
Published as a conference paper at ICLR 2020

TOWARDS STABILIZING BATCH STATISTICS IN BACK-
WARD PROPAGATION OF BATCH NORMALIZATION

Junjie Yan1,2∗, Ruosi Wan3∗, Xiangyu Zhang3†, Wei Zhang1,2, Yichen Wei3, Jian Sun3

1 Shanghai Key Laboratory of Intelligent Information Processing
2 School of Computer Science, Fudan University

3 Megvii Technology.
{jjyan17, weizh}@fudan.edu.cn,

{wanruosi, zhangxiangyu, weiyichen, sunjian}@megvii.com.

ABSTRACT

Batch Normalization (BN) is one of the most widely used techniques in Deep
Learning field. But its performance can awfully degrade with insufficient batch
size. This weakness limits the usage of BN on many computer vision tasks like de-
tection or segmentation, where batch size is usually small due to the constraint of
memory consumption. Therefore many modified normalization techniques have
been proposed, which either fail to restore the performance of BN completely, or
have to introduce additional nonlinear operations in inference procedure and in-
crease huge consumption. In this paper, we reveal that there are two extra batch
statistics involved in backward propagation of BN, on which has never been well
discussed before. The extra batch statistics associated with gradients also can
severely affect the training of deep neural network. Based on our analysis, we
propose a novel normalization method, named Moving Average Batch Normal-
ization (MABN). MABN can completely restore the performance of vanilla BN
in small batch cases, without introducing any additional nonlinear operations in
inference procedure. We prove the benefits of MABN by both theoretical anal-
ysis and experiments. Our experiments demonstrate the effectiveness of MABN
in multiple computer vision tasks including ImageNet and COCO. The code has
been released in https://github.com/megvii-model/MABN.

1 INTRODUCTION

Batch Normalization (BN) (Ioffe & Szegedy, 2015) is one of the most popular techniques for train-
ing neural networks. It has been widely proven effective in many applications, and become the
indispensable part of many state of the art deep models.

Despite the success of BN, it’s still challenging to utilize BN when batch size is extremely small1.
The batch statistics with small batch size are highly unstable, leading to slow convergence during
training and bad performance during inference. For example, in detection or segmentation tasks,
the batch size is often limited to 1 or 2 per GPU due to the requirement of high resolution inputs
or complex structure of the model. Directly computing batch statistics without any modification on
each GPU will make performance of the model severely degrade.

To address such issues, many modified normalization methods have been proposed. They can be
roughly divided into two categories: some of them try to improve vanilla BN by correcting batch
statistics (Ioffe, 2017; Singh & Shrivastava, 2019), but they all fail to completely restore the perfor-
mance of vanilla BN; Other methods get over the instability of BN by using instance-level normal-
ization (Ulyanov et al., 2016; Ba et al., 2016; Wu & He, 2018), therefore models can avoid the affect

∗Equal Contribution. Work was done when Junjie Yan was an intern at Megvii Technology.
†Corresponding author.
1In the context of this paper, we use ”batch size/normalization batch size” to refer the number of samples

used to compute statistics unless otherwise stated. We use ”gradient batch size” to refer the number of samples
used to update weights.

1

https://github.com/megvii-model/MABN

Published as a conference paper at ICLR 2020

of batch statistics. This type of methods can restore the performance in small batch cases to some
extent. However, instance-level normalization hardly meet industrial or commercial needs so far, for
this type of methods have to compute instance-level statistics both in training and inference, which
will introduce additional nonlinear operations in inference procedure and dramatically increase con-
sumption Shao et al. (2019). While vanilla BN uses the statistics computed over the whole training
data instead of batch of samples when training finished. Thus BN is a linear operator and can be
merged with convolution layer during inference procedure. Figure 1(a) shows with ResNet-50 (He
et al., 2016), instance-level normalization almost double the inference time compared with vanilla
BN. Therefore, it’s a tough but necessary task to restore the performance of BN in small batch
training without introducing any nonlinear operations in inference procedure.

In this paper, we first analysis the formulation of vanilla BN, revealing there are actually not only 2
but 4 batch statistics involved in normalization during forward propagation (FP) as well as backward
propagation (BP). The additional 2 batch statistics involved in BP are associated with gradients of
the model, and have never been well discussed before. They play an important role in regularizing
gradients of the model during BP. In our experiments (see Figure 2), variance of the batch statistics
associated with gradients in BP, due to small batch size, is even larger than that of the widely-
known batch statistics (mean, variance of feature maps). We believe the instability of batch statistics
associated with gradients is one of the key reason why BN performs poorly in small batch cases.

Based on our analysis, we propose a novel normalization method named Moving Average Batch
Normalization (MABN). MABN can completely get over small batch issues without introducing any
nonlinear manipulation in inference procedure. The core idea of MABN is to replace batch statistics
with moving average statistics. We substitute batch statistics involved in BP and FP with different
type of moving average statistics respectively, and theoretical analysis is given to prove the benefits.
However, we observed directly using moving average statistics as substitutes for batch statistics
can’t make training converge in practice. We think the failure takes place due to the occasional large
gradients during training, which has been mentioned in Ioffe (2017). To avoid training collapse, we
modified the vanilla normalization form by reducing the number of batch statistics, centralizing the
weights of convolution kernels, and utilizing renormalizing strategy. We also theoretically prove the
modified normalization form is more stable than vanilla form.

MABN shows its effectiveness in multiple vision public datasets and tasks, including Ima-
geNet (Russakovsky et al., 2015), COCO (Lin et al., 2014). All results of experiments show MABN
with small batch size (1 or 2) can achieve comparable performance as BN with regular batch size
(see Figure 1(b)). Besides, it has same inference consumption as vanilla BN (see Figure 1(a)). We
also conducted sufficient ablation experiments to verify the effectiveness of MABN further.

(a) (b)

Figure 1: (a) Throughout (iterations per second) in inference procedure using different Normaliza-
tion methods. The implementation details can be seen in appendix B.2. (b)ImageNet classification
validation error vs. batch sizes.

2 RELATED WORK

Batch normalization (BN) (Ioffe & Szegedy, 2015) normalizes the internal feature maps of deep neu-
ral network using channel-wise statistics (mean, standard deviation) along batch dimension. It has

2

Published as a conference paper at ICLR 2020

been widely proven effectively in most of tasks. But the vanilla BN heavily relies on sufficient batch
size in practice. To restore the performance of BN in small batch cases, many normalization tech-
niques have been proposed: Batch Renormalization (BRN) (Ioffe, 2017) introduces renormalizing
parameters in BN to correct the batch statistics during training, where the renormalizing parame-
ters are computed using moving average statistics; Unlike BRN, EvalNorm (Singh & Shrivastava,
2019) corrects the batch statistics during inference procedure. Both BRN and EvalNorm can restore
the performance of BN to some extent, but they all fail to get over small batch issues completely.
Instance Normalization (IN) (Ulyanov et al., 2016), Layer Normalization (LN) (Ba et al., 2016),
and Group normalization (GN) (Wu & He, 2018) all try to avoid the effect of batch size by utiliz-
ing instance level statistics. IN uses channel-wise statistics per instance instead of per batch, while
LN uses instance-level statistics along channel dimension. But IN and LN shows no superiority to
vanilla BN in most of cases. GN divides all channels in predefined groups, and uses group-wise
statistics per instance. It can restore the performance of vanilla BN very well in classification and
detection tasks. But it have to introduce extra nonlinear manipulations in inference procedure and
severely increase inference consumption, as we have pointed out in Section 1. SyncBN (Peng et al.,
2018) handle the small batch issues by computing the mean and variance across multiple GPUs.
This method doesn’t essentially solve the problem, and requires a lot of resource. Online Normal-
ization Chiley et al. (2019) modifies BP by using moving average statistics, so they can set batch size
as 1 without degradation of performance, but Online Normalization still have to use instance-level
normalization to cooperate with modification in BP, so its inference efficiency is much lower than
original BN.

Apart from operating on feature maps, some works exploit to normalize the weights of convolution:
Weight Standardization (Qiao et al., 2019) centralizes weight at first before divides weights by its
standard deviation. It still has to combine with GN to handle small batch cases.

3 STATISTICS IN BATCH NORMALIZATION

3.1 REVIEW OF BATCH NORMALIZATION

First of all, let’s review the formulation of batch Normalization (Ioffe & Szegedy, 2015): assume
the input of a BN layer is denoted as X ∈ RB×p, where B denotes the batch size, p denotes number
of features. In training procedure, the normalized feature maps Y at iteration t is computed as:

Y =
X − µBt

σBt

, (1)

where batch statistics µBt and σ2
Bt

are the sample mean and sample variance computed over the
batch of samples Bt at iteration t:

µBt =
1

B

∑
b

Xb,:, σ2
Bt

=
1

B

∑
b

(Xb,: − µBt)
2. (2)

Besides, a pair of parameters γ, β are used to scale and shift normalized value Y :

Z = Y γ + β. (3)

The scaling and shifting part is added in all normalization form by default, and will be omitted in
the following discussion for simplicity.

As Ioffe & Szegedy (2015) demonstrated, the batch statistics µBt , σ
2
Bt

are both involved in backward
propagation (BP). We can derive the formulation of BP in BN as follows: let L denote the loss,
Θt denote the set of the whole learnable parameters of the model at iteration t. Given the partial

gradients ∂L
∂Y

∣∣∣∣
Θt,Bt

, the partial gradients ∂L
∂X

∣∣∣∣
Θt,Bt

is computed as

∂L
∂X

∣∣∣∣
Θt,Bt

=
1

σBt

(
∂L
∂Y

∣∣∣∣
Θt,Bt

− gBt
− Y ·ΨBt

) (4)

where · denotes element-wise production, gBt
and ΨBt

are computed as

gBt
=

1

B

∑
b

∂L
∂Yb,:

∣∣∣∣
Θt,Bt

, ΨBt
=

1

B

∑
b

Yb,: ·
∂L
∂Yb,:

∣∣∣∣
Θt,Bt

, (5)

3

Published as a conference paper at ICLR 2020

It can be seen from (5) that gBt
and ΨBt

are also batch statistics involved in BN during BP. But they
have never been well discussed before.

3.2 INSTABILITY OF BATCH STATISTICS

According to Ioffe & Szegedy (2015), the ideal normalization is to normalize feature maps X using
expectation and variance computed over the whole training data set:

Y =
X − EX√
V ar[X]

. (6)

But it’s impractical when using stochastic optimization. Therefore, Ioffe & Szegedy (2015) uses
mini-batches in stochastic gradient training, each mini-batch produces estimates the mean and vari-
ance of each activation. Such simplification makes it possible to involve mean and variance in BP.
From the derivation in section 3.1, we can see batch statistics µBt , σ2

Bt
are the Monte Carlo (MC)

estimators of population statistics E[X|Θt], V ar[X|Θt] respectively at iteration t. Similarly, batch
statistics gBt , ΨBt are MC estimators of population statistics E[∂L

∂Yb,:
|Θt], E[Yb,: · ∂L

∂Yb,:
|Θt] at it-

eration t. E[∂L
∂Yb,:
|Θt], E[Yb,: · ∂L

∂Yb,:
|Θt] are computed over the whole data set. They contain the

information how the mean and the variance of population will change as model updates, so they play
an important role to make trade off between the change of individual sample and population. There-
fore, it’s crucial to estimate the population statistics precisely, in order to regularize the gradients of
the model properly as weights update.

It’s well known the variance of MC estimator is inversely proportional to the number of samples,
hence the variance of batch statistics dramatically increases when batch size is small. Figure 2 shows
the change of batch statistics from a specific normalization layer of ResNet-50 during training on
ImageNet. Regular batch statistics (orange line) are regarded as a good approximation for population
statistics. We can see small batch statistics (blue line) are highly unstable, and contains notable error
compared with regular batch statistics during training. In fact, the bias of gBt

and ΨBt
in BP is

more serious than that of µBt
and σ2

Bt
(see Figure 2(c), 2(d)). The instability of small batch statistics

can worsen the capacity of the models in two aspects: firstly the instability of small batch statistics
will make training unstable, resulting in slow convergence; Secondly the instability of small batch
can produce huge difference between batch statistics and population statistics. Since the model
is trained using batch statistics while evaluated using population statistics, the difference between
batch statistics and population statistics will cause inconsistency between training and inference
procedure, leading to bad performance of the model on evaluation data.

(a) µB (b) σ2
B (c) gB (d) ΨB

Figure 2: Plot of batch statistics from layer1.0.bn1 in ResNet-50 during training. The formulation of
these batch statistics (µB, σ2

B, gB, ΨB) have been shown in Section 3.1. Blue line represents the small
batch statistic (|B| = 2) to compute, while orange line represents the regular batch statistics(|B| =
32). The x-axis represents the iterations, while the y-axis represents the l2 norm of these statistics in
each figures. Notice the mean of g and Ψ is close to zero, hence l2 norm of gB and ΨB essentially
represent their standard deviation.

4 MOVING AVERAGE BATCH NORMALIZATION

Based on the discussion in Section 3.2, the key to restore the performance of BN is to solve the
instability of small batch statistics. Therefore we considered two ways to handle the instability of

4

Published as a conference paper at ICLR 2020

small batch statistics: using moving average statistics to estimate population statistics, and reducing
the number of statistics by modifying the formulation of normalization.

4.1 SUBSTITUTE BATCH STATISTICS BY MOVING AVERAGE STATISTICS.

Moving average statistics seem to be a suitable substitute for batch statistics to estimate population
statistics when batch is small. We consider two types of moving average statistics: simple mov-
ing average statistics (SMAS)2 and exponential moving average statistics (EMAS)3. The following
theorem shows under mild conditions, SMAS and EMAS are more stable than batch statistics:

Theorem 1 Assume there exists a sequence of random variable (r.v.) {ξt}∞t=1, which are indepen-
dent, uniformly bounded, i.e. ∀t, |ξt| < C, and have uniformly bounded density. Define:

St =
1

m

t∑
i=t−m+1

ξi, Et = (1− α)

t∑
i=1

αt−iξi, (7)

where m ∈ R+. If the sequence {ξt}∞t=1 satisfies

∃ξ,∀ε ∈ R, lim
t→∞

P (ξt ≤ ε) = P (ξ ≤ ε), (8)

then we have

E(Et) = E(ξ) + o(1), V ar(Et) =
(1− α2t)(1− α)

1 + α
V ar(ξ) + o(1); (9)

If the sequence {ξt}∞t=1 satisfies

lim
t→∞

sup
λ
|P (ξt−1 < λ)− P (ξt < λ)| = 0, (10)

then we have

E(St) = E(ξt) + o(1), V ar(St) =
V ar(ξt)

m
+ o(1); (11)

The proof of theorem 1 can be seen in appendix A.1. Theorem 1 not only proves moving aver-
age statistics have lower variance compared with batch statistics, but also reveals that with large
momentum α, EMAS is better than SMAS with lower variance. However, using SMAS and EMAS
request different conditions: Condition (8) means the sequence of the given statistics need to weakly
converge to a specific random variable. For {µBt

}∞t=1, {σ2
Bt
}∞t=1, they converge to the ”final” batch

statistics µB, σ2
B (when training finished), hence condition (8) is satisfied, EMAS can be applied

to replace {µBt
}∞t=1, {σ2

Bt
}∞t=1; Unfortunately {gBt

}∞t=1, {ΨBt
}∞t=1 don’t share the same property,

EMAS is not suitable to take replace of {gBt
}∞t=1, {ΨBt

}∞t=1. However, under the assumption that
learning rate is extremely small, the difference between the distribution of ξt−1 and ξt is tiny, thus
condition (10) is satisfied, we can use SMAS to replace {gBt}∞t=1, {ΨBt}∞t=1. In a word, we can use
EMAS µ̂t, σ̂2

t to replace µBt , σ2
Bt

, and use SMAS ḡt, Ψ̄t to replace gBt , ΨBt in (1) and (4), where

µ̂t = αµ̂t−1 + (1− α)µBt
, σ̂2

t = ασ̂2
t−1 + (1− α)σ2

Bt
, (12)

ḡt =
1

m

m∑
s=1

gBt−m+s , Ψ̄t =
1

m

m∑
s=1

ΨBt−m+s . (13)

Notice neither of SMAS and EMAS is the unbiased substitute for batch statistics, but the bias can
be extremely small comparing with expectation and variance of batch statistics, which is proven by
equation 11 in theorem 1, our experiments also prove the effectiveness of moving average statistics
as substitutes for small batch statistics (see Figure 3, 4 in appendix B.1).

2The exponential moving average (EMA) for a series {Yt}∞t=1 is calculated as: St = α ·Yt+(1−α) ·St−1.
3The simple moving average (SMA) for a series {Yt}∞t=1 is calculated as: St =

∑t
s=t−M+1 Ys

M
.

5

Published as a conference paper at ICLR 2020

Relation to Batch Renormalization Essentially, Batch Renormalization (BRN) (Ioffe, 2017) re-
places batch statistics µBt

, σ2
Bt

with EMAS µ̂t, σ̂2
t both in FP (1) and BP (4). The formulation of

BRN during training is written as:

Y =
X − µBt

σBt

, Ŷ = r · Y + d (14)

where r = clip[1/λ,λ](
σBt
σ̂t

), d = clip[−d,d](
µBt−µ̂t

σ̂t
). Based on our analysis, BRN successfully

eliminates the effect of small batch statistics µBt and σ2
Bt

by EMAS, but the small batch statistics
associated with gradients gBt and ΨBt remains during backward propagation, preventing BRN from
completely restoring the performance of vanilla BN.

4.2 STABILIZING NORMALIZATION BY REDUCING THE NUMBER OF STATISTICS

To further stabilize training procedure in small batch cases, we consider normalizing feature maps
X using EX2 instead of EX and V ar(X). The formulation of normalization is modified as:

Y =
X

χBt

, Z = Y · γ + β, (15)

where χ2
Bt

= 1
B

∑
bX

2
b,:. Given ∂L

∂Y , the backward propagation is:

∂L
∂X

∣∣∣∣
Θt,Bt

=
1

χBt

(
∂L
∂Y

∣∣∣∣
Θt,Bt

− Y ·ΨBt
). (16)

The benefits of the modification seems obvious: there’s only two batch statistics left during FP
and BP, which will introduce less instability into the normalization layer compared with vanilla
normalizing form. In fact we can theoretically prove the benefits of the modification by following
theorem:

Theorem 2 If the following assumptions hold:

1. V ar[σ̂] = o(1), V ar[χ̂] = o(1);

2. Cov({∂L∂y , y}, {gB,ΨB}) = o(1);

3. Ey = o(1);

Then we have:

V ar
[∂L
∂x

∣∣∣∣
modified

]
≤ V ar

[∂L
∂x

∣∣∣∣
vanilla

]
− V ar[gB]

σ̂2
(17)

The proof can be seen in appendix A.2. According to (17), V ar[∂L/∂X
∣∣
vanilla

] is larger than that
of V ar[∂L/∂X

∣∣
modified

], the gap is at least V ar[gB]/σ̂2, which mainly caused by the variance of
gB/σ̂. So the modification essentially reduces the variance of the gradient by eliminating the batch
statistics gB during BP. Since gBt is a Monte Carlo estimator, the gap is inversely proportional to
batch size. This can also explain why the improvement of modification is significant in small batch
cases, but modified BN shows no superiority to vanilla BN within sufficient batch size (see ablation
study in section 5.1).

Centralizing weights of convolution kernel Notice theorem 2 relies on assumption 3. The vanilla
normalization naturally satisfies Ey = 0 by centralizing feature maps, but the modified normaliza-
tion doesn’t necessarily satisfy assumption 3. To deal with that, inspired by Qiao et al. (2019), we
find centralizing weights W ∈ Rq×p of convolution kernels, named as Weight Centralization (WC)
can be a compensation for the absence of centralizing feature maps in practice:

W̄ =
1

p

∑
i

W:i, Xoutput = (W − W̄)Xinput, (18)

6

Published as a conference paper at ICLR 2020

where Xinput, Xoutput are the input and output of the convolution layer respectively. We conduct
further ablation study to clarify the effectiveness of WC (see Table 4 in appendix B.2). It shows that
WC has little benefits to vanilla normalization, but it can significantly improve the performance of
modified normalization. We emphasize that weight centralization is only a practical remedy for the
absence of centralizing feature maps. The theoretical analysis remains as a future work.

Clipping and renormalizing strategy. In practice, we find directly substituting batch statistics by
moving average statistics in normalization layer will meet collapse during training. Therefore we
take use of the clipping and renormalizing strategy from BRN (Ioffe, 2017).

All in all, the formulation of proposed method MABN is:

Y =
X

χ̄t
, Ŷ = r · Y (19)

∂L
∂Y

∣∣∣∣
Θt,Bt

= r · ∂L
∂Ŷ

∣∣∣∣
Θt,Bt

,
∂L
∂X

∣∣∣∣
Θt,Bt

=
1

χ̄t
(
∂L
∂Y

∣∣∣∣
Θt,Bt

− Y � Ψ̄t) (20)

where the EMAS χ̂t is computed as χ̂t = αχ̂t−1 + (1 − α)χBt
, SMAS χ̄t is defined as

χ̄2
t = 1

m

∑m
s=1 χ

2
Bt−m+s

, SMAS Ψ̄t is defined as (13). The renormalizing parameter is set as
r = clip[1/λ,λ](

χ̄t

χ̂t
).

5 EXPERIMENTS

This section presents main results of MABN on ImageNet (Russakovsky et al., 2015), COCO (Lin
et al., 2014). Further experiment results on ImangeNet, COCO and Cityscapes (Cordts et al., 2016)
can be seen in appendix B.2, B.3, B.4 resepectively. We also evaluate the computational overhead
and memory footprint of MABN, the results is shown in appendix B.5.

5.1 IMAGE CLASSIFICATION IN IMAGENET

We evaluate the proposed method on ImageNet (Russakovsky et al., 2015) classification datatsets
with 1000 classes. All classification experiments are conducted with ResNet-50 (He et al., 2016).
More implementation details can be found in the appendix B.2.

BN
(Regular)

BN
(Small)

BRN
(Small)

MABN
(Small, m = 16)

val error 23.41 35.22 30.29 23.58

∆

(vs BN(Regular))
- 11.81 6.88 0.17

Table 1: Comparison of top-1 error rate (%) of ResNet-50 on ImageNet Classification. The
gradient batch size is 32 per GPU. Regular means normalization batch size is 32, while Small
means normalization batch size is 2.

Comparison with other normalization methods. Our baseline is BN using small (|B| = 2) or
regular (|B| = 32) batch size, and BRN (Ioffe, 2017) with small batch size. We don’t present the per-
formance of instance-level normalization counterpart on ImageNet, because they are not linear-type
method during inference time, and they also failed to restore the performance of BN (over +0.5%),
according to Wu & He (2018). Table 1 shows vanilla BN with small batch size can severely worsen
the performance of the model(+11.81%); BRN (Ioffe, 2017) alleviates the issue to some extent,
but there’s still remaining far from complete recovery(+6.88%); While MABN almost completely
restore the performance of vanilla BN(+0.17%).

We also compared the performance of BN, BRN and MABN when varying the batch size (see Figure
1(b)). BN and BRN are heavily relies on the batch size of training, though BRN performs better than

7

Published as a conference paper at ICLR 2020

vanilla BN. MABN can always retain the best capacity of ResNet-50, regardless of batch size during
training.

Experiment
Number

Vanilla
Normalization

Modified
Normalization

EMAS in FP SMAS in BP Top-1 Error (%)

1© X 23.41 (BN, regular)
2© X 23.53 (regular)

3© X 35.22 (BN)
4© X X 30.29 (BRN)
5© X X X -

6© X 29.68

7© X X 27.03

8© X X X 23.58 (MABN)

Table 2: Ablation study on ImageNet Classification with ResNet-50. The normalization batch
size is 2 in all experiments otherwise stated. The memory size is 16 and momentum is 0.98 when
using SMAS, otherwise the momentum is 0.9. ”-” means the training can’t converge.

Ablation study on ImageNet. We conduct ablation experiments on ImageNet to clarify the con-
tribution of each part of MABN (see table 2). With vanilla normalization form, replacing batch
statistics in FP with EMAS (as BRN) will restore the performance to some extents(−4.93%, com-
paring 3© and 4©), but there’s still a huge gap (+6.88%, comparing 1© and 4©) from complete
restore. Directly using SMAS in BP with BRN will meet collapse during training (5©), no matter
how we tuned hyperparameters. We think it’s due to the instability of vanilla normalization structure
in small cases, so we modify the formulation of normalization shown in section 4.2. The modified
normalization even slightly outperforms BRN in small batch cases (comparing 4© and 6©). How-
ever, modified normalization shows no superiority to vanilla form (comparing 1© and 2©), which can
be interpreted by the result of theorem 2. With EMAS in FP, modified normalization significantly
reduces the error rate further (comparing 6© and 7©), but still fail to restore the performance com-
pletely (+3.62%, comparing 1© and 7©). Applying SMAS in BP finally fills the rest of gap, almost
completely restore the performance of vanilla BN in small batch cases (+0.17 ,comparing 1© and
8©).

5.2 DETECTION AND SEGMENTATION IN COCO FROM SCRATCH

We conduct experiments on Mask R-CNN (He et al., 2017) benchmark using a Feature Pyramid
Network(FPN) (Lin et al., 2017a) following the basic setting in He et al. (2017). We train the
networks from scratch (He et al., 2018) for 2× times. Only the backbone contains normalization
layers. More implementation details and experiment results can be seen in the appendix B.3.

AP bbox AP bbox50 AP bbox75 APmask APmask50 APmask75

BN 30.41 48.47 32.70 27.91 45.79 29.33

BRN 31.93 50.95 34.48 29.16 48.16 30.69

SyncBN 34.81 55.18 37.69 31.69 51.86 33.68

MABN 34.85 54.97 38.00 31.61 51.88 33.64

Table 3: Comparison of Average Precision(AP) of Mask-RCNN on COCO Detection and Segmen-
tation. The gradients batch size is 16. The normalization batch size of SyncBN is 16, while that
of BN, BRN and MABN are both 2. The momentum of BRN and MABN are both 0.98, while the
momentum of BN and SyncBN are both 0.9. The buffer size (m) is 16).

8

Published as a conference paper at ICLR 2020

Table 3 shows the result of MABN compared with vanilla BN, BRN and SyncBN (Peng et al.,
2018). It can be seen that MABN outperforms vanilla BN and BRN by a clear margin and get
comparable performance with SyncBN. Quite different from Imagenet experiments, we update the
parameters every single batch (with Bnorm = 2). With such a complex pipeline, MABN still
achieves a comparable performance as SyncBN.

6 CONCLUSION

This paper reveals the existence of the batch statistics gB and ΨB involved in backward propagation
of BN, and analysis their influence to training process. This discovery provides a new perspective to
understand why BN always fails in small batch cases. Based on our analysis, we propose MABN to
deal with small batch training problem. MABN can completely restore the performance of vanilla
BN in small batch cases, and is extraordinarily efficient compared with its counterpart like GN. Our
experiments on multiple computer vision tasks (classification, detection, segmentation) have shown
the remarkable performance of MABN.

9

Published as a conference paper at ICLR 2020

ACKNOWLEDGEMENT

This research was partially supported by National Key RD Program of China (No.
2017YFA0700800), Beijing Academy of Artificial Intelligence (BAAI), and NSFC under Grant
No. 61473091.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):
834–848, 2017.

Vitaliy Chiley, Ilya Sharapov, Atli Kosson, Urs Koster, Ryan Reece, Sofia Samaniego de la Fuente,
Vishal Subbiah, and Michael James. Online Normalization for Training Neural Networks. arXiv
e-prints, art. arXiv:1905.05894, May 2019.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Sam Gross and Michael Wilber. Training and investigating residual nets, 2016. URL https:
//github.com/facebook/fb.resnet.torch.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. arXiv preprint
arXiv:1811.08883, 2018.

Sergey Ioffe. Batch renormalization: Towards reducing minibatch dependence in batch-normalized
models. In Advances in neural information processing systems, pp. 1945–1953, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456,
2015.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2117–2125, 2017a.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980–2988, 2017b.

10

https://github.com/facebook/fb.resnet.torch
https://github.com/facebook/fb.resnet.torch

Published as a conference paper at ICLR 2020

Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu Zhang, Kai Jia, Gang Yu, and Jian Sun.
Megdet: A large mini-batch object detector. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6181–6189, 2018.

Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan Yuille. Weight standardization. arXiv
preprint arXiv:1903.10520, 2019.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Wenqi Shao, Tianjian Meng, Jingyu Li, Ruimao Zhang, Yudian Li, Xiaogang Wang, and Ping Luo.
Ssn: Learning sparse switchable normalization via sparsestmax. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 443–451, 2019.

Saurabh Singh and Abhinav Shrivastava. Evalnorm: Estimating batch normalization statistics for
evaluation. arXiv preprint arXiv:1904.06031, 2019.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing in-
gredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 3–19, 2018.

Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing
network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
2881–2890, 2017.

11

Published as a conference paper at ICLR 2020

A SKETCH OF PROOF

A.1 PROOF OF THEOREM 1

If the condition (8) is satisfied, i.e. {ξt}∞t=1 weakly converge to ξ. Since {ξt}∞t=1 has uniformly
bounded density, we have:

lim
t→∞

Eξt = Eξ (21)

lim
t→∞

V ar[ξt] = V ar[ξ] (22)

Since {ξt}∞t=1 are independently, hence we have:

V ar[Et] = V ar[(1− α)
∑
i=1

t∑
i=1

αt−iξi]

= (1− α)2
t∑
i=1

α2(t−i)V ar[ξi]

= (1− α)2
t∑
i=1

α2(t−i)V ar[ξ] + (1− α)2
t∑
i=1

α2(t−i)(V ar[ξi]− V ar[ξ])

=
(1− α2t)(1− α)

1 + α
V ar[ξ] + o(1)

(23)

as t→∞. Hence (9) has been proven.

If the condition (10) is satisfied. Since {ξt}∞t=1 is uniformly bounded, then ∃C ∈ R+, ∀, |ξt| < C.
As t→∞, We have∣∣Eξt−1 − Eξt| = |

∫
x∈[−C,C]

xpt−1(x)dx−
∫
x∈[−C,C]

xpt(x)dx
∣∣

=
∣∣ ∫
x∈[−C,C]

x(pt−1(x)− pt(x))dx
∣∣

=
∣∣x(Ft−1(x)− Ft(x))

∣∣C
−C −

∫
x∈[−C,C]

(Ft−1(x)− Ft(x))dx
∣∣

≤
∫
x∈[−C,C]

|Ft−1(x)− Ft(x)|dx

≤ 2C · sup
x
|Ft−1(x)− Ft(x)|

= 2C · sup
x
|P (ξt−1 < x)− P (ξt < x)|

= o(1)

(24)

Similarly, we have

|Eξ2
t−1 − Eξ2

t | =
∣∣ ∫
x∈[−C,C]

x2(pt−1(x)− pt(x))dx
∣∣

=
∣∣x2(Ft−1(x)− Ft(x))

∣∣C
−C −

∫
x∈[−C,C]

2x(Ft−1(x)− Ft(x))dx
∣∣

≤
∫
x∈[−C,C]

2|x||Ft−1(x)− Ft(x)|dx

≤ 4C2 · sup
x
|Ft−1(x)− Ft(x)|

= o(1)

(25)

Therefore combining (24) and (25), we have
|V ar[ξt−1]− V ar[ξt]| ≤ |Eξ2

t−1 − Eξ2
t |+ |(Eξt−1)2 − (Eξt)

2|
= o(1)

(26)

12

Published as a conference paper at ICLR 2020

For a fixed memory size m, as t→∞, we have

V ar(St) = V ar[
1

m

m−1∑
i=0

ξt−i]

=
1

m

m−1∑
i=0

V ar[ξt−i]

=
1

m

m−1∑
i=0

(V ar[ξt] + o(1))

= V ar[ξt] + o(1)

(27)

Therefore, (11) has been proven.

A.2 PROOF OF THEOREM 2

Without loss of generality, given the backward propagation of two normalizing form of a single
input x with batch B:

∂L
∂x

∣∣∣∣
vanilla

=
1

σ̂
[
∂L
∂y
− gB − y ·ΨB],

∂L
∂x

∣∣∣∣
modified

=
1

χ̂
[
∂L
∂y
− y ·ΨB], (28)

where gB, ΨB are the batch statistics, and σ̂, χ̂ are the EMAS, defined as before. We omitted the
subscript t for simplicity. Then the variance of partial gradients w.r.t. inputs x is written as

V ar[
∂L
∂x

∣∣∣∣
vanilla

] = V ar
[1

σ̂
[
∂L
∂y
− gB − y ·ΨB]

]
(29)

=
1

σ̂2

[
V ar

[∂L
∂y
− y ·ΨB

]
+ V ar

[
gB
]

+ 2Cov
[∂L
∂y
− y ·ΨB, gB

]]
(30)

=
1

σ̂2

[
V ar

[∂L
∂y
− y ·ΨB

]
+ V ar

[
gB
]]]

(31)

≥ 1

χ̂2
V ar

[∂L
∂y
− y ·ΨB

]
+
V ar

[
gB

σ̂2
(32)

= V ar
[∂L
∂x

∣∣∣∣
modified

]
+
V ar[gB]

σ̂2
(33)

where (30) is satisfied due to assumption 1. The variance of σ̂ is so small that σ̂ can be regarded as
a fixed number; (31) is satisfied because

Cov
[∂L
∂y
− y ·ΨB, gB

]
= Cov[

∂L
∂y

, gB]− Cov
[
y ·ΨB, gB

]
(34)

= Cov[
∂L
∂y

, gB]− E[yΨB(gB − EgB)] + E[yΨB]E[gB − EgB](35)

Due to assumption 2, the correlation between individual sample and batch statistics is close to 0,
hence we have

Cov[
∂L
∂y

, gB] = 0 (36)

E[yΨB(gB − EgB)] = EyE[ΨB(gB − EgB)] (37)
E[yΨB] = EyEΨB (38)

Besides, Ey is close to 0 according to assumption 3, hence

Cov
[∂L
∂y
− y ·ΨB, gB

]
= 0. (39)

(32) is satisfied due to the definition of χ̂ and σ̂, we have
χ̂2 = σ̂2 + µ̂2. (40)

Similar to σ̂, the variance of χ̂ is also too small that χ̂ can be regarded as a fixed number due to
assumption 1, so (33) is satisfied.

13

Published as a conference paper at ICLR 2020

B EXPERIMENTS

B.1 STATISTICS ANALYSIS

We analyze the difference between small batch statistics (|B| = 2) and regular batch statistics (|B| =
32) with the modified formulation of normalization (15) shown in Section 4.2.

(a) χ2
B (b) ΨB

Figure 3: Plot of batch statistics from layer1.0.bn1 in ResNet-50 with a modified structure during
training. The formulation of these batch statistics (χ2

B, ΨB) is shown in section 4.2, 3.1 respectively.
Blue line represents the small batch statistic (|B| = 2), while orange line represents the regular batch
statistics (|B| = 32). We use the small batch statistics to update the network parameters.

(a) χ2
B (b) ΨB

Figure 4: Plot of batch statistics from layer1.0.bn1 in ResNet-50 with MABN. The formulation of
these batch statistics (χ2

B, ΨB) is shown in section 4.2, 3.1 respectively. Blue line represents the
SMA batch statistic(2+30), while orange line represents the regular batch statistics(32). We use the
moving average batch statistics to update the network parameters.

Figure 3 illustrates the change of small batch statistics and regular batch statistics in FP and BP
respectively. The variance of small batch statistics is much higher than the regular one. However,
when we use SMAS as a approximation for regular batch statistics, the gap between SMAS and
regular batch statistics is not obvious as shown in Figure 4.

14

Published as a conference paper at ICLR 2020

B.2 EXPERIMENTS ON IMAGENET

Implementation details. All experiments on ImageNet are conducted across 8 GPUs. We train
models with a gradient batch size ofBg = 32 images per GPU. To simulate small batch training, we
split the samples on each GPU into Bg/|B| groups where |B| denotes the normalization batch size.
The batch statistics are computed within each group individually.

All weights from convolutions are initialized as He et al. (2015). We use 1 to initialize all γ and
0 to initialize all β in normalization layers. We use a weight decay of 10−4 for all weight layers
including γ and β (following Wu & He (2018)). We train 600, 000 iterations (approximately equal
to 120 epoch when gradient batch size is 256) for all models, and divide the learning rate by 10 at
150, 000, 300, 000 and 450, 000 iterations. The data augmentation follows Gross & Wilber (2016).
The models are evaluated by top-1 classification error on center crops of 224 × 224 pixels in the
validation set. In vanilla BN or BRN, the momentum α = 0.9, in MABN, the momentum α = 0.98.

Additional ablation studies. Table 4 shows the additional ablation results. We test all possible
combination of all three kinds of statistics (SMAS, EMAS, BS) in FP and BP. The experiments
results strongly prove our theoretical analysis in section 4.3. Besides, we verify the necessity of
centralizing weights with modified normalization form.

Experiment
number

w/o centralizing
feature maps X

Centralizing
weights W

FP statistics BP statistics Top-1 Error (%)

1© X X EMAS SMAS 23.58(MABN)
2© X X SMAS SMAS 26.63
3© X X EMAS EMAS 24.83
4© X X EMAS BS 27.03
5© X X BS BS 29.68
6© X EMAS SMAS 25.45
7© X EMAS BS 29.57
8© X BS BS 32.95
9© BS BS 35.22

10© X BS BS 34.27
11© X BS BS 23.35(regular)

Table 4: Further ablation study on ImageNet with ResNet-50. The normalization batch size is
2 in all experiments. The buffer size (m) is 16 and momentum is 0.98 when using SMA statistics,
otherwise the momentum is 0.9. BS means vanilla batch statistics.

B.3 EXPERIMENTS ON COCO

Implementation details. We train the Mask-RCNN pipeline from scratch with MABN. We train
the model on 8 GPUs, with 2 images per GPU. We train our model using COCO 2014 train and
trainval35k dataset. We evaluate the model on COCO 2014 minival dataset.We set the momentum
α = 0.98 for all MABN layers. We report the standard COCO merics AP bbox, AP bbox75 , AP bbox50 for
bounding box detection and APmask, APmask50 , APmask75 for instance segmentation. Other basic
settings follow He et al. (2017).

MABN used on heads. We build mask-rcnn baseline using a Feature Pyramid Network(FPN)(Lin
et al., 2017a) backbone. The base model is ResNet-50. We train the models for 2× iterations. We
use 4conv1fc instead of 2fc as the box head. Both backbone and heads contain normalization layers.
We replace all normalization layers in each experiments. While training models with MABN, we
use batch statistics in normalization layers on head during first 10,000 iterations. Table 5 shows the
result. The momentum are set to 0.98 in BRN and MABN.

15

Published as a conference paper at ICLR 2020

AP bbox AP bbox50 AP bbox75 APmask APmask50 APmask75

BN 32.38 50.44 35.47 29.07 47.68 30.75

BRN 34.07 52.66 37.12 30.98 50.03 32.93

SyncBN 36.81 56.23 40.08 33.11 53.46 35.28

MABN 36.50 55.79 40.17 32.69 52.78 34.71

Table 5: Comparision of Average Precision(AP) of Mask-RCNN on COCO Detection and Segmen-
tation. The gradients batch size is 16. The normalization batch size of SyncBN is 16, while that of
BN, BRN, MABN are both 2, the buffer size (m) of MABN is 32.

Training from pretrained model. We compare the performance of MABN and SyncBN when
training model based on ImageNet pretrained weights for 2x iterations. The results are shown in
Table

AP bbox AP bbox50 AP bbox75 APmask APmask50 APmask75

SyncBN 38.25 57.81 42.01 34.22 54.97 36.34

MABN 38.42 58.19 41.99 34.12 55.10 36.12

Table 6: Comparision of Average Precision(AP) of Mask-RCNN on COCO Detection and Segmen-
tation. The gradients batch size is 16. The normalization batch size of SyncBN is 16, while that of
BN, BRN, MABN are both 2, the buffer size (m) of MABN is 32.

Training from scratch for one-stage model. We also compare MABN and SyncBN based on
one-stage pipeline. We build on retinanet(Lin et al., 2017b) benchmark. We train the model from
scratch for 2× iterations. The results are shown in Table 7.

AP bbox AP bbox50 AP bbox75

SyncBN 29.80 46.21 31.47

MABN 29.52 45.69 31.14

Table 7: Comparison of Average Precision(AP) of retinanet on COCO Detection. The gradients
batch size is 16. The normalization batch size of SyncBN is 16, while that of MABN is 2.

All experiment results shows MABN can get comparable as SyncBN, and significantly outperform
BN on COCO.

B.4 SEMANTIC SEGMENTATION IN CITYSCAPES

We evaluate semantic segmentation in Cityscapes(Cordts et al., 2016). It contains 5,000 high qual-
ity pixel-level finely annotated images collected from 50 cities in different seasons. We conduct
experiments on PSPNET baseline and follow the basic settings mentioned in Zhao et al. (2017).

For fair comparison, our backbone network is ResNet-101 as in Chen et al. (2017). Since we cen-
tralize weights of convolutional kernel to use MABN, we have to re-pretrain our backbone model
on Imagenet dataset. During fine-tuning process, we linearly increase the learning rate for 3 epoch
(558 iterations) at first. Then we follow the ”poly” learning schedule as Zhao et al. (2017). Table
8 shows the result of MABN compared with vanilla BN, BRN and SyncBN. The buffer size (m) of
MABN is 16, the modementum of MABN and BRN is 0.98.

Since the statistics (mean and variance) is more stable in a pre-trained model than a random initial-
ized one, the gap between vanilla BN and SyncBN is not significant (+1.41%). However, MABN

16

Published as a conference paper at ICLR 2020

pretrain Top-1 mIoU

BN 21.74 77.11

BRN 21.74 77.30

SyncBN 21.74 78.52

MABN 21.70 78.20

Table 8: Results on Cityscapes testing set.

still outperforms vanilla BN by a clear margin.(+1.09%). Besides, BRN shows no obvious superior-
ity to vanilla BN(+0.19%) on Cityscapes dataset.

B.5 COMPUTATIONAL OVERHEAD

We compare the computational overhead and memory footprint of BN, GN and MABN. We use
maskrcnn with resnet50 and FPN as benchmark. We compute the theoretical FLOPS during infer-
ence and measure the inference speed when a single image (3×224×224) goes through the backbone
(resnet50 + FPN). We assume BN and MABN can be absorbed in convolution layer during infer-
ence. GN can not be absorbed in convolution layer, so its FLOPS is larger than BN and MABN.
Besides GN includes division and sqrt operation during inference, therefore it’s much slower than
BN and MABN during inference time.

We also monitor the training process of maskrcnn on COCO (8 GPUs, 2 images per GPU), and
show its memory footprint and training speed. Notice we have not optimized the implementation of
MABN, so its training speed is a little slower than BN and GN.

FLOPS (M) Memory (GB) Training Speed (iter/s) Inference Speed (iter/s)

BN 3123.75 58.875 2.35 12.73

GN 3183.28 58.859 2.22 6.34

MABN 3123.75 60.609 1.81 12.73

Table 9: Computational overhead and memory footprint of BN, GN and MABN.

17

	Introduction
	Related Work
	Statistics in Batch Normalization
	Review of Batch Normalization
	Instability of batch statistics

	Moving Average Batch Normalization
	Substitute batch statistics by Moving Average Statistics.
	Stabilizing Normalization by reducing the number of Statistics

	Experiments
	Image Classification in Imagenet
	Detection and Segmentation in COCO from scratch

	Conclusion
	Sketch of proof
	Proof of theorem 1
	Proof of theorem 2

	Experiments
	Statistics Analysis
	Experiments on ImageNet
	Experiments on COCO
	Semantic Segmentation in Cityscapes
	Computational Overhead

