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ABSTRACT

This paper proposes a novel generative model called PUGAN, which progres-
sively synthesizes high-quality audio in a raw waveform. PUGAN leverages on
the recently proposed idea of progressive generation of higher-resolution images
by stacking multiple encode-decoder architectures. To effectively apply it to raw
audio generation, we propose two novel modules: (1) a neural upsampling layer
and (2) a sinc convolutional layer. Compared to the existing state-of-the-art model
called WaveGAN, which uses a single decoder architecture, our model generates
audio signals and converts them in a higher resolution in a progressive manner,
while using a significantly smaller number of parameters, e.g., 20x smaller for
44.1 kHz output, than an existing technique called WaveGAN. Our experiments
show that the audio signals can be generated in real-time with the comparable
quality to that of WaveGAN with respect to the inception scores and the human
evaluation.

1 INTRODUCTION

Synthesis of realistic sound is a long-studied research topic, with various real-world applications
such as text-to-speech (TTS) (Wang et al., 2017; Ping et al., 2018), sound effect (Raghuvanshi et al.,
2016), and music generation (Briot et al., 2017; Dong et al., 2018; Huang et al., 2019). Various
techniques have been developed ranging from the sample-based to more computational ones such as
the additive/subtractive synthesis, frequency modulation granular synthesis, and even a full physics-
based simulation (Cook, 2002). Human’s audible frequency range is up to 20 kHz, so the standard
sampling rate for music and sound is 44.1 kHz. Thus, for interactive applications and live perfor-
mances, the generation of the high temporal-resolution audio (i.e., 44.1 kHz) in real-time has to meet
the standard of human perceptual sensitivity to sound. However, the aforementioned methods often
fail to do so, due to their heavy computational complexity with respect to the data size. Because of
this, professional sound synthesizers usually have no choice but to rely on hardware implementa-
tions.(Wessel & Wright, 2002)

Generative adversarial networks (GANs) (Goodfellow et al., 2014) have emerged as a promising
approach to the versatile (e.g., conditional generation from a low-dimensional latent vector (Mirza
& Osindero, 2014)) and high-quality (e.g., super-resolution GAN (Ledig et al., 2017)) image. One
of the first GAN models for sound synthesis have been designed to first produce the spectrogram (or
some other similar intermediate representations) (Donahue et al., 2019; Engel et al., 2019; Marafioti
et al., 2019). A spectrogram is a compact 2D representation of audio signals in terms of its frequency
spectrum over time. The spectrogram can then be converted into the estimated time-domain wave-
form using the Griffin & Lim algorithm (Griffin & Lim, 1984). However, such a conversion process
does not only introduces nontrivial errors but also runs slowly, preventing the approach from being
applied at an interactive rate1 . WaveGAN (Donahue et al., 2019) was the first and state-of-the-art
GAN model that can generate raw waveform audio from scratch.

The first generations of sound-generating GANs, like the WaveGAN and its followers, have been
influenced much by the enormously successful generative models for image synthesis. They can

1The interactive rate refers to the the maximum temporal threshold of around 10msec (Wessel & Wright,
2002) over which humans would not be able to recognize the sound making event and the resultant sound as
occuring at the same time.
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be divided into those that employ the single decoder architecture (e.g., DCGAN and StyleGAN
(Radford et al., 2016; Karras et al., 2019)) and those that encode and decode the intermediate rep-
resentations in several and progressive stages (e.g., StackGAN and progressive GAN (Zhang et al.,
2017; Karras et al., 2018)). WaveGAN is the direct descendant of DCGAN with modification for the
1D audio data, while GANSynth applied the concept of progressive generation of audio, but using
the 2D spectrogram, treating the audio as a 2D image. No previous work in GAN based audio gener-
ation has attempted the direct and fast synthesis of 1D raw audio waveform employing the multiple
and progressive encoder-decoder architecture.

Therefore, in this paper, we propose PUGAN, modification and extension of WaveGAN architec-
ture for efficiently synthesizing raw-waveform audio through progressive training. PUGAN gener-
ates low sampling rate audio using the first few layers of the original WaveGAN (referred to as the
lightweight WaveGAN module). The latter layers of WaveGAN are replaced with the bandwidth
extension modules, each of which is composed of the neural upsampling layer and encoder/decoder.
They progressively output (progressively trained too) the higher sampling rate audio. For the effec-
tive progressive training and generation, instead of the usual upsampling method such as the nearest
neighbor used in image generation, PUGAN uses a new upsampling methods often employed in
the digital signal processing (DSP) field in an attempt to preserve the frequency information of
the original data (Oppenheim, 1999). This upsample process consists of the zero insertion and 1D
convolution to function as an interpolation infinite impulse response (IIR) filter. On the discrimi-
nator side, we add the Sinc convolution (Ravanelli & Bengio, 2018) before the first layer to repli-
cate the function of the parameterized low pass Sinc filter, also a popular technique in the DSP
area. We have also evaluated PUGAN in terms of both quantitative computational performance and
qualitative metrics including the human perceptual evaluation. (demo and code: https://pugan-iclr-
demo.herokuapp.com/)

Overall, our contributions include the following:

• propose PUGAN, with novel neural modules (upsampling and bandwidth extension) for
the efficient generation of raw waveform audio,

• apply the concept of resampling (in the generator) and sinc convolution layers (in the dis-
criminator) suitable for handling sound generation instead of the conventional upsampling
or convolution methods, and

• demonstrate the effectiveness of the proposed approach by generating raw waveform audio
with significantly less number of parameters in real-time with equivalent output quality as
WaveGAN.

2 RELATED WORK

We first review related research in two areas, namely, the GAN-based sound generation and audio-
to-audio conversion.

2.1 GAN BASED AUDIO GENERATION

WaveGAN (Donahue et al., 2019) and GANSynth (Engel et al., 2019) are the two recent notable
work that have applied the GAN technique to sound effects generation for the first time. WaveGAN
modified the DCGAN and took the approach to operate for and generate one dimensional sound
data (raw-waveform) fast and directly (and distinguishing itself from the work like the SpecGAN
(Donahue et al., 2019) which used the usual 2D/image-based processing and spectrogram output
representation). WaveGAN also added the phase shuffle module to prevent the discriminator from
learning the checkerboard artifact, and post-processing convolution layer with a relatively wide ker-
nel size for noise reduction.

GANSynth generated sound effects through the spectrogram-like representation, but its output qual-
ity was satisfactory for only pure tone instrumental sounds. TiF-GAN (Marafioti et al., 2019) made
a marginal improvement by adding a provisional step for the phase information reconstruction. Note
that in the generative setting, the 2D based approach (using representations like spectrograms) is
considered problematic as spectrograms are not fully invertible to sound without a loss (thus inex-
act) and the inversion by, say, the most popular Griffin & Lim algorithm is time-consuming.
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Figure 1: An original signal composed of three frequency components at 600, 750 and 900Hz - time
domain plot (top left) and frequency domain (top right) plots. The plots below show the upsam-
pling results using the nearest neighbor, linear interpolation and Kaiser resampling methods. The
examples illustrate the occurrences of high frequency sidebands (noise) when the first two simpler
upsampling methods are used. This may be problematic if the high resolution output is required.
Kaiser resampling is regarded as ideal result (bottom right) and we use neural upsampling layer to
minimize noise.

A fast version of Griffin & Lim algorithm (Perraudin et al., 2013) and Deep Griffin & Lim iteration
approaches (Masuyama et al., 2019) have been proposed to improve the inversion performance;
they have not reached the aforementioned level required for interactive applications. In addition,
all previous GAN-based sound synthesizers were configured and experimented to output up to only
16 kHz audio. Such a sampling rate is sufficient for general TTS systems, but, as noted earlier, not
for general sound effects or music. WaveNet (Oord et al., 2016) can generate 44.1 kHz sampling
rate audio, but aside from the questionable quality of the output, its autoregressive nature make
it difficult to achieve real-time performance through the GPU parallelization. In this regard, once
trained, the generator part of GAN generally can operate faster. But for WaveGAN to generate 44.1
kHz audio, additional transposed convolutional layers (to the current 16 kHz generator) would make
the architectural parameters prohibitively large (two times higher) and likewise the generation time.

2.2 AUDIO-TO-AUDIO CONVERSION

Audio-to-audio conversion refers to the task of taking an input audio sample and converting it into
another with different characteristics. Most deep learning based audio conversion models have been
influenced by similar image-to-image translation research. For instance, CycleGAN-VC (Kaneko &
Kameoka, 2018), StarGAN-VC (Kameoka et al., 2018), and WaveCycleGAN (Tanaka et al., 2018)
all looked into the problem of voice conversion, and were based on the previous works of CycleGAN
(Zhu et al., 2017) and StarGAN (Choi et al., 2018). The task of denoising (Pascual et al., 2017) or
generation of super-resolution signal (Eskimez & Koishida, 2019) can also be regarded as a form of
signal (or audio) conversion. Recently, few attempts have been made to apply GAN to the task of
bandwidth extensions such as the SSRGAN (Eskimez & Koishida, 2019; Li et al., 2019). Note that
our objective is the generation of high-resolution audio and sound effects rather than just conversion.

3 DATA CHARACTERISTICS: AUDIO VERSUS IMAGE

In this section, we discuss potential reasons of why conventional GAN architectures have been
successful in generating 2D images (Zhu et al., 2017; Karras et al., 2018; 2019), but less so for 1D
sound waves with respect to their data characteristics. This analysis can give us hints on how to
newly configure the GAN architecture to generate the sound signal faster with higher quality.
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Image and sound, both as signals, contain information across the frequency domain. Sound has the
added dimension of time. Humans are highly sensitive to variation over time of the sound con-
tent over all the frequency range, which makes its quality depend on reproduction of all frequency
components. In other words, in sound, the different frequency range may represent a particular char-
acteristic (e.g., low bass male sound vs. high pitch female sound) (Klevans & Rodman, 1997). In
contrast, in images, high resolution components often correspond to details or even noises, and as
such static image recognition and understanding may depend less on them(Heittola et al., 2009).

Upsampling of the data are important parts of the GAN architecture (especially with respect to the
conversion process). In image generation, for the reason mentioned above, the upsampling by stan-
dard interpolation, such as the nearest neighbor or linear interpolation, may suffice. Fig. 1 compares
the application of the simple nearest neighbor based upsampling and linear interpolation to the sinc
function based upsampling (or resampling as better known in the DSP area). Fig. 1 shows the up-
sampling results using the nearest neighbor, linear interpolation and Kaiser resampling methods. The
examples illustrate the occurrences of high frequency sidebands (noise) when the first two simpler
upsampling methods are used. This may be particularly problematic if the high-resolution output is
required.

Another possibly effective method for dealing with signals of multi-frequency components is the
resolution-wise progressive generation (and training) technique, as was demonstrated by the work
of Progressive GAN (Karras et al., 2018). While the original Progressive GAN was applied for 2D
images, and similarly to spectrogram generation, we have applied the same idea to the 1D audio
signal. However, the preliminary pilot result was not satisfactory; the reconstructed results were
unnaturally smooth in the high frequency range. This is attributed to the similar reason, the stride-1
transposed convolution layer effectively acting as a simple moving averaging method.

On the other hand, for an audio generation as WaveGAN has implemented, the upsampling based on
the transposed convolution is more proper than the others such as nearest neighbor. It was deemed
more accurate in ”capturing” (filtering out) the frequency-wise characteristics in the generation pro-
cess in comparison to using the nearest neighbor. The only problem may be the fact that the number
of the relevant architectural parameters grows excessively according to the output size, which ulti-
mately would render the generation process non real-time.

To summarize, based on these observations, the newly proposed PUGAN architecture would pro-
ceed to first train to learn the gross structure of the aural information distribution and fast produce
the low resolution audio, then incrementally convert and enrich the output to a higher resolution effi-
ciently instead of having to deal with the entire scale space with computationally heavy architecture
simultaneously.

4 PUGAN: PROGRESSIVE UPSAMPLING GAN

In this section, we explain the details of the PUGAN, as also shown in Fig. 2. Note that the objective
of the proposed design is to produce 44.1 kHz raw audio waveform with reasonable quality in real-
time deployable for interactive and live applications.

The Generative Adversarial Network (GAN) can be applied to generate probablistic solutions to a
domain problem by framing it as a supervised learning problem with two sub-models: the generator
model that one trains to generate new examples, and the discriminator model that tries to classify
examples as either real (from the domain) or fake (generated). The two models are trained together
in a zero-sum game, adversarial, until the discriminator model is fooled about half the time, meaning
the generator model is generating plausible examples. The details of the GAN architecture is omitted
and referred to (Goodfellow et al., 2014).

4.1 PROBABILISTIC MODEL

The probablistic model of our raw waveform generation can be stated as below. We denote the set
of audio data downsampled from the maximum sampling rate of B0, xB0 , successively n times as
X = (xB0 ,xB1 , ...,xBn) and consider the joint probability of X. That is, the audio of resolution i
is dependent on all its lower resolution data, p(X) =

∏n
i=0 p(x

Bi |xBi+1 , ...,xBn), or simplified as
being dependent only on its immediate predecessor, p(X) =

∏n
i=0 p(x

Bi |xBi+1).
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Figure 2: Overview of PUGAN. The generator is composed of the lightweight Wavegan Module for
first generating the low sampling rate audio and several encoder-decoder architectures called ”band-
width extension module (BWE)”, which upsample the input to a high sampling rate and enriches the
content. We eliminate the number of layers from WaveGAN and instead attach a series of BWEs.
In BWE, the neural upsampling layer (indicated with the with up and down bidirectional arrow) is
trained to preserve the frequency information of the original data.

4.2 GENERATOR

The generator part of PUGAN is composed of the lightweight WaveGAN module for first generating
the low resolution waveform, and a series of U-net based ”bandwidth extension modules (BWE)”
each of which upsample the input to a higher resolution (up to 44.1 kHz) and enriches the content.
In other words, the transposed convolutional layers in the original WaveGAN generator are replaced
with the BWE modules.

4.2.1 LIGHTWEIGHT WAVEGAN MODULE

The original WaveGAN generator synthesizes one second of 16 kHz sampling rate audio. We reduce
the number of transposed convolutional layers and decrease the sampling rate of the output audio
by a factor of four (4 kHz). For the later experimental purpose, we have implemented other versions
that would produce 2 kHz and 8 kHz as well by adjusting the noise input dimension accordingly.
The output from the lightweight WaveGAN module becomes the input for the next step, the BWE.
Therefore, depending on the output size of this WaveGAN module, the number of subsequent BWE’s
would differ (e.g., with 4 kHz lightweight WaveGAN module, two BWEs for 16 kHz or 4 BWEs for
44.1 kHz output).

4.2.2 BANDWIDTH EXTENSION MODULE (BWE)

The bandwidth extension module plays the role of inserting and adding high frequency information
into the input audio. The module has a neural upsampling layer and an encoder-decoder architecture
for conversion. In the default configuration, the upsampling unit doubles the sampling rate of the
input audio. Moreover, no information loss from the lower resolution data will occur and the upsam-
pling unit is to emulate the ideal windowed sinc filter with its width parameter tuned to the nature
of the audio signal. Note that the convolution computation used in the deep learning architectures is
mathematically equivalent to y-axis symmetric cross-correlation and also the sinc filter.
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Sampling
rate Architecture No. of Params.

(in mill.)

Ratio
Lightweight
WaveGAN

Number of BWE module
1 2 3 4

16 kHz
WaveGAN 19.69 (100%) 100% - - - -

PUGAN with one BWE 2.33 (11.8%) 92.4% 7.6% - - -
PUGAN with two BWEs 1.96 (9.9%) 82.8% 8.2% 9.0% - -

44.1 kHz WaveGAN 46.00 (100%) 100% - - - -
PUGAN with four BWEs 2.44 (5.3%) 66.4% 6.5% 7.2% 8.6% 11.3%

Table 1: The number of parameters among the compared architectures, different configurations and
by output resolution (WaveGAN, PUGAN with one BWE, PUGAN with two BWEs and PUGAN
with four BWEs for two sampling rates, 16 kHz and 44.1 kHz). Note that all varied configurations
have significantly less number of parameters than the comparable WaveGAN. Within the PUGAN,
also note that most of the parameters are subsumed in the lightweight WaveGAN module. WaveGAN
was made to generate the 1.48 second long 44.1 kHz audio as 4-second long 16 kHz audio.

The number of architectural parameters in WaveGAN is approximately geometrically proportional
to the product of the input and output channels and the needed transposed convolutional layers.
Compared to the 16 kHz WaveGAN, its 44.1 kHz version would increase this complexity 2-fold,
while PUGAN with equivalent output would possess only about 5% of this figure respectively. See
Table. 1 for a more detailed description and comparison.

The number of parameters of a bandwidth extension module does not change except for the fully
connected layer. Thus, the number of parameters in the entire model increases in proportion to the
number of modules. Also, the bandwidth extension module itself has fewer parameters compared to
equivalent WaveGAN based generator layer. When we measure the ratio of the number of param-
eters of each module in PUGAN, the bandwidth extension module is highly efficient because the
lightweight WaveGAN module accounts for up to 90% of the total.

4.3 DISCRIMINATOR

As we focus on improving the generator performance for real-time application, we opt to use the
same discriminator architecture of WaveGAN with the aforementioned phase shuffle module. As in-
dicated in our data characteristics observation in Section 3 and demonstrated in the work of SincNet
(Ravanelli & Bengio, 2018), we added a sinc convolutional layer in the discriminator to help the
module learn and discover more meaningful and effective features. On every layer in the discrimina-
tor, we also added the spectral normalization (Miyato et al., 2018) which is a well-known technique
to stabilize the discriminator by restricting the Lipschitz constant. To demonstrate the significance
of both modules, we created Improved WaveGAN that uses those modules in the discriminator and
compared the performance with other models.

There are separate discriminators for each generator module (outputting intermediate and final audio
at different sample rates), namely the lightweight WaveGAN module and BWE’s.

5 EXPERIMENT

We introduce dataset and training process, and demonstrate how to evaluate PUGAN in terms of
both quantitative computational performance and qualitative metrics including the human perceptual
evaluation.

5.1 DATASET

The Speech Commands (Warden, 2018) dataset is a collection of voice command recordings from
various speakers. The length of each audio sample is under one second, containing only one word.
Similarly to WaveGAN and TiFGAN, we used a subset of the dataset, sounds of ten-digit commands
(i.e., ”zero”, ”one”, etc.). The training does not involve any phonology information as our evaluation
only concerns the generation as sound effects. The sampling rate of the data is 16 kHz, and the
number of total training samples is about 18,000. We reproduced the under-sampled data from the
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original as needed by the progressive training in PUGAN. As the undersampling method can affect
the structure of waveform, we used the LibROSA library (McFee et al., 2015) to resample the audio
and applied the kaiser-best method.

5.2 TRAINING

The WGAN-GP and Adam optimizer (Kingma & Ba, 2015) was used as the loss function and
optimization algorithm in our model training. As our model is progressive, and likewise the training
process; as the output resolution doubles and new generators are learned. Also, the learning of the
previous modules continues to update their parameters. However, the discriminators corresponding
to each generator stop learning once the resolution level is increased. We will cover the training
details in the Appendix.

5.3 INCEPTION SCORE

The Inception Score (IS) (Salimans et al., 2016) is a well-known metric for assessing the quality of
the data generated from GAN. It utilizes the classification model and computes the KL divergence
of classification probabilities between ground truth and generated data. We evaluated PUGAN com-
paratively, based on IS, to the baseline model (WaveGAN) by employing the pretrained network
from the official WaveGAN repository2.

5.4 HUMAN EVALUATION

We created 18,000 audio samples (16 kHz) of real data, PUGAN (with 1 BWE), WaveGAN and
improved (by the authors) WaveGAN for comparative human evaluation. The data were labeled (i.e.,
which digit) by using the pretrained WaveGAN. Three hundred samples per class in the order of the
prediction probabilities from the pretrained classifier were chosen to be presented to the 14 human
subjects. In the first session, pair-wise comparison tests were conducted for the six combinations; the
subject was to choose the one perceived as having better subjective quality. In the second session, 80
audio samples selected in a balanced fashion from the four data categories (ground truth, PUGAN,
WaveGAN, improved WaveGAN) were presented to the subjects who were asked to identify the
class labels. The task accuracy was recorded along with subjective quality ratings.

6 RESULTS AND DISCUSSION

In this section, we discuss the quantitative and qualitative evaluation and the results show the supe-
riority of our proposed model compared to the existing models.

6.1 IS AND HUMAN EVALUATION

Table. 2 shows the results of the qualitative and quantitative evaluation. We compared the IS and
other subjective quality metrics among the original WaveGAN, an improved WaveGAN (which
contains spectral normalization and sinc convolution in the discriminator) and the varied configura-
tions PUGAN. IS was measured using the pretrained WaveGAN model from the official repository.
Human evaluation includes the accuracy of identifying the correct label and subjective rating of the
sound quality in the scale of 1 to 5.

Compared to the original WaveGAN, the improved one with spectral normalization and sinc con-
volution exhibited an increase in the IS, and likewise for the accuracy and subjective quality. This
implies for the positive effect of the use of sinc convolution, which is also used equally in the
lightweight WaveGAN module of PUGAN. We varied the PUGAN in terms of the sampling rate of
the intermediate low-resolution data produced by the lightweight WaveGAN and subsequently the
number of required BWE modules to finally produce 16 kHz or 44.1 kHz output, namely, BWE-
1 and BWE-2. Regardless of the variation, the table shows that PUGAN resulted in the higher IS
than WaveGAN. A trend of increasing IS for less number of BWE modules was observed, and this
seems to be attributed to the trade-off between the number of architectural parameters and output

2https://github.com/chrisdonahue/wavegan
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Architecture Inception score Accuracy Quality
Real (Train) 9.18 ±0.04 0.98 4.8 ±0.7
Real (Test) 7.98 ±0.20 - -
WaveGAN 2.65 ±0.03 0.63 2.6 ±1.3
+ specnorm 3.11 ±0.03 - -
+ sinc conv 3.41 ±0.04 0.52 2.7 ±1.5
PUGAN with one BWE 4.63 ±0.05 0.76 3.4 ±1.2
PUGAN with two BWEs 3.94 ±0.04 - -
PUGAN with three BWEs 3.80 ±0.08 - -

Table 2: Result of qualitative and quantitative evaluation. We compared the IS and other subjective
quality metrics among the original WaveGAN, an improved WaveGAN (which contains spectral
normalization and sinc convolution in the discriminator) and the varied configurations of PUGAN. IS
was measured using the pretrained WaveGAN model from the official repository. Human evaluation
includes the accuracy of identifying the correct label and subjective rating of the sound quality in
the scale of 1 to 5.

Architecture wins vs. Real vs. WaveGAN vs. Improved
WaveGAN vs. PUGAN

with one BWE
Real 793 - 95% 93% 91%
WaveGAN 210 5% - 44% 24%
Improved WaveGAN 274 7% 56% - 40%
PUGAN with one BWE 403 9% 76% 60% -

Table 3: Number of wins on the pair-wise comparison among real data, original WaveGAN, the im-
proved WaveGAN (which contains spectral normalization and sinc convolution in the discriminator)
and PUGAN resulting highest inception score.

quality. Further research will be needed to find the right balance on the division of labor between the
lightweight WaveGAN and the BWE modules in the regard.

The subjective human evaluation was carried out using PUGAN with one BWE (who scored the
highest IS), and in all aspects, PUGAN showed better subjective ratings (accuracy and subjective
quality). Table. 3 shows the pair-wise comparison. PUGAN also greatly improved the number of
wins against the WaveGANs. Against the ground truth data, PUGAN improved the number of wins
up to 9% compared to the 5% mark by WaveGAN. However, in absolute scale, it also implies that
there remains much room (and future research) for further improvement in the output quality. In the
same vein, several participants reported in the post-briefing that certain sounds (e.g., ”six”) were
heard clearer that others, and sounds seemingly juxtaposed with the few (e.g., ”four” and ”one”
mixed up together) were sometimes perceived. These could be artifacts from generating the samples
without any conditioning (vs. using the phonetics in the context of usage for TTS as done in the
WaveGAN evaluation).

6.2 COMPUTATION COST

One of the primary concerns in our work is whether the proposed model can properly synthesize the
sound samples in real-time. The maximum temporal threshold is at around 7-10msec upon the sound
making the event; under this threshold, it is known humans would recognize the sound-making event
and the resultant sound as separate events. We compared the computational cost (time) among the
various configurations of our model and WaveGAN. The comparison was made for the synthesis
of (1) one second long 16 kHz sampling rate audio samples and (2) 1.48 seconds long 44.1 kHz
sampling rate audio samples. The execution time measurements were repeated 100 times and the
average was taken. The computing hardware used for the comparison was a workstation with the
Intel Core i9-7920X CPU (with 32GB RAM), and using the NVidia TITAN RTX GPU.

For the 16 kHz audio, PUGAN could generate 100 samples (in a batch) in 0.56 sec. using just the
CPU and 0.005 sec. when the GPU was used. The WaveGAN took 1.19 sec. and 0.06 sec. respec-
tively. For the 44.1 kHz audio samples, PUGAN took 2.47 sec. and 0.006 sec., while WaveGAN
required 4.4 sec. and 0.18 sec. For 44.1 kHz audio, 100 samples in 2.47 sec. or 0.006 sec. translates
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to 24.7 msec or 0.06 msec of latency for short sound effects (e.g. ”bang”, ”clunk”), barely suffi-
cient for real time usage. On the other hand, WaveGAN, twice as slower, will not meet the real time
requirement for interactive high resolution (44.1 kHz) audio generation.

6.3 CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel GAN model based on a stacked encoder-decoder architecture for
high-quality real-time audio generation from scratch. Inspired by signal processing literature, the
key to success lies in our neural upsampling layer and sinc convolution, allowing, for the first time,
the progressive growth of high frequency audio signals with a significantly lightweight architecture,
compared to existing state-of-the-art methods such as WaveGAN.

As future work, we plan to improve a discriminator architecture in a progressive manner so that we
can properly generate realistic audio signals in a longer time span. On the other hand, we will also
explore the applicability of our proposed neural upsampling layer to image generation models in
computer vision domains.
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A APPENDIX

A.1 ARCHITECTURE DETAILS

We implemented WaveGAN using PyTorch and modifed to lightweight wavegan generator. In Ta-
ble ??, n is the batch size, m and l increase in proportion to sampling rate of output audio and d is the
the number of channel. We attached sinc convolution to WaveGAN discriminator with no changes.

Operation Kernel Size Output Shape
Input z ∼ U(−1, 1) (n, 128)
Dense (128, 256d) (n, 256d)
Reshape (n, 32, 8d)
ReLU (n, 32, 8d)
Trans Conv1D (Strde=4) (25, 8d, 4d) (n, 128, 4d)
ReLU (n, 128, 4d)
Trans Conv1D (Strde=4) (25, 4d, 2d) (n, 512, 2d)
ReLU (n, 512, 2d)
Trans Conv1D (Strde=4) (25, 2d, d) (n, 2048, d)
ReLU (n, 2048, d)
Trans Conv1D (Strde=4) (25, d, d) (n, 8192, d)
Tanh (n, 8192, d)
Conv1D (Stride=1) (256, 1, 1) (n, 8192, d)

Table 4: Lightweight WaveGAN outputting 8 kHz sampling rate audio architecture. Scale d = 32.
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Operation Kernel Size Output Shape
Input audio (n, l, 1)
Zero Insertion (n, 2l, 1)
Conv1D (Stride = 1) (15, 1, 1) (n, 2l, 1)
Conv1D (Stirde = 4) (25, 1, d) (n, l2, d)
LReLU (α = 0.2) (n, l//2, d)
Conv1D (Stirde = 4) (25, d, 2d) (n, l//8, 2d)
LReLU (α = 0.2) (n, l//8, 2d)
Conv1D (Stirde = 4) (25, 2d, 4d) (n, l//32, 4d)
LReLU (α = 0.2) (n, l//32, 4d)
Noise Injection (4d, 4d+ 1) (n, l//32, 4d+ 1)
Trans Conv1D (Stride = 4) (25, 4d+ 1, 2d) (n, l//8, 2d)
LReLU (α = 0.2) (n, l//8, 2d)
Concat (n, l//8, 4d)
Trans Conv1D (Stride = 4) (25, 4d, d) (n, l//2, d)
LReLU (α = 0.2) (n, l//2, d)
Concat (n, l//2, 2d)
Trans Conv1D (Stride = 4) (25, 2d, 1) (n, 2l, 1)
Tanh (n, 2l, 1)
Conv1D (Stride=1) (m, 1, 1) (n, 8192, d)

Table 5: Bandwidth extension module architecture.

A.2 TRAINING DETAILS AND HYPERPARAMETERS

We considered other alternatives in the module architectures. If there were no skip-connections in the
bandwidth extension module, the model could not generate valid waveform. Instance Normalization
interrupted the training of the model. When we did not inject random noise on intermediate of
the bandwidth extension module, the output quality was worse than the default architecture. Those
models, that do not contain neural upsampling layer or were not trained progressively, fail to generate
recognizable sounds.

Name Value
Channel size (d) (lightweight WaveGAN) 64
Channel size (d) (bandwidth extension module) 16
Batch size 64
Optimizer Adam (α = 1e-4, β1 = 0.0 , β1 = 0.9)
Loss WGAN-GP
WGAN-GP λ 10
D updates per G module 5

Table 6: Hyperparameters of PUGAN.

A.3 ADDITIONAL RESULTS

To show our superior, we trained PUGAN on bird dataset , which has 44.1 kHz sampling rate audios
(Vellinga & Planqué, 2015). We attached more BWEs to our model to generate 65,536 length of
audio that means 1.48 sec in 44.1 kHz sampling rate. We downloaded by using the R library warbleR
(Araya-Salas & Smith-Vidaurre, 2017), and we searched singing sounds of robin genus from we
picked the instances which have 44.1 kHz sampling rate and quality A. The number of sounds is
23,920. See the demo site (https://pugan-iclr-demo.herokuapp.com/).

A.4 ADDITIONAL FIGURES
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Original

IdealLinear interpolationNearest neighbor

Figure 3: Original signal composed of three frequency components at 60, 75 and 90Hz - time domain
plot (top left) and frequency domain (top right) plots. The plots below show the upsampling results
using the nearest neighbor, linear interpolation and Kaiser resampling methods. The examples illus-
trate the occurrences of high frequency side bands (noise) similar to Fig. 1, however, the magnitude
of noise decrease. It demonstrates that upsampling method is more important in high frequency than
low one.

One

Real

Ours

Real

Ours

Two Three Four Five

Six Seven Eight Nine Ten
Figure 4: Samples from speech commands dataset and generated by PUGAN. Our model generate
the same shape of formant for each voice data.
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1st

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

2nd

3rd

Figure 5: Each sample set shows the results generated by the generator for each step.
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