconstructions using a minimal number of latent degrees-of-
freedom per the arguments from Dai & Wipf (2019). This drives γ → 0, restricting the assigned
probability mass to a narrow manifold surrounding the training data. This mitigates the risk of either

2This relationship is obtained by simply differentiating the VAE cost with respect to γ, equating to zero,
and rearranging terms.
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overfitting or co-mingling with the outlier distribution as shown in Figure 1(d). The low NLL from
inlier test samples will therefore be easily distinguishable from the much higher values produced by
outliers.

Excessive Network Capacity With excessive model capacity, the VAE can overfit to the training
data. Even when κ is much smaller than r, it is still possible to perfectly fit the training samples and
drive γ → 0 with a sufficiently complex µx(z; θ) as depicted in Figure 1(e). Although the NLL
for the training set will be low, on novel test samples the NLL for inliers could be higher than for
outliers, making proper anomaly detection problematic. Likewise, when we have κ ≥ r, overfitting
leads to inlier likelihood assignments that deviate from the ground-truth manifold with similarly
deleterious effects; see Figure 1(f). Note that while the VAE has the ability to automatically prune
a superfluous latent dimension k by setting µz(x(i);φ)2k/σz(x

(i);φ)2k → 0, it does not have any
mechanism for regularizing an excessively complex decoder mean function µx(z; θ) (Dai et al.,
2018).

3.2 PRACTICAL CONSIDERATIONS

The analysis thus far suggests that learning γ, instead of choosing a fixed value such as γ = 1 (as is
frequently done in practice), while choosing κ ≥ r is a useful prescription for applying the VAE to
detecting out-of-distribution anomalies. And at least in principle κ need not be carefully calibrated
so long as it is sufficiently large because excessive latent dimensions can be pruned. As for the
network capacity/depth, it can be increased until there is a significant gap between train and test
NLL values on the inlier data (access to unknown outliers is not needed to avoid over-fitting).

Beyond this, we should also mention the following caveats. First, the discussion in Section 3.1
implicitly assumed that VAE training was more-or-less successful, meaning that over-regularized,
degenerate local minima were avoided. While obviously this cannot be always guaranteed, several
steps have been proposed in the literature to help ensure favorable training conditions (Bowman
et al., 2015; Cai et al., 2017; Dieng et al., 2018; Sønderby et al., 2016). We did not however require
any of these methods for the results reported in Section 4. Secondly, constraining probability mass to
a narrow manifold necessarily involves γ → 0 as well as partitioning µz(x(i);φ)2k/σz(x

(i);φ)2k →
0 for useless dimensions and µz(x(i);φ)2k/σz(x

(i);φ)2k → ∞ along informative ones. We may
therefore expect to encounter large or unbounded gradients during training of the VAE cost. This
can occur within the data term from (1) because of γ → 0, and within the KL term because of
σz(x

(i);φ)2k → 0 along an active dimension. This issue has previously been raised as a potential
concern, but we will now reframe such gradients as more of a necessary risk.

3.3 UNBOUNDED GRADIENTS AS A NECESSARY RISK

As motivated in Dai & Wipf (2019) and explicitly contextualized with respect to outlier detection
in Section 3.1, the VAE is capable of providing accurate reconstructions of the training data using
a minimal number of active latent dimensions containing information about each x(i), a construct
that we will henceforth refer to as an optimal sparse reconstruction. However, an unintended con-
sequence of this phenomena is the potential for divergent gradients as discussed in Section 3.2. This
then naturally begs the question: Could we not just simply train a deterministic autoencoder (AE) to
obtain such optimal sparse reconstructions and avoid this issue altogether? Interestingly, the answer
turns out to be unequivocally no, at least in the sense formalized by the following analysis.

Consider the constrained objective function Lh(θ, φ) ,

h

(
1
dn

n∑
i=1

∥∥∥x(i) − µx
(
z(i); θ

)∥∥∥2
2

)
+ 1

d

κ∑
k=1

h
(

1
n ‖zk‖

2
2

)
, s.t. z(i) = µz

(
x(i);φ

)
∀i, θ ∈ Θ,

(4)
where Z , {z(i)}ni=1 ∈ Rκ×n and zk denotes the k-th row of Z. This expression can be viewed
as characterizing a typical regularized AE with a generic penalty function h : R+ → R on the norm
across training samples of each latent dimension. The multipliers 1/n, 1/d, and 1/(dn) ensure a
form of proportional regularization as within energy functions composed of multiple penalty factors
of varying dimension designed to favor sparsity (Wipf & Wu, 2012). The square-root Lasso can
be viewed as a special case of this strategy that emerges when h is a square-root function (Belloni
et al., 2011). We adopt this formalism to avoid distracting complications from tunable trade-off
parameters; however, our central conclusions still hold even when such a parameter is introduced.
And finally, the constraint θ ∈ Θ is included to prevent the trivial solution Z → 0, which could

5



Under review as a conference paper at ICLR 2020

occur if each z(i) is pushed to zero while µx includes an unconstrained compensatory factor that
grows towards infinity such that the error

∥∥x(i) − µx
(
z(i); θ

)∥∥
2

can still be minimized to zero. Any
regularized AE must include such constraints to avoid trivial solutions, or else additional penalty
terms on θ that serve a similar purpose.

Given a generic AE architecture as in (4), it is natural to examine what possible functions h are such
that any global minimum of Lh(θ, φ) is guaranteed to produce an optimal sparse representation.
This can be addressed as follows:

Theorem 1 Assume the constraint θ ∈ Θ and dataX = {x(i)}ni=1 ∈ Rd×n are such that to achieve
x(i) = µx

(
z(i); θ

)
∀i (i.e., perfect reconstruction) requires that ‖zk‖2 > 0 for at least r < d rows

of Z. Then to guarantee that minimization of Lh(θ, φ) achieves zero reconstruction error using at
most r nonzero rows ofZ (i.e., active dimensions), h must have an unbounded gradient around zero.

The proof is deferred to the supplementary. Note that a similar result can be obtained by replac-
ing the reconstruction penalty with the additional constraint

∑n
i=1

∥∥x(i) − µx
(
z(i); θ

)∥∥2
2

= 0, in
which case no trade-off parameter, fixed or otherwise, need be included. We also emphasize that
Theorem 1 effectively implies that, to guarantee every global minima corresponds with an opti-
mal sparse reconstruction per our definition, the constituent penalty functions must have an infinite
gradient around zero. Given that we may readily introduce arbitrary scalings and translations, this
condition is tantamount to requiring penalty functions with an energy gap that is unbounded about
zero. For example, the selection h(u) = I [u > 0], i.e., an indicator function that equals zero if
u = 0 and one for all u > 0, will guarantee that any global minimum of (4) produces an optimal
sparse reconstruction under the stated conditions. However, given that I [u > 0] ≡ limp→0 u

p and
limp→0

1
p (up − 1) = log u, we see that an unbounded log function can essentially achieve the same

result in the limit.

The VAE can be interpreted as a form of stochastic AE, with subtle regularization effects intro-
duced via the interplay between the reconstruction and KL terms. A number of recent works have
mentioned that if a flexible decoder variance parameter γ is included within a Gaussian VAE, then
the optimal value may converge to zero, resulting in infinite gradients and potential instabilities
(Dai & Wipf, 2019; Mattei & Frellsen, 2018; Takahashi et al., 2018). While unbounded gradients
may indeed be troublesome from an optimization perspective, based on the analysis of this section,
we frame such gradients as a necessary component of any model that attempts to produce optimal
sparse reconstructions. In this regard, it has been argued that as γ → 0, the VAE can achieve zero
reconstruction error at the global optimum by selectively pushing qφ(z|x) towards a degenerate
Gaussian, with zero variance along the minimal number of directions needed for reconstructing x,
and unit variance elsewhere so as to reduce the KL regularization factor (Dai & Wipf, 2019). This is
exactly a stochastic version of an optimal sparse reconstruction, which can be exploited for outlier
detection per the discussion from Section 3.1. See the supplementary for more details on this topic,
including related empirical results.

4 EXPERIMENTAL VALIDATION

In this section we empirically corroborate the analysis from Section 3, demonstrating that in the
predicted operating regimes, the VAE can indeed differentiate inlier and outlier distributions. For
this purpose, we train a variety VAE models differing in latent dimensionality and network capacity
in an attempt to isolate the ground-truth inlier manifold. We adopt the network structure from
Bińkowski et al. (2018) as our baseline and include γ as a trainable parameter for reasons given in
Section 3. To manipulate capacity we multiply the number of channels in all the layers (except the
final encoder layer producing µz and Σz) by a factor of α ∈ [ 14 ,

1
2 , 1, 2, 3, 4]. We apply the notation

×α to represent the network capacity across varying test conditions. For all the experiments, we use
the Adam optimizer and train the network for 200K iterations with a fixed learning rate of 10−4.
Please see the supplementary for further details, as well as additional analysis and experiments.

4.1 EVALUATIONS ACROSS VARYING LATENT DIMENSIONALITY AND NETWORK CAPACITY

We employ the basic experimental paradigm from Nalisnick et al. (2019), training models on a
given inlier set and then comparing evaluation metrics applied to both inlier train/test samples and
distinct outlier samples. Consistent with Nalisnick et al. (2019) and convention elsewhere, we use
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Glow 16 32 64 128 256 512
FashionMNIST-Train 2.902 2.375 2.208 2.084 2.009 2.054 2.020
FashionMNIST-Test 2.958 2.805 2.690 2.562 2.424 2.397 2.301

MNIST-Test 1.833 9.598 8.618 6.294 4.958 4.578 4.351
γ – 0.0055 0.0040 0.0030 0.0024 0.0023 0.0024

Table 1: BPD values for VAEs trained on FashionMNIST with capacity ×1 as κ is varied from 16
to 512. When κ increases, the BPD saturates while robustly differentiating inliers and outliers.
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(a) Capacity×1, κ = 256
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Figure 2: Stable histogram of VAE NLL values for FashionMNIST vs MNIST for different κ.

the bits-per-dimension (BPD) metric for expressing aggregate results in a convenient range for ta-
bles, and histograms of NLL values for presenting further details. Both metrics reflect essentially
the same thing, with lower values indicating a higher likelihood (see Theis et al. (2016) for infor-
mation regarding these metrics and how they are computed). Furthermore, unlike Nalisnick et al.
(2019) which varied the generative model type (the flow-based Glow method (Kingma & Dhariwal,
2018), autoregressive PixelCNN (van den Oord et al., 2016), and a basic VAE) but not the network
architecture within each type, we focus on quantifying VAE capabilities as latent dimensionality and
network capacity vary per our prior analysis.

We first consider FashionMNIST (Xiao et al., 2017) (inlier) vs MNIST (LeCun et al., 1998) (outlier)
as κ is varied. It was reported in Nalisnick et al. (2019) that a Glow model trained on FashionM-
NIST produced lower BPD scores on MNIST, indicating that out-of-distribution data was preferred.
However, when we trained our VAE baseline with capacity ×1, we observe that FashionMNIST has
a clearly lower BPD score across κ values ranging from 16 to 512 as shown in Table 1. This indi-
cates that the model has in some sense correctly rejected the outliers independently of κ as would
be expected for a model with suitable capacity. Note also that the BPD values for the MNIST test-
ing data stabilize such that even with what would seem to be excessively high κ values, the extra
degrees-of-freedom do not provide an inadvertent pathway for the out-of-distribution samples to
receive undesirable preference (presumably because of pruning; see Section 4.2). Furthermore γ
remains small and stable given that additional latent degrees-of-freedom are not needed to improve
the data fit. We also plot a histogram of NLL values from all training and testing data in Figure 2.
Most MNIST samples have much larger NLL as desired.

We next move on to a more challenging CIFAR-10 (Krizhevsky & Hinton, 2009) (inlier) vs SVHN
(Netzer et al., 2011)/ CelebA (Liu et al., 2015) (outlier) case where changing network capacity can
play a significant role. The VAE model trained with capacity ×1 and κ = 32 now computes a lower
BPD score for the outlier data because CIFAR-10 data is more complex than FashionMNIST such
that the baseline capacity is inadequate. As we increase the capacity, we would therefore expect the
model to better learn the data manifold, push γ to even smaller values, and eventually assign a lower
BPD to the inlier samples. Table 2 indicates that this is in fact the case, and ultimately the outlier data
is assigned a much higher BPD synced to lower γ values. Again we show the NLL histograms from
all training and testing data in Figure 3. When the capacity is lower (×1, Figure 3(a)), most of the
SVHN outlier samples have smaller NLL than the inlier data, implying that the VAE model fails to
precisely learn the correct inlier manifold. The CelebA set also has just slightly higher NLL values
than the inlier data even though the appearance of CelebA and CIFAR-10 are distinct. But when the
network capacity is increased to ×8 (Figure 3(b)), the inlier NLL values become smaller while the
outlier NLL becomes larger as expected. Note that the CIFAR-10 train and test BPD and NLL are
virtually the same, indicating that no overfitting has occurred. Therefore, we can safely apply even
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Capacity Glow ×1/4 ×1/2 ×1 ×2 ×3 ×4
CIFAR-10-Train 3.386 2.828 2.766 2.602 2.275 1.981 1.728
CIFAR-10-Test 3.464 2.824 2.761 2.598 2.272 1.978 1.726

SVHN-Test 2.389 2.404 2.394 2.406 2.579 2.890 3.367
CelebA-Test – 2.844 2.882 3.106 3.965 5.053 6.424

γ – 0.0110 0.0101 0.0082 0.0051 0.0035 0.0024

Table 2: BPD values for VAEs trained on CIFAR-10 using κ = 32 as capacity is varied. When the
capacity is small, the outlier data has lower BPD as Nalisnick et al. (2019) has shown. However,
as capacity increases, BPD for both training and testing sets decreases while that of the outlier data
increases consistent with Section 3. Additionally, γ becomes significantly smaller with increased
capacity as expected.
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Figure 3: Histogram of VAE NLL values. Training on CIFAR-10, testing on CIFAR-10, CelebA,
and SVHN. Increasing the network capacity makes the inlier NLL smaller but the outlier NLL larger
as expected; larger capacity can potentially separate them even further.
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(b) Capacity×4
Figure 4: MI values between each latent dimension and the data (sorted in descending order).

larger capacity models, which would likely improve the situation further, pushing inlier/outlier NLL
curves more unmistakeably apart.

4.2 PRUNING SUPERFLUOUS LATENT DIMENSIONS

The ability to reconstruct the training data using the fewest number of active latent dimensions is
critical to obtaining a tight manifold fit as argued in Section 3. We empirically demonstrate the
VAE performance in this context by evaluating the mutual information (MI) between each latent
dimension of z and the input x using FashionMNIST training data. If one such dimension is shut
off during training, then the MI should be close to zero. For visualization purposes, we approximate
true MI values using the VAE KL loss and then sort them in descending order. Results are shown in
Figure 4. When κ is relatively small (e.g., κ = 32), all the dimensions are informative and display
relatively large MI values. As κ is increased, there is diminishing information to transmit; how-
ever, the VAE model does not redistribute the mutual information across all the latent dimensions.
Rather it is more likely to aggregate the useful information in roughly the same percentage of active
dimensions, while ignoring superfluous dimensions when their cardinality increases. Additionally,
increasing the capacity from×1 in 4(a) to×4 in 4(b) encourages the model to rely on even fewer la-
tent degrees-of-freedom, producing a sharper cut-off between active and inactive latent dimensions.
And for the larger κ values, this cut-off would likely be even sharper with additional training epochs.
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Supplementary File

When Do Variational Autoencoder
Know What They Don’t Know?

1. Network Structure and Experimental Settings

The baseline encoder we adopt is composed of three convolutional layers of 64, 128, 256
channels with stride 2. The feature map is then flattened and fed into two FC layers
producing µz and logσz respectively. The baseline decoder is composed of one linear layer
with 4 × 4 × 256 hidden units, a reshaping layer, and three transposed convolution layers
with 128, 64 and C channels where C is the number of channels of the image.

2. Further Analysis and Evaluation of Unbounded VAE Gradients

Relevant to the content from Section 3.3 in the main text, it is worth acknowledging that
energy functions involving infinite gradients and/or unbounded regions are already indis-
pensable across a wide range of sparse estimation problems and structured regression [3].
This history implies that when training a VAE or other related autoencoder structure,
we may borrow appropriate tools designed to mitigate the risk of converging to bad local
solutions or regions of instability. In this vein, one effective strategy involves partially min-
imizing what amounts to a smoothed version of the original objective function. The degree
of smoothness is then gradually reduced as the optimization trajectory moves towards an
optimum. This procedure, which serves as a form of homotopy continuation method, is
frequently used to find maximally sparse representations with minimal reconstruction error
[1, 4, 6].

The VAE accomplishes something similar when we choose to iteratively estimate γ
during training rather than merely setting its value to near zero as may be theoretically
optimal (assuming we know that there exists sufficient network capacity to warrant this
value). Initially, when the reconstruction cost is still high, γ will be relatively large
and the overall VAE energy will be relatively smooth. It is only later as the data fit∑n

i=1 Eqφ(z|x(i))

[∥∥x(i) − µx(z; θ)
∥∥2
2

]
becomes small that γ will follow suite, and by this

point it is more likely that we have already approached a basin of attraction capable of pro-
ducing optimal sparse reconstructions, i.e., near zero reconstruction error using the fewest
number of active latent dimensions.

In this regard, we now empirically demonstrate that learning γ, as a form of homotopy
continuation method, may be better than fixing it to an arbitrarily small value. In par-
ticular, we first train a VAE model on CelebA data and learn an appropriate small value
of γ denoted γ∗. We then retrain the same network from scratch but with γ = γ∗ fixed.
The resulting models are evaluated via the reconstruction error and the maximum mean
discrepancy (MMD) between the aggregated posterior qφ(z) ,

∑
i qφ(z|x(i)) and the prior

p(z) = N (z|0, I). If too few latent dimensions are removed by swamping the appropriate

1



CelebA

Rec. Err. MMD

Learnable γ 352.8 93.3
Fix γ = γ∗ 349.9 291.8

Table 1: Reconstruction error and MMD between qφ(z) and N (0, I) on CelebA. We first
train a VAE with learnable γ and obtain the optimal value γ∗. Then we fix γ = γ∗

and re-train the same network from scratch. Though the final reconstruction
errors are almost the same, the MMDs between qφ(z) and the standard N (0, I)
are significantly different.

0 100 200 300 400
0

50

100

150

200

250

300

350

Iterations (× 100)

G
ra

di
en

t M
ag

ni
tu

de

 

 

Learnable γ

Fix γ=γ*

Figure 1: The Evolution of the gradient
∥∥∥dL(θ,φ)dz

∥∥∥
2
. Although both curves end up with

similar final values, the large initial gradient with fixed γ is disruptive to the final
solution.

channels with noise following the prior, then we would expect qφ(z) to be confined to a
low-dimensional manifold in Rκ and the MMD to be much larger.

Results are displayed in Table 1, where as expected, the reconstruction errors are nearly
identical, but the learnable γ has much lower MMD values. We also plot the evolution

of the gradient magnitudes
∥∥∥dL(θ,φ)dz

∥∥∥
2

in Figure 1 (other gradients are similar). When γ

is learned, the gradient increases slowly; however, with fixed γ = γ∗, there exists a huge
gradient right from the start since γ∗ is small but the reconstruction error is high. This
contributes to a worse final solution per the Table 1.

3. Proof of Theorem 1

To begin, we assume that h(u) is a concave, non-decreasing function defined on the domain
u ≥ 0. These are central characteristics of sparsity inducing penalty functions [2, 5] and it
is not difficult to show that additional flexibility does not gain us anything in the present
context. For convenience, we assume that h is differentiable everywhere, although this
condition can also be relaxed. We then focus on the case where the gradient of h is bounded.
Per these specifications, the largest gradient will necessarily occur at h′(0) ≡ limu→0+ h

′(u).
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Note also that this limiting gradient cannot equal zero; otherwise we trivially default to a
flat penalty function such that all solutions have equal cost and the theorem guarantee is
unattainable right from the start.

From here, the basic idea is to construct a counterexample that satisfies the conditions
of the theorem, and yet involves a simple network structure that, if h′(u) is bounded around
zero, is unable to minimize the stated objective using at most r nonzero rows of Z while si-
multaneously achieving zero reconstruction error. To this end, consider the two-dimensional
latent representation z = [z1, z2]

> and a single-parameter decoder that computes

µx (z; θ) = θπ (z1) + (1− θ)
[
z1
z2

]
, (1)

where θ ∈ Ω , [0, 1] is a scalar parameter, t : R → [0, 1] truncates its argument to the
interval between zero and one and π : [0, 1] → S ⊂ [0, 1]2 is for now an arbitrary function
defined on the stated interval. Per this construction, the decoder can be viewed as a tunable
mixture weighted by θ, and for either θ = 0 or θ = 1, the range of the decoder µx (z; θ) is
contained within the unit square [0, 1]2.

Now suppose we have training samples {x(i)}ni=1 that were produced via the generative
process

z
(i)
gt ∼ p (zgt) and x(i) = π

(
t
[
z
(i)
gt

])
(2)

for some prior p (zgt) on the ground-truth latent variable zgt ∈ R. Furthermore, assume that

the function π is such that for all t [zgt] ∈ [C, 1] with constant C < 1,

[
x1
x2

]
= π (t [zgt])

satisfies 0 < |xj | < ε for j = 1, 2, with ε > 0 arbitrarily small. We also stipulate that p (zgt)
places all (or almost all) of its probability mass such that t [zgt] ∈ [C, 1], which implies that
the observed training points will all be arbitrarily close to zero.

Given this observed data, we can then evaluate the optimal AE for different penalties
h. We allow that the encoder is sufficiently complex such that

min
φ
Lh(θ, φ) ≡ min

Z
h

(
1
dn

n∑
i=1

∥∥∥x(i) − µx
(
z(i); θ

)∥∥∥2
2

)
+ 1

d

κ∑
k=1

h
(

1
n ‖zk‖

2
2

)
, (3)

where in the present context κ = d = 2, and as mentioned in the main text, zk represents
the k-th row of Z. This arrangement is equivalent to simply assuming that the encoder is
capable of computing the minimizing z(i) for each index (i.e., we have removed amortized
inference). We adopt this assumption for simplicity of exposition, but the same conclusions
can be drawn in broader conditions.

To achieve zero reconstruction under the stated conditions using only r = 1 nonzero
rows of Z, we must choose θ = 1. In this restricted setting, the optimal Z will satisfy
1
n‖z1‖

2
2 ≥ C2 and 1

n‖z2‖
2
2 = 0 such that the overall objective value will be

min
φ
Lh(θ = 1, φ ∈ Φ) = h(0) +

1

2

[
h(0) + h

(
1
n‖z1‖

2
2

)]
≥ 3

2
h(0) +

1

2
h
(
C2
)
, (4)

where Φ is the set of φ that lead to zero reconstruction error. In other words, within the
current setup, the constraints θ = 1 and φ ∈ Φ are necessary conditions for any solution to
achieve an optimal sparse reconstruction.
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But now suppose we choose θ = 0. In this revised situation, the optimal unconstrained
Z will satisfy 1

n‖z1‖
2
2,

1
n‖z1‖

2
2 ≤ ε2. The associated cost then becomes

min
φ
Lh(θ = 0, φ) = h(0) + 1

2

2∑
k=1

h
(
1
n‖zk‖

2
2

)
≤ h(0) + h

(
ε2
)
. (5)

At this point, without loss of generality assume that h
(
C2
)

= 1 and h (0) = 0, which can be
accomplished by simply translating and rescaling the overall cost. Because limu→0+ h

′(u)
is bounded, the gap between h(0) and h

(
ε2
)

can be made arbitrarily small for ε sufficiently
small. In contrast, the gap between h

(
ε2
)

and h
(
C2
)

can be arbitrarily close to one.
Therefore, it follows that if our data was generated with ε sufficiently small, then

min
φ
Lh(θ = 1, φ ∈ Φ) ≥ 1

2 > min
φ
Lh(θ = 0, φ) ≈ 0, (6)

and so the unique solution achieving zero construction error with a single active latent
variable cannot be the global optimum. Or equivalently, any globally optimum solution will
not coincide with an optimal sparse reconstruction.

Note that the situation would be completely different if h(u) = I[u > 0], meaning an
indicator function that equals zero if u = 0 and one for all u > 0. In this case, it is obvious
that minφ Lh(θ = 1, φ ∈ Φ) = 1

2 while all other solutions will be such that Lh(θ, φ) ≥ 1. But
of course this h does not have a bounded gradient everywhere because of the discontinuity
at zero.

High-level picture: While this is obviously a toy counterexample designed with a
specific technical purpose in mind, it is nonetheless emblematic of situations that may nat-
urally arise in practice. For example, it is easy to envision scenarios where data is lying on a
complex r-dimensional manifold that is contained within a larger (r+ s)-dimensional man-
ifold (or possibly subspace) that has much simpler structure. Perfectly reconstructing such
data could be accomplished using only r degrees-of-freedom or (r + s) degrees-of-freedom
depending on whether the low- or high-dimensional manifold was accurately modeled. But
unless we have a penalty function with a strong preference for lower-dimensional structures,
then the network may well favor or converge to the simpler, higher-dimensional alternative.
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