
Under review as a conference paper at ICLR 2020

INTERNAL-CONSISTENCY CONSTRAINTS FOR EMER-
GENT COMMUNICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

When communicating, humans rely on internally-consistent language representa-
tions. That is, as speakers, we expect listeners to behave the same way we do when
we listen. This work proposes several methods for encouraging such internal-
consistency in dialog agents in an emergent communication setting: shared em-
beddings, symmetric encoding/decoding, and self-play. We consider two hy-
potheses about the effect of internal-consistency constraints: 1) that they improve
agents’ ability to refer to unseen referents, and 2) that they improve agents’ ability
to generalize across communicative roles (e.g. performing as a speaker despite
only being trained as a listener). While we do not find evidence in favor of the
former, our results show significant support for the latter. In particular, we show
that, when self-consistency is enforced via self-play, agents are able to perform in
novel roles as well as if they were trained with direct supervision in those roles.

1 INTRODUCTION

Emergent communication is the study of how linguistic protocols evolve when agents are tasked to
cooperate. For example, agents engaged in a simple object retrieval task learn to communicate with
one another in order to get the items they want (Lazaridou et al., 2018). To date, work of this type
has each agent assume a conversational role. Thus, agents are often trained only to speak or only
to listen (Lazaridou et al., 2018), or similarily trained to speak using a vocabulary disjoint from the
vocabulary it is understands as a listener–e.g. speaking only to ask questions (“what color?”) and
listening only to comprehend the answer (“blue”) (Kottur et al., 2017; Das et al., 2017).

These assumptions are misaligned with how we think about human communication, and with the
way we’d like computational models to work in practice. As humans, not only can we easily shift
between roles, we also know that there is inherent symmetry between these roles: we expect others
to speak (or listen) similarly to the way we do, and we know that others expect the same of us.

We test if dialog agents that incorporate the symmetry between themselves and their communicative
partners learn more generalizable representations than those which do not. We introduce three mod-
ifications to the agents to encourage that they abide by the “golden rule”: speak/listen as you would
want to be spoken/listened to. Specifically, these modifications include self-play training objectives,
shared embedding spaces, and symmetric decoding and encoding mechanisms that share parameters.
We test two hypotheses about the effect of the proposed modifications on emergent communication:

1. Internal-consistency constraints improve agents’ ability to generalize to unseen items–e.g.
training on “red square” and “blue circle” and then testing on “blue square”.

2. Internal-consistency constraints improve agents’ ability to generalize across communica-
tive roles–e.g. training on “blue” as a listener, and using “blue” as a speaker when testing.

We evaluate the effect of each of the proposed modifications with two reference game datasets and
two model architectures, an RNN model used by Lazaridou et al. (2018) and a Transformer model.
We find no evidence to support that internal-consistency improves generalization to unseen items
(Hypothesis 1), but significant evidence that these proposed constraints enable models to generalize
learned representations across communicative roles (Hypothesis 2), even in the case of where the
agent receives no direct training in the target (test) role. All of our code and data are available at
bit.ly/internal-consistency-emergent-communication.

1

bit.ly/internal-consistency-emergent-communication

Under review as a conference paper at ICLR 2020

Alice BoB
aroma

OfY
Q x

Alice BoB
aroma

OfY
Q x

Alice BoB
aroma

OfY
Q x

Alice BoB
aroma

OfY
Q x

“blue
triangle”

Alice BoB
aroma

OfY
Q x

Alice BoB
aroma

OfY
Q x

Alice BoB
aroma

OfY
Q x

Alice BoB
aroma

OfY
Q x

Figure 1: Reference game. Alice wants the blue triangle, and asks Bob to get it for her. He selects
the green square, and Alice tells him “No” and shows him the item she wanted.

2 EMERGENT COMMUNICATION VIA REFERENCE GAMES

Following past work on emergent communication (Lazaridou et al., 2018), we evaluate our models
in a cooperative reference game (depicted in Fig. 1)(Lewis, 2008). A basic reference game consists
of two agents and a set of items (each a vector of attribute:value pairs). One agent (the
“speaker”) has a target item in mind, and must describe it to the other agent (the “listener”). After
training, we are primarily interested in the properties and the generalizability of the resulting lexicon:
the mapping from symbols in the vocabulary onto items and/or their attributes.

Implemented naively, agents converge to a trivial lexicon which assigns a unique symbolic name to
each item in the training set (Kottur et al., 2017). Thus, a challenge in emergent communication is
to build agents which learn a lexicon that maps symbols to attributes or other primitive concepts, so
the agents can generalize to novel combinations of attributes at test time. For example, if trained
on items trshape:circle, color:reds, rshape:square, color:bluesu, an ideal lex-
icon would map each attribute-value pair to a unique word (e.g. word1=blue, word2=circle) so
the agents could refer to an unseen combination (rshape:circle, color:blues) at test time.

Like past work, this paper focuses on evaluating inductive biases that result in lexicons which gen-
eralize to novel items. In addition, we focus on a different type of generalization: generalization
across communicative roles. Prior work has tended to treat these roles as distinct, such that an
agent may learn to comprehend “blue” and “circle” perfectly as a listener, and yet be unable to
refer to rshape:circle, color:blues as a speaker. Thus, we test whether models that are
trained in both roles (either with direct supervision, or only via self-play) learn lexicons that not only
generalize to novel items but also which can be transferred across roles.

Notation. The space of possible references is parameterized by the number of attributes nf that
describe each item (e.g. color) and the number of values nv each attribute can take (e.g.{red,
blue}). Each item o is a bag-of-features vector o P t0, 1uN where N “ nf ¨ nv . Each index
oi is 1 if o expresses the ith feature value. The speaker produces a message with symbols from a
vocabulary V with length L. For comparison, we use the best-performing setting |V| “ 100 and
L “ 10 from previous work (Lazaridou et al., 2018). Symbols in V are represented as 1-hot vectors.
In each round of the reference game, we construct xC, r, ry where C is the context (set of item
column vectors stacked into a matrix), r is a vector representing the referent, and r is the index of
the referent in C. We uniformly sample k´1 items as distractors to form C “ to1, . . .ok´1uYtru.
The distractors are is sampled randomly each round (in every epoch).

3 MODELS

We begin with a general architecture and training objective to underly all of our models (Sections
3.1 and 3.2). We then introduce three modifications which can be used to encourage internally-
consistent representations: a self-play training objective, a shared embedding space, and a symmetric
decoding and encoding mechanism with shared parameters (Section 3.3) 1.

1For implementation details, refer to Appendices A.1, A.2, A.3, or source code bit.ly/
internal-consistency-emergent-communication.

2

bit.ly/internal-consistency-emergent-communication

Under review as a conference paper at ICLR 2020

3.1 ARCHITECTURE

Agents contain four modules. Embedding modules 1) Eitem P RNˆD, Emessage P R|V|ˆD.
E˚pxq embed items and messages. When speaking, the decoder module 2) consumes the em-
bedded referent Eitemprq and produces a discrete message M P VL. Next, when listening, the
encoder module 3) consumes embedded messages EmessagepMq P RWˆD and then produces a
representation of the referent r̂ P RD. Finally, a non-parametric pointing module 4) produces a
distribution P pCq over the context by matrix multiplying r̂ with the embedded context EitempCq.

The decoders emit one symbol at a time, auto-regressively producing fixed-length messages. The
messages are discretized with the straight-through Gumbel Softmax (Jang et al., 2016) as in Mor-
datch & Abbeel (2018). This converts a distribution to a one-hot vector while permitting gradients to
flow through the operation and enables the agents to be optimized without reinforcement methods.

The Recurrent model uses a LSTM (Hochreiter & Schmidhuber, 1997) decoder when speaking and
a LSTM encoder when listening, as in (Lazaridou et al., 2018). The Transformer model (Vaswani
et al., 2017) uses a Transformer Decoder when speaking and a Transformer Encoder to encode when
listening. See Appendix A for implementation details and hyperparameters.

3.2 TRAINING OBJECTIVES

Speaking S : r, θ Ñ M and listening L : C,M , θ Ñ P pCq are both functions where M P
VL Ă t0, 1uLˆ|V| is a discrete-valued message with length L, P pCq is a distribution over the items
in context, and θ are optimizable parameters. We optimize the parameters θA, θB of agents A,B
over a dataset D to select each referent r from among the distractors in its context C by minimizing
the negative log likelihood of selecting the correct referent in context (Eq 1). In our experiments,
the speaker modules and the listener modules instantiate the function S and L respectively.

LAÑB “
ÿ

xC,r,ryPD

´ logL pC,S pr; θAq ; θBqr, (1)

3.3 IMPOSING INTERNAL-CONSISTENCY CONSTRAINTS

We investigate three internal-consistency constraints, that encourage internally-consistent represen-
tations. Baseline agents consist of two separate sets of parameters, one for listening and one for
speaking. For example, the baseline recurrent model consists of two recurrent models. This corre-
sponds to the scenario where agents either speak or listen, but not both (Lazaridou et al., 2018).

We introduce a 1) self-play loss for both agents of the same form as Eq. 1, except the given agent
fulfills both roles, encouraging it to speak/listen to others the same way it speaks/listens to itself.
When we use the self-play training objective, we use it for both agents. Next, 2) shared embedding
agents use the same item embeddings and the same message embeddings when listening and speak-
ing. Finally, 3) symmetric encoding and decoding agents use the same parameters (but different
mechanisms) to decode a message when speaking as it does to encode a message when listening.
Parameters are only ever shared between roles within an agent, and never between agents.

4 DATASETS

Our evaluation is based on the simple reference game2 as described in Section 2, played across
two datasets. The datasets, summarized in Table 1, target different aspects of lexical reference.
The first, Visual Attributes for Concepts (CONCEPTS) Silberer et al. (2013), is derived from anno-
tated images of actual items (animals, tools, etc). Thus, the data contains realistic co-occurance
patterns: groups of attributes like has-head, has-mouth, and has-snout appears together
several times, whereas has-seeds, has-mouth, made-of-metal never co-occur. The intu-
ition is that a good lexicon will exploit the structure by developing words which refer to groups of
frequently co-occurring attributes (e.g. “mammal”) and will describe unseen referents in terms of

2We use a “context-hidden” game: the context is visible to the listener but not the speaker. This is to ensure
that the speaker does not have access to additional attributes (e.g. position of item within the context) that could
enable the agents to find degenerate solutions to the game.

3

Under review as a conference paper at ICLR 2020

these primitive concepts. The second dataset, SHAPES, is one we create ourselves in contrast with
the CONCEPTS data. In SHAPES, items correspond to abstract shapes which are exactly describable
by their attributes (e.g. blue, shaded, hexagon). All the attributes are independent and there is
no co-occurence structure to exploit, so a good lexicon should ideally provide a means for uniquely
specifying each attribute’s value independently of the others.

Name Features (nf) Values (nv) Context Size (k) Train Val Test

SHAPES 10 50 5 1000 200 100
CONCEPTS 597 1 5 375 50 85

Table 1: Dataset statistics.

5 RESULTS

We present experimental results aimed at testing the hypotheses stated in Section 1. To provide
intuition, we frame experiments in terms of two agents, “Alice” (Agent A) and “Bob” (Agent B),
who are taking turns asking for and fetching toys.

5.1 HYPOTHESIS 1: GENERALIZATION TO NEW ITEMS

5.1.1 SETUP

We first test whether any of the proposed internal-consistency constraints improve the agents’
ability to generalize to novel items–i.e. items which consist of unseen combinations of features.
Here, we focus on the performance when models are trained and tested within the same com-
municative role. This corresponds to the setting that has typically been used in prior work on
emergent communication: Alice always speaks in order to ask for toys, Bob always responds by
fetching them, and the pair’s success is evaluated in terms of Alice’s ability to describe new toys
such that Bob correctly gets them. For evaluation, we hold out a subset of the value combina-
tions from each dataset to use for testing. For example, the agents might be trained to refer to
trshape:circle, color:reds, rshape:square, color:bluesu and then tested on its
ability to refer to rshape:circle, color:blues. We compute validation and test accuracies.3

5.1.2 COMPARISON OF MODEL ARCHITECTURES

Before introducing our internal-consistency constraints, we first evaluate our various architectures
in this vanilla setting. Thus, these results serve chiefly to calibrate differences between model ar-
chitectures. If we see differences between the test conditions, these should be attributed to general
architectural advantages associated with implementing these internal-consistency constraints, rather
than interpreted as evidence for/against internal-consistency per se. Table 2 shows the results. Over-
all, the transformer architecture outperforms the recurrent architecture, and the transformer outper-
forms the previously best-reported result for this task (which is only available on the CONCEPTS
data). We observe no clear trend associated with the shared embedding module (sometimes it helps,
sometimes it hurts), but do see a slight positive effect associated with the symmetric transformer.

5.1.3 EFFECTS OF INTERNAL-CONSISTENCY CONSTRAINTS.

We next look at whether there is an advantage to using the the internal-consistency constraints, even
when agents remain in fixed conversational roles. Intuitively, this corresponds to a scenario in which
both Alice and Bob are capable of performing either role (speaking or listening), but nonetheless,
they only ever interact within the same routine: Alice only every speaks and Bob only ever listens
and fetches items in response. However, both Alice and Bob can imagine how they would behave if
they were to assume the opposite role, and thus, via self-play, each can enforce internal-consistency
between their own actions as speaker (listener) and the way they imagine they would respond as
listener (speaker). In this manner, although Alice and Bob only ever receive direct feedback in

3We additionally tried computing Tree Reconstruction Error as introduced by Andreas (2019). See Ap-
pendix A.5 for implementation details. However, we did not find an interesting differences across conditions.
Therefore, for compactness, we omit these results.

4

Under review as a conference paper at ICLR 2020

SHAPES CONCEPTS
Val Test Val Test

Random (Baseline) 20.0 20.0 20.0 20.0
Prior SOTA (Lazaridou et al., 2018) - - - 81.6

Recurrent Model 56.8 ˘ 0.8 49.0 ˘ 1.9 67.9 ˘ 1.6 70.1 ˘ 2.6

Transformer Model 86.5 ˘ 1.5 89.5 ˘ 1.2 86.2 ˘ 1.7 87.0 ˘ 0.7
Symmetric Transformer Model 86.7 ˘ 1.2 89.3 ˘ 1.4 92.7 ˘ 0.7 89.3 ˘ 1.6

Table 2: Results when agents are trained and tested in a single role, before any internal-consistency
constraints. These scores are mean accuracy with 95% confidence range averaged over 5 runs over
different test set samplings (the distractors change).

one role, they can still impose internally consistent behavior across both roles. It is conceivable
that doing so might improve performance even though each agent remains in a fixed role, either by
providing the model with additional information about the task structure, or simply by acting as a
regularizer. Thus, for completeness, we assess whether the internal-consistency constraints provide
any advantage to the models in the vanilla emergent communication setting.

Table 3 shows the effect of adding the self-play objective in the fixed-role setting, across architec-
tures and datasets. The trends are mixed: it appears the additional signal only noises the baseline
and symmetric models, whereas the shared embeddings models are able to leverage it effectively.
Thus, the effect is not clear enough to establish conclusively that the internal-consistency constraints
help the agents generalize in this fixed-role setting, and in fact it may hurt.

Baseline +Self-play +Shared Emb. +Symmetric
% % ∆ % ∆ % ∆

RNN, Shapes 49.0 52.6 ˘ 0.8 `3.6 69.0 ˘ 2.4 `20.0 20.1 ˘ 1.5 ´28.9
RNN, Concepts 70.1 68.6 ˘ 2.2 ´1.5 81.4 ˘ 1.9 `11.3 20.6 ˘ 1.3 ´49.5
Trans, Shapes 89.5 78.7 ˘ 1.7 ´10.8 86.3 ˘ 1.0 ´3.2 87.4 ˘ 0.4 ´2.1
Trans, Concepts 87.0 85.3 ˘ 1.4 ´1.7 89.0 ˘ 1.3 `2.0 90.1 ˘ 0.4 `3.1

Table 3: Performance on task of referring to/fetching unseen items for baseline model compared
against models with the internal-consistency constraints. To highlight the difference of each con-
straint compared to the baseline performance, each delta compares the performance of the modi-
fied model to the baseline model. In this setting, we see no clear advantage to enforcing internal-
consistency via self-play. These scores are mean accuracy with 95% confidence interval averaged
over 5 runs over different test set samplings (the distractors change).

5.2 HYPOTHESIS 2: GENERALIZATION TO NEW ROLES

5.2.1 SETUP

We now look at whether internal-consistency improves the agents’ ability to generalize linguistic
knowledge across roles. For example, we can picture the following scenario: Alice is speaking to
Bob, and asks for the “truck”. Bob hands her the doll, and Alice replies negatively, indicating that
what she actually wanted was the truck. Now, without additional direct supervision, when Bob wants
the truck, will he know do use the word “truck”? Such a setting is particularly relevant in practical
settings, for example when robotic agents must reach high accuracy despite only limited access to
human interaction for training. We consider two versions of this setting, involving different levels
of direct supervision (i.e. interaction with the other agent) as described below.

Training in one role. Our first experimental setting assumes that Alice and Bob each only receive
direct training in one role, e.g. Alice only ever speaks to Bob, so Alice only receives feedback on
how she is performing as a speaker, and Bob on how he is performing as a listener. However, both
Alice and Bob are able to practice in the opposite role via self-play. This setup is analogous to the
experiment just discussed in Section 5.1.3. However, unlike before, Alice and Bob will be tested in

5

Under review as a conference paper at ICLR 2020

the roles opposite of those in which they were trained. That is, if Alice was trained as a speaker,
then she will be tested as a listener (on her ability to correctly identify items to which Bob refers).

Training in both roles. In our second experimental setting, we assume Alice and Bob enjoy a
healthy friendship, in which both take turns speaking and listening to each other, and thus both
receive direct supervision in both roles. However, they do not necessarily receive equal training
on every vocabulary item. Rather, there are some contexts in which Alice only speaks and other
contexts in which she only listens. Intuitively, this corresponds to a scenario in which Alice speaks
exclusively about food (while Bob listens), while Bob speaks exclusively about toys (while Alice
listens). We are interested in testing how well Alice is able to speak about toys at test time.

We use the SHAPES dataset4 to create two training splits, each having the same attributes
but covering disjoint sets of values. For example, the first training split (train-1) might
have colorP{blue, red, yellow} whereas the second training split (train-2) has
colorP{green, orange, purple}. We use train-1 to train Alice as speaker and Bob
as listener and train-2 to train them in the reverse roles. We then report performance with Alice
as listener and Bob as speaker using a test set that uses the same attribute values as train-1.

5.2.2 RESULTS

Our results for both training conditions are shown in Table 4. The baseline model (which includes
no internal-consistency constraints) performs, unsurprisingly, at chance. Adding the self-play objec-
tive gives improvements across the board. Again, while seemingly straight forward, this result has
promising practical interpretations in settings in which a model has access to only a small amount of
interaction. For example, a human may be willing to train a robot via speaking (pointing and naming
items), but not patient enough to train it via listening (responding to the robot’s noisy commands). In
such a setting, the ability to massively augment performance via self-play is significant. In addition
to the self-play objective, we see that enforcing shared-embedding spaces yields further significant
performance gains (in the range of 30 percentage points in some cases). The symmetric constraints
on top of self-play and shared embeddings seem to hurt performance in general.5

Baseline `Self-play `Shared Emb. `Symmetric

One Role % % ∆ % ∆ % ∆

RNN, Shapes 19.8 ˘ 1.3 50.7 ˘ 1.3 `30.7 70.7 ˘ 1.8 `50.9 20.1 ˘ 1.9 ´49.9
RNN, Concepts 21.3 ˘ 2.3 62.9 ˘ 0.9 `42.9 81.7 ˘ 0.8 `18.8 19.6 ˘ 1.5 ´62.1
Trans, Shapes 19.5 ˘ 0.8 82.1 ˘ 1.5 `62.6 79.5 ˘ 0.8 ´2.6 83.9 ˘ 1.8 `4.4
Trans, Concepts 19.6 ˘ 2.9 52.8 ˘ 1.7 `32.6 80.3 ˘ 1.1 `27.5 77.3 ˘ 2.1 ´3.0

Both Roles % % ∆ % ∆ % ∆

RNN, Shapes 20.4 ˘ 1.0 40.1 ˘ 0.6 `19.7 18.8 ˘ 1.5 ´21.3 69.4 ˘ 1.9 `50.6
Trans, Shapes 20.9 ˘ 2.5 61.7 ˘ 2.2 `40.8 70.3 ˘ 2.0 `8.6 74.7 ˘ 1.5 `4.4

Table 4: Performance for tasks that requires agents to generalize across roles–e.g. training on the
word “blue” as a listener, but then having to produce “blue” as a speaker. “One Role” refers to
when agents receive direct feedback in a single role (i.e. their training on the other roles is only
via self-play). “Both Roles” refers to when agents receive direct feedback in both roles, but only
see the test vocabulary in the role opposite that in which they are tested. To inspect the additive
differences between the internal-consistency constraints, each delta compares the performance of
the current column to the previous column. These scores are mean accuracy with 95% confidence
range averaged over 5 with different test set samplings (the distractors change).

5.3 TAKEAWAYS

Overall, when agents can be trained directly in the role in which they are tested, there is no clear
evidence that adding internal-consistency constraints improves the ability of agents to generalize

4We cannot construct analogous splits with CONCEPTS since the train set is small.
5We found that, in absence of self-play, neither symmetric encoding/decoding nor shared embeddings per-

formed competitively. Therefore, for compactness, we only report the results of the constraints in combination.

6

Under review as a conference paper at ICLR 2020

to new items. However, internal-consistency constraints improve performance significantly when
agents have limited ability to train in a given role. Specifically, models which are equipped with self-
play training objectives and shared embedding spaces show superior ability to generalize learned
representations across roles, and perform about as well as if they had been trained on the target role.

6 ANALYSIS

In this section we provide additional analyses to highlight the effects of internal-consistency (in
particular, self-play) on training efficiency and on the emerged protocol. Here, we use a smaller
SHAPES dataset (see B.1), and reduce the vocabulary size and message length (|V| “ 10, L “ 3).

6.1 CAN SELF-PLAY REPLACE DIRECTION
SUPERVISION?

Here we inspect if self-play supplants direct su-
pervision between agents. We consider the set-
ting in which Alice trains with full data as a
speaker, but vary the amount of data she has ac-
cess to as a listener. We then test Alice’s perfor-
mance as a listener (and vice-versa for Bob as a
speaker). Fig. 2 shows the results, with fraction
of the full training data that Alice (Bob) sees
as a speaker (listener) shown along the x-axis.
The self-play models without direct supervision
perform well: it appears their protocol trans-
fers across roles with out drifting. This sheds
some light on the performance drop between
the “one role” and “two role” settings in Sec-
tion 5.2.2. where the additional experience in
the “two role” setting did not help. Fig. 2 shows
that additional training in the primary role is un-
necessary, so it is not surprising that training on
disjoint features (train-2) is helpful.

Figure 2: Models trained with self-play per-
form as well in novel roles as do vanilla mod-
els trained with direct supervision in the tar-
get role.

6.2 DOES SELF-PLAY ENCOURAGE BETTER PROTOCOLS TO EMERGE?

We measure whether self-play leads to better communication protocols in general. First, we mea-
sure the agents’ speaking and listening capacities separately, using measures proposed by Lowe et al.
(2019); Eccles et al. (2019). Specifically, positive signaling (S`) measures if the speaker’s messages
depend on the features of the referent, and positive listening (L`) measures if the listener’s actions
depend on the message6. Table 5 shows that self-play improves the agents’ communication as mea-
sured by accuracy as well as these orthogonal metrics. We also find that the model architectures and

Baseline `Self-play

% L` S` % ∆ L` ∆ S` ∆

RNN 95.4 4.0 6.1 96.2 `0.8 6.4 `1.4 6.4 `0.3
Trans 95.1 2.6 5.4 96.3 `1.2 3.1 `0.5 5.5 `0.1

Table 5: Self-play improves the model’s communication: the agents’ respective positive listening
and positive signaling metrics both improve in the vanilla setting.

self-play impact the agents’ lexicons. The recurrent models produces fewer unique messages than
the transformer models (on average 110 versus 300), and often neglect to use all the vocabulary. Fig.
3 shows that self-play helps the recurrent model use more of the vocabulary, and leads to both the
recurrent and transformer models to develop sparser mappings from symbols onto features.

6See Appendix B.2 for details.

7

Under review as a conference paper at ICLR 2020

Figure 3: Emerged lexicons. This figure show features along the y-axis and symbols along the
x-axis. Each index counts the co-occurence of the symbol and the feature. For example, the trans-
former self-play model appears to map a symbol to each distinct value of the first attribute, ignoring
other attributes and word order. See more lexicons over other random seeds in B.3.

7 RELATED WORK

Work in emergent communication (Das et al., 2017; Lazaridou et al., 2018) analyzes agents that
develop a shared protocol by playing reference games (Lewis, 2008). Kottur et al. (2017) presented
results showing that computational models do not learn compositional protocols by default. Instead,
the agents tend to develop brittle protocols that have trouble generalizing to novel items. Several
approaches have been proposed which could encourage models to learn more generalizable repre-
sentations of language, including compression (Kirby et al., 2015), efficiency (Gibson et al., 2019),
memory constraints (Kottur et al., 2017), pragmatic constraints (Tomlin & Pavlick, 2018), and pos-
itive biases to respond to other agents (Jaques et al., 2018; Eccles et al., 2019). Some work, like
ours, assumes access to symbolic representations of referents and their attributes, whereas others’
are set in pixel-based multi-agent games (Jaques et al., 2018; Eccles et al., 2019; Das et al., 2018) or
multi-agent grid-worlds (Sukhbaatar et al., 2016; Lowe et al., 2019).

Our work also relates to a broader body of work on speaker-listener models, specifically
pragmatically-informed models in which speakers reason recursively about listeners’ beliefs (and
vice-versa) (Frank & Goodman, 2012; Goodman & Frank, 2016). Such models have been used in
applications such image captioning (Andreas & Klein, 2016; Yu et al., 2017; Monroe & Potts, 2015),
and robotics (Vogel & Jurafsky, 2010; Vogel et al., 2013; Fried et al., 2018), as well as in linguistics
and psychology in order to explain complex linguistic inferences (Tessler & Goodman, 2016; Mon-
roe et al., 2017). Conceptually, our proposed internal-consistency constraints share something in
common with these neural speaker-listener models developed outside of emergent communication.
However, again, past work has tended to assume that a speaker’s mental model of their listener is
not necessarily consistent–in fact, it is often assumed explicitly to be inconsistent (Frank & Good-
man, 2012)–with the way the speaker themself would behave as a listener. We note, however, that
our proposed model architecture (because it lacks the recursion typical in other pragmatics models)
is likely unable to handle the types of higher-level inferences (e.g. implicatures) targeted by the
mentioned prior work on computational pragmatics, though this is an interesting avenue to explore.

8 CONCLUSION

We propose three methods for encouraging dialog agents to follow “the golden rule”: speak/listen
to others as you would expect to be spoken/listened to. In the emergent communication setting, we
find that the internal-consistency constraints do not systematically improve models’ generalization
to novel items, but both the self-play objective and shared embeddings significantly improve perfor-
mance when agents are tested on roles they were not directly trained for. In fact, when trained in one
role and tested on another, these internal-consistency constraints allow the agents to perform about
as well as if they had been trained in the target role.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Jacob Andreas. Measuring compositionality in representation learning. arXiv preprint
arXiv:1902.07181, 2019.

Jacob Andreas and Dan Klein. Reasoning about pragmatics with neural listeners and speakers. In
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp.
1173–1182, Austin, Texas, November 2016. Association for Computational Linguistics. URL
https://aclweb.org/anthology/D16-1125.

Abhishek Das, Satwik Kottur, José MF Moura, Stefan Lee, and Dhruv Batra. Learning cooperative
visual dialog agents with deep reinforcement learning. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2951–2960, 2017.

Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Michael Rabbat, and
Joelle Pineau. Tarmac: Targeted multi-agent communication. arXiv preprint arXiv:1810.11187,
2018.

Tom Eccles, Yoram Bachrach, Guy Lever, Angeliki Lazaridou, and Thore Graepel. Biases for
emergent communication in multi-agent reinforcement learning. 2019.

Michael C Frank and Noah D Goodman. Predicting pragmatic reasoning in language games. Sci-
ence, 336(6084):998–998, 2012.

Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach, Jacob Andreas, Louis-Philippe
Morency, Taylor Berg-Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell. Speaker-follower
models for vision-and-language navigation. arXiv preprint arXiv:1806.02724, 2018.

Edward Gibson, Richard Futrell, Steven T Piandadosi, Isabelle Dautriche, Kyle Mahowald, Leon
Bergen, and Roger Levy. How efficiency shapes human language. Trends in cognitive sciences,
2019.

Noah D Goodman and Michael C Frank. Pragmatic language interpretation as probabilistic infer-
ence. Trends in Cognitive Sciences, 20(11):818–829, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro A Ortega, DJ Strouse,
Joel Z Leibo, and Nando de Freitas. Intrinsic social motivation via causal influence in multi-agent
rl. arXiv preprint arXiv:1810.08647, 2018.

Simon Kirby, Monica Tamariz, Hannah Cornish, and Kenny Smith. Compression and communica-
tion in the cultural evolution of linguistic structure. Cognition, 141:87–102, 2015.

Satwik Kottur, José Moura, Stefan Lee, and Dhruv Batra. Natural language does not emerge ‘nat-
urally’ in multi-agent dialog. In Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pp. 2962–2967, Copenhagen, Denmark, September 2017. As-
sociation for Computational Linguistics. doi: 10.18653/v1/D17-1321. URL https://www.
aclweb.org/anthology/D17-1321.

Angeliki Lazaridou, Karl Moritz Hermann, Karl Tuyls, and Stephen Clark. Emergence of lin-
guistic communication from referential games with symbolic and pixel input. arXiv preprint
arXiv:1804.03984, 2018.

David Lewis. Convention: A philosophical study. John Wiley & Sons, 2008.

Ryan Lowe, Jakob Foerster, Y-Lan Boureau, Joelle Pineau, and Yann Dauphin. On the pitfalls
of measuring emergent communication. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems, pp. 693–701. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2019.

9

https://aclweb.org/anthology/D16-1125
https://www.aclweb.org/anthology/D17-1321

Under review as a conference paper at ICLR 2020

Will Monroe and Christopher Potts. Learning in the rational speech acts model. arXiv preprint
arXiv:1510.06807, 2015.

Will Monroe, Robert X. D. Hawkins, N. D. Goodman, and Christopher Potts. Colors in context: A
pragmatic neural model for grounded language understanding. Transactions of the Association
for Computational Linguistics, 2017.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Carina Silberer, Vittorio Ferrari, and Mirella Lapata. Models of semantic representation with vi-
sual attributes. In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 572–582, 2013.

Sainbayar Sukhbaatar, Rob Fergus, et al. Learning multiagent communication with backpropaga-
tion. In Advances in Neural Information Processing Systems, pp. 2244–2252, 2016.

Michael Henry Tessler and Noah D Goodman. A pragmatic theory of generic language. arXiv
preprint arXiv:1608.02926, 2016.

Nicholas Tomlin and Ellie Pavlick. Incremental pragmatics and emergent communication. In Emer-
gent Communication Workshop at NeurIPS, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Adam Vogel and Dan Jurafsky. Learning to follow navigational directions. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, pp. 806–814. Association
for Computational Linguistics, 2010.

Adam Vogel, Max Bodoia, Christopher Potts, and Daniel Jurafsky. Emergence of gricean maxims
from multi-agent decision theory. In Proceedings of the 2013 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language Technologies,
pp. 1072–1081, Atlanta, Georgia, June 2013. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/N13-1127.

Licheng Yu, Hao Tan, Mohit Bansal, and Tamara L Berg. A joint speakerlistener-reinforcer model
for referring expressions. In Computer Vision and Pattern Recognition (CVPR), volume 2, 2017.

A IMPLEMENTATION DETAILS

We use the deep learning framework Pytorch7 (v1.2.0) to implement our models (and Python 3.7.3).
For reproducibility, all random seeds (random, numpy, torch) are arbitrarily set to 42.

The general architecture, the four modules that comprise each agent are shown in Figure 4.

A.1 RECURRENT IMPLEMENTATION

The recurrent model decodes and encodes message as follows: to generate a message, the first
input is the embedding of a SOS start-of-sentence symbol and the initial hidden state is set as the
embedded referent (and the cell memory is all zeroes). From here, at each step, the outputted hidden
state (P RD) is projected by the transposed word embeddings (E⊺

message P RDˆ|V |), and the next
word is sampled from this resulting distribution across the vocabulary. Moving forward, the next
input is the embedding of the sampled word, and the hidden state and cell memory are set those
emitted at the previous step. We produce words until the maximum length is reached.

When encoding a message, a learned embedding is set to the first hidden state, and the input at each
time step is the corresponding embedded word. The last hidden state is set as the encoding. In the
symmetric variant of this model, the LSTM cell used for encoding and decoding is the same.

7https://pytorch.org/docs/master/torch.html

10

http://www.aclweb.org/anthology/N13-1127

Under review as a conference paper at ICLR 2020

r

Embed_item

M

Decoder Module

M

Encoder Module

C

P(C)

Pointing Module

(a) Speaker Modules. (b) Listener Modules.

Embed_message.T

Gumbel Softmax

Embed_itemEmbed_message

Figure 4: General architecture. This architecture underlies each model we use; only the imple-
mentation of the Decoder and Encoder modules vary between models. In the baseline models no
parameters shared within an agent. In shared embedding models, the embeddings (purple) are shared
across roles. In symmetric models, the encoder and decoder (pink) are shared across both roles. The
blue modules are non-parametric.

A.2 TRANSFORMER IMPLEMENTATION

The transformer model decodes and encodes message as follows: to generate a message describing
the referent auto-regressively, all the embeddings of the words produced so far M and the embed-
ding of a NEXT symbol are concatenated together into a matrix X (Eq. 2). Next, the transformer
decoder consumes this matrix and the referent embedding and produces a contextualized represen-
tation of the input matrix (Eq. 3). The last column vector X̃:,W , which corresponds to the NEXT
embedding, is the internal representation of the next word. The next word m is sampled from the
projection of this representation with the transposed word embedding. More words are produced in
this way until the maximum length message is formed. Producing the i ` 1th word (so M consists
of the first i words), works as follows:

X “ rEmessagepMq;ENEXTs P Rpi`1qˆD, (2)

X̃ “ TransformerDecoderpX, Eitemprqq P RpW`1qˆD. (3)

Mi`1 “ GumbelSoftmaxpX̃:,i ˆ E⊺
messageq (4)

To encode incoming messages when listening, all the embeddings of the words in the message plus
the embedding of a ITEM symbol are concatenated together into a matrix X (Eq. 5). Then, the
transformer encoder is used to produce a contextualized embedding X̃ (Eq. 6). The last column
vector X̃:,W , which corresponds to the ITEM embedding, is set as the message encoding. Note, W
is the number of words in each message (and the length of M).

X “ rEmessagepMq;EITEMs P RpW`1qˆD, (5)

X̃ “ TransformerEncoderpXq P RpW`1qˆD. (6)

r̂ “ X̃:,W (7)

A.3 SYMMETRIC AGENTS

For the Symmetric Recurrent Model, a LSTM cell is shared between the encoder and decoder. Oth-
erwise, the recurrent model is unchanged. For the Symmetric Transformer Model, Transformer En-
coders and Transformer Decoders have different structures, so to share parameters between them, we
have change either how the transformer agent speaks or how it listens. We opt to replace the Trans-
former Decoder with Transformer Encoder, and use it to decode messages in-place when speaking.

11

Under review as a conference paper at ICLR 2020

A.3.1 SYMMETRIC TRANSFORMER IMPLEMENTATION

The Symmetric Transformer uses the same mechanism for encoding messages when listening as
the default transformer model (described directly above). However, it uses a Transformer Encoder
when speaking instead of a Transformer Decode. When speaking, to produce the next symbol, the
embeddings of the i words produced so far, the referent embedding, and the embedding of a NEXT
symbol are concatenated together into a matrix X (Eq. 8). The Transformer Encoder then maps X
to a contextualized representation X̃ (Eq. 9). Finally, the column vector in X that corresponds to
NEXT, is used to sample the next symbol:

X “ rEitemprq;EmessagepMq;EITEMs, X P Rpi`2qˆD, (8)

X̃ “ TransformerDecoderpXq, X̃ P Rpi`2qˆD, (9)

Mi`1 “ GumbelSoftmaxpX̃:,i`1 ˆ E⊺
messageq, Mi`1 P V Ă t0, 1u|V |. (10)

A.4 HYPER PARAMETERS

Search strategy uniform sampling (25 samples)
Hyperparameter Search Space
optimizer RMSProp
early stopping patience 100
batch size 64
number of layers 1
hidden dimensionality choice[16, 32, 64, 128]
learning rate choice[0.0001, 0.001, 0.01]
scheduler choice[None, ReduceLROnPlateau, CyclicLR]

Table 6: Recurrent Model Hyperparameter Search Results.

Search strategy uniform sampling (25 samples)
Hyperparameter Search Space
optimizer RMSProp
early stopping patience 100
batch size 64
number of layers 1
hidden dimensionality choice[16, 32, 64, 128]
number of attention heads choice[1, 2, 8]
dropout choice[0., 0.2, 0.5]
learning rate choice[0.0001, 0.001, 0.01]
scheduler choice[None, ReduceLROnPlateau, CyclicLR]

Table 7: Transformer Model Hyperparameter Search Space.

We uniformly sampled 25 hyperparameter configurations for each model architecture, experiment,
and dataset split. In every case, we fixed the hidden size dimensionality and embedding dimen-
sionality to be the same. We searched over three different learning rate schedulers: (1) None (or no
scheduler, (2) ReduceLROnPlateau with a patience of 25, reduction factor of 0.1, and uses validation
accuracy as its measure of progress, and (3) CyclicLR rising from 0.00001 to the given learning rate
over 500 batches and then declines towards 0.00001 for the rest of training (10,000 batches). This is
similar to the Noam Update in Vaswani et al. (2017). To save space, we relegate the hyper-parameter
selections in our code bit.ly/internal-consistency-emergent-communication –
see /lib/hyperparamters.py.

12

bit.ly/internal-consistency-emergent-communication

Under review as a conference paper at ICLR 2020

A.5 TREE RECONSTRUCTION ERROR

TRE takes two important hyperparameters, an error function and a composition function. We
select the same choices as the author, for what amounts to the same task (producing a dis-
crete message) as detailed in the original paper. This method requires structured feature rep-
resentations, so we assume that the features in each item are entirely right-branching. The
composition function is learned, and set the number of update steps to 1000. The orig-
inal implementation is at https://github.com/jacobandreas/tre, and our modifi-
cation is at bit.ly/internal-consistency-emergent-communication in the file
./lib/compositionality.py.

B FURTHER ANALYSIS

B.1 SHAPES SMALL

We simplify the SHAPES dataset in order to be able to empirically compute the positive listening
and signaling scores, which requires iterating overall possible messages. In the original version of
SHAPES this is impractical as there would be 5010 possible messages. The details of this smaller
version of SHAPES detailed in Table 9.

We fix the settings for the recurrent and transformer models as we found that a majority of models
across experiments used the same parameters. See Tables 10, 11. Furthermore, all results in Sec. 6
are averaged over 5 arbitrary random seeds (both trained and tested) (43, 44, 45, 46, 46).

B.2 POSITIVE SIGNALING AND LISTENING

Positive listening was introduced by Lowe et al. (2019) as Causal Influence of Communication, and
the precursor to positive signaling was introduced by Jaques et al. (2018).

We use the definitions Eccles et al. (2019) modified for a one step game for both metrics:

Positive Listening (L`) .“ DKLpPrpa|mq 󰀂 Prlpaqq,

Positive Speaking (S`) .“ Ipm,xq “ Hpmq ´ Hpm|xq,

where m is a given message, a are the actions the agent can take, x is state, DKL is the Kuller-bach
divergence, I is the mutual information, H is the entropy. We can compute these quantities without
sampling messages because the number of messages is tractable.

In our setting, the game is a single step, and the average policy over actions independent of the
message converges to the uniform distribution over actions, as the order of referents is randomized.
Thus we have: L` “ DKLpPrpa|mq 󰀂 Uq.

The positive speaking metric is computed over a sampling of the dataset (the distractors are random)
as follows as in (Eccles et al., 2019):

S` “ Hpmq ´ Hpm|xq,

“ ´
ÿ

m

πpmq log πpmq ` Exr
ÿ

m

πpm|xq log πpm|xqs,

where the summations are over all possible messages, x is the given referent, and πpmq is empir-
ically likelihood of the message being produced irrespective of x, and πpm|xq is the likelihood of
the given message being produced given the referent x. We report empirical averages of L` and S`

over all items in the dataset, also averaged over 5 arbitrary random seeds.

B.3 ANALYSIS DETAILS

Figs. 5, 6, 7, 8 show lexicons across random seeds. See Table 8 for additional results in the vanilla
setting for SHAPES-small that were elided for space.

13

https://github.com/jacobandreas/tre
bit.ly/internal-consistency-emergent-communication

Under review as a conference paper at ICLR 2020

Figure 5: Recurrent Default.

Figure 6: Recurrent self-play.

Figure 7: Transformer Default.

Figure 8: Transformer self-play.

14

Under review as a conference paper at ICLR 2020

Baseline `Self-play `Shared Emb.

% L` S` % ,∆ L`,∆ S`,∆ %, ∆ L`,∆ S`,∆

RNN 95.4 4.0 6.1 96.2,`0.8 6.4,`1.4 6.4,`0.3 95.6,`0.2 5.2,`1.2 6.3,`0.2
Trans 95.1 2.6 5.4 96.3,`1.2 3.1,`0.5 5.5,`0.1 96.2,`1.1 3.4 ` 0.8 5.6,`0.2

Table 8: Deltas are compared to the baseline value for each row. Here we report the results for
shared embeddings as well as self-play.

Name Features (nf) Values (nv) Context Size (k) Train Val Test
SHAPES SMALL 3 10 5 800 100 100

Table 9: Dataset statistics.

Hyperparameter Search Space
optimizer RMSProp
early stopping patience 100
batch size 64
number of layers 1
hidden dimensionality 128
learning rate 0.001
scheduler None

Table 10: Best Recurrent Model Hyperparameter Search Settings.

Hyperparameter Search Space
optimizer RMSProp
early stopping patience 100
batch size 64
number of layers 1
hidden dimensionality 128
number of attention heads 1
dropout 0.
learning rate 0.0001
scheduler ReduceLROnPlateau(25 epochs)

Table 11: Best Transformer Model Hyperparameter Settings.

15

