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ABSTRACT

Unsupervised image-to-image translation is a recently proposed task of translating
an image to a different style or domain given only unpaired image examples at
training time. In this paper, we formulate a new task of unsupervised video-to-
video translation, which poses its own unique challenges. Translating video implies
learning not only the appearance of objects and scenes but also realistic motion
and transitions between consecutive frames. We investigate the performance of
per-frame video-to-video translation using existing image-to-image translation
networks, and propose a spatio-temporal 3D translator as an alternative solution
to this problem. We evaluate our 3D method on multiple synthetic datasets, such
as moving colorized digits, as well as the realistic segmentation-to-video GTA
dataset and a new CT-to-MRI volumetric images translation dataset. Our results
show that frame-wise translation produces realistic results on a single frame level
but underperforms significantly on the scale of the whole video compared to our
three-dimensional translation approach, which is better able to learn the complex
structure of video and motion and continuity of object appearance.

1 INTRODUCTION

Recent work on unsupervised image-to-image translation (Zhu et al., 2017; Liu and Tuzel, 2016; Liu
et al., 2017b) has shown astonishing results on tasks like style transfer, aerial photo to map translation,
day-to-night photo translation, unsupervised semantic image segmentation and others. Such methods
learn from unpaired examples, avoiding tedious data alignment by humans. In this paper, we propose a
new task of unsupervised video-to-video translation, i.e. learning a mapping from one video domain to
another while preserving high-level semantic information of the original video using large numbers of
unpaired videos from both domains. Many computer vision tasks can be formulated as video-to-video
translation, e.g., semantic segmentation, video colorization or quality enhancement, or translating
between MRI and CT volumetric data (illustrated in Fig. 1). Moreover, motion-centered tasks such
as action recognition and tracking can greatly benefit from the development of robust unsupervised
video-to-video translation methods that can be used out-of-the-box for domain adaptation.

Since a video can be viewed as a sequence of images, one natural approach is to use an image-to-
image translation method on each frame, e.g., applying a state-of-art method such as CycleGAN
(Zhu et al., 2017), CoGAN (Liu and Tuzel, 2016) or UNIT (Liu et al., 2017b). Unfortunately,
these methods cannot preserve continuity and consistency of a video when applied frame-wise. For
example, colorization of an object may have multiple correct solutions for a single input frame, since
some objects such as cars can have different colors. Therefore, there is no guarantee that an object
would preserve its color if translation is performed on the frame level frame.

In this paper, we propose to translate an entire video as a three-dimensional tensor to preserve its
cross-frame consistency and spatio-temporal structure. We employ multiple datasets and metrics to
evaluate the performance of our proposed video-to-video translation model. Our synthetic datasets
include videos of moving digits of different colors and volumetric images of digits imitating medical
scans. We also perform more realistic segmentation-to-RGB and colorization experiments on the
GTA dataset (Richter et al., 2016), and propose a new MRI-to-CT dataset for medical volumetric
image translation, which to our knowledge is the first open medical dataset for unsupervised volume-
to-volume translation.

1



Under review as a conference paper at ICLR 2019

Figure 1: We propose the task of unsupervised video-to-video translation. Left: Results of MR-to-CT
translation. Right: moving MNIST digits colorization. Rows show per-frame CycleGAN (2D) and
our spatio-temporal extension (3D). Since CycleGAN takes into account information only from the
current image, it produces reasonable results on the image level but fails to preserve the shape and
color of an object throughout the video. Best viewed in color.

Figure 2: Results of GTA video colorization show that per-frame translation of videos does not
preserve constant colours of objects within the whole sequence. We provide more results and videos
in the supplementary video: https://bit.ly/2R5aGgo. Best viewed in color.

Our extensive experiments show that the proposed 3D convolutional model provides more accurate
and stable video-to-video translation compared to framewise translation with various settings. We
also investigate how the structure of individual batches affects the training of framewise translation
models, and find that structure of a batch is very important for stable translation contrary to an
established practice of shuffling training data to avoid overfitting in deep models (Goodfellow et al.,
2016).

To summarize, we make the following main contributions: 1) a new unsupervised video-to-video
translation task together with both realistic and synthetic proof-of-concept datasets; 2) a spatio-
temporal video translation model based on a 3D convnet that outperforms per-frame methods in
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Figure 3: Our model consists of two generator networks (F and G) that learn to translate input
volumetric images from one domain to another, and two discriminator networks (DA and DB) that
aim to distinguish between real and fake inputs. Additional cycle consistency property requires that
the result of translation to the other domain and back is equal to the input video, G(F (x)) ≈ x.

all experiments, according to human and automatic metrics, and 3) an additional analysis of how
performance of per-frame methods depends on the structure of training batches.

2 RELATED WORK

In recent years, there has been increasing interest in unsupervised image-to-image translation. Aside
from producing interesting graphics effects, it enables task-independent domain adaptation and
unsupervised learning of per-pixel labels. Many recent translation models (Zhu et al., 2017; Liu and
Tuzel, 2016; Liu et al., 2017b) use the adversarial formulation initially proposed by (Goodfellow
et al., 2014) as an objective for training generative probabilistic models. The main intuition behind
an adversarial approach to domain translation is that the learned cross-domain mapping F : X → Y
should translate source samples to fake target samples that are indistinguishable from actual target
samples, in the sense that no discriminator from a fixed hypothesis space H should be capable of
distinguishing them.

Many recent advances in domain translation are due to the introduction of the cycle-consistency
idea (Zhu et al., 2017). Models with a cycle consistency loss aim to learn two mappings F (x)
and G(y) such that not only are the translated source samples F (x) indistinguishable from the
target, and G(y) are indistinguishable from source, but they are also inverses of each other, i.e.
F (G(y)) = y,G(F (x)) = x. We also employ this idea and explore how well it generalizes to
video-to-video translation. The cycle-consistency constraints might not restrict semantic changes
as explored by Hoffman et al. (2017). There has been work on combining cycle-consistency with
variational autoencoders that share latent space for source and target (Liu et al., 2017a), which
resulted in more visually pleasing results.

Both adversarial (Isola et al., 2016) and non-adversarial (Chen and Koltun, 2017) supervised image-
to-image translation models archive much better visual fidelity since samples in source and target
datasets are paired, but their use is limited since we rarely have access to such aligned datasets for
different domains. Adversarial video generation has also gained much traction over last years with
frame-level models based on long short-term memory (Srivastava et al., 2015) as well as spatio-
temporal convolutions (Vondrick et al., 2016), especially since adversarial terms seem to better avoid
frame blurring (Mathieu et al., 2015) than Euclidian distance. However, none of these works consider
learning a conditional generative video model from unpaired data, i.e. cross domain video translation.
Here, we propose this problem and a solution based on jointly translating the entire volume of video.

3



Under review as a conference paper at ICLR 2019

3 3D CONVOLUTIONAL VIDEO-TO-VIDEO TRANSLATION

We introduce a neural approach for video-to-video translation based on a conditional GAN (Isola
et al., 2017; Goodfellow et al., 2014) that treats inputs and outputs as three-dimensional tensors.
The network takes a volumetric image (e.g. a video) from domain A and produces a corresponding
volume of the same shape in the domain B. The generator module aims to generate realistic volumes,
while the discriminator aims to discriminate between the real and generated samples. Similarly to the
CycleGAN method, we introduce two generator-discriminator pairs and add a cycle consistency loss
ensuring that samples mapped from A to B and back to A are close to the originals.

We implement the two generators, F and G, as 3D convolutional networks (Ji et al., 2013) that follow
the architecture described in (Johnson et al., 2016). The networks consist of three convolutional layers
with 3D convolutional filters of shape 3×3×3, nine resudual blocks and two additional convolutional
layers with stride 1

2 . The networks receive image sequences as 3D tensors of shape d× h×w, where
d is the length of sequence and h and w are image height and width if an input video is grayscale,
and 4D tensor of shape d× h× w × 3 if an input video is colored and represented as a sequence of
RGB images. Since 3D convolutional networks require a large amount of GPU memory, the choice
of the depth d of the input video is usually limited by the the memory of a single GPU unit; we used
d = 8, h = 108, w = 192 for the experiments with GTA datasets and d = 30, h = 84, w = 84 for
all experiments on MNIST. The discriminators DA and DB are PatchGANs (Isola et al., 2017) as
in CycleGAN, but with 3D convolutional filters. They each receive a video of size d× h× w and
classify whether the overlapping video patches are real samples from the respective domain or are
created by the generator network.

The overall objective of the model consists of the adversarial loss LGAN and the cycle consistency
loss Lcyc. The adversarial LGAN loss forces both the generator networks to produce realistic videos
and the discriminators to distinguish between real and fake samples from the domain in a min-max
fashion, whereas Lcyc ensures that each sample x ∼ pA translated into domain B and back is equal
to the original and vice versa, i.e. G(F (x)) ≈ x (see Fig. 3).

The adversarial loss LGAN is a log-likelihood of correct classification between real and synthesized
volumes:

LGAN (DB , G,X, Y ) = Ey∼pB
log(DB(y)) + Ex∼pA

log(1−DB(G(x))

where the generator G is learned in a way that minimizes LGAN , while the discriminator DB aims to
maximize it. The cycle consistency loss (Zhu et al., 2017) is the L1 loss between the input volume
and result of the reverse translation:

Lcyc = Ex∼pA
(‖G(F (x))− x‖1) + Ey∼pb

(‖F (G(y))− y‖1)

The total objective can be written as follows:

L(G,F,DA, DB) = LGAN (G,DB , X, Y ) + LGAN (F,DA, Y,X) + γLcyc(G,F ) (1)

Because we employ the cycle loss and the PatchGAN architecture also employed by CycleGAN,
we refer to our model as 3D CycleGAN. More generally, we can consider other generator and
discriminator implementations within the overall 3D convolutional framework for video-to-video
translation.

4 FRAMEWISE BASELINES

We used CycleGAN trained on randomly selected images (referred to as random CycleGAN) as
a baseline method. We also considered two alternative training strategies for training frame-level
CycleGAN baselines: CycleGAN trained on consecutive image sequences (sequential CycleGAN)
and sequential CycleGAN with additional total variation loss (see Eq. 2) that penalizes radical change
in the generated image sequence (const-loss CycleGAN). We compared the performance of these
baselines with our approach that operates on three-dimensional inputs (3D CycleGAN).

Random CycleGAN. The first strategy for training a CycleGAN is taking as an input 2D images
selected randomly from image sequences available for training, which is the standard approach in
deep learning. Data shuffling is known to reduce overfitting and speeds up the learning process
(Goodfellow et al., 2016).

Sequential CycleGAN. Since the order of frames is essential in sequential image data, we investi-
gated the case when images are given to a 2D CycleGAN sequentially during the training phase (see
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Figure 4: We compare three ways of forming batches used during training of a CycleGAN : (a)
random frames from multiple videos, (b) sequential frames from a single video or (c) single 3D
tensor consisting of consecutive frames from a single video. Contrary to the conventional wisdom,
our experiments suggest that additional randomness in the batch structure induced in case (a) hurts
the performance and convergence of the resulting translation model.

Fig. 4). In contrast to our expectation and the conventional wisdom, sequential CycleGAN often
outperformed random CycleGAN in terms of image continuity and frame-wise translation quality.

Const-loss CycleGAN. Since CycleGAN performs translation on the frame-level, it is not able to use
information from previous frames and, as a result, produces some undesired motion artifacts, such
as too rapid change of object shape in consecutive frames, change of color or disappearing objects.
To alleviate this problem, we tried to force the frame-level model to generate more consistent image
sequences by directly adding a total variation penalty term to the loss function, as follows:

Lconst(G,X) = Ex∈X
∑
t

‖G(x)t −G(x)t−1‖22. (2)

5 EXPERIMENTS

5.1 DATASETS

Intuitively, translation models that operate on individual frames can not preserve continuity along
the time dimension, which may result in radical and inconsistent changes in shape, color and texture.
In order to show this empirically, we used the GTA segmentation dataset (Richter et al., 2016) for
unsupervised segmentation-to-video translation. Since this task is very challenging even for still
images, we created three more datasets that give more insight into pros and cons of different models.

MRCT dataset. First, we evaluated the performance of our method on an MR (magnetic resonance)
to CT (computed tomography) volumetric image translation task. We collected 225 volumetric
MR images from LGG-1p19qDeletion dataset (Akkus et al., 2017) and 234 CT volumetric images
from Head-Neck-PET-CT dataset (Vallières et al., 2017). Both datasets are licensed with Creative
Commons Attribution 3.0 Unported License. Since images from these datasets represent different
parts of the body, we chose parts of volume where body regions represented in the images overlap:
from superciliary arches to lower jaw. Images of both modalities were manually cropped and resized
to 30× 256× 256 shape. The final dataset is available for download on the website [TDB].

Volumetric MNIST. Volumetric MNIST dataset was created using MNIST handwritten digits
database (LeCun, 1998). From each image from MNIST we created a volumetric image imitat-
ing 3d scan domain using erosion transformation of two types, we called them “spherical” and
“sandglass” domains (see Figure 6). The task is to capture and translate the global intensity pattern
over time while preserving image content (digit). The resulting image volumes of shape 30× 84× 84
were used to train the models to transform digits of spherical type to sandglass type and vice versa.

Colorization of moving MNIST digits. To test models’ ability to preserve local information about
the color of object, inspired by the Moving MNIST dataset introduced in (Srivastava et al., 2015), we
generated a dataset with moving digits of different colors. We used this dataset to train the models to
translate from the original moving white digits to the same moving digits in color.

GTA segmentation dataset. The Playing for Benchmarks dataset (Srivastava et al., 2015) is a large
collection of GTA gameplay recordings with a rich set of available annotations, and currently it is
one of the default datasets for evaluation of image-to-image translation methods. Using the daylight
driving and walking subsets 1 of this dataset we generated 1216 short clips of shape 30× 192× 108
and corresponding ground truth segmentation videos. Since this paper is focused on translation of

1sections 001-004, 044-049, 051, 066-069
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Figure 5: Results of unsupervised GTA video-to-segmentation translation with different models. We observed
that frame-level methods diverged significantly more frequently than 3D model (top). No information about
ground truth pairs was used during training. Frame-wise translation (2D) produces plausible images, but does
not preserve temporal consistency. Forming batches from consecutive frames during training (2D sequence)
helps in reducing spatio-temporal artifacts and improves convergence. Additional penalty term on consecutive
generated frames (const loss) further reduces motion artifacts at the expense of diversity of generated images.
Our proposed 3D convolutional model (3D) produces outputs that are coherent in time, but have fewer details
because network has to approximate a higher dimensional mapping (video-to-video instead of frame-to-frame)
using same number of learnable weights.
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Figure 6: The results of experiments on Volumetric MNSIT dataset: input and output domains contain videos
with global decay-then-rise and rise-then-decay intensity patterns respectively, during models were presented
with pairs of videos containing different digits. Our experiments show that frame-level approaches are not able to
learn this spatio-temporal pattern and hence cannot perform correct translation whereas our 3D method performs
almost perfectly. Both sequence and sequence+const approaches were able to capture temporal pattern but did
not learn shape correspondence.

dense image sequences with a lot of inter-frame relations, we used the walking subset of this dataset
for evaluation as it has slower camera movements and therefore higher effective frame rate.

5.2 EVALUATION

We performed experiments on all datasets mentioned above with four approaches: random, sequential,
sequential+const and 3D CycleGAN. For each dataset we used the same 70% of data for training
and 30% for performance evaluation. For datasets that contain ground truth pairs (GTA, volumetric
MNIST, colored 3D MNIST) samples from both domains were split into train and test sets inde-
pendently, i.e. often no corresponding pairs of images were present in the training data. We set
the number of parameters to be the same for all models (∼ 90M). We also trained the models with
number of learnable parameters proportional to the input size (∼ 200M for 3D model). Visual fidelity
of the video generated by larger models did not improve, whereas segmentation quality increased
significantly. We also report the performance of a large (∼ 200M) random 2D model for reference.

For MRCT and GTA segmentation-to-RGB tasks, we ran human evaluation on amazon mechanical
turk since these is no “gold” translation to compare with (Table 3). In a series of randomized trials,
participants were presented with multiple real samples from each domain and then were asked to
choose the more realistic one of the outputs of two different models for same input. We also estimated
the probability of choosing a video generated by each model over a real one, but only report these
numbers for the MRCT domain pair since for segmentation-to-RGB they were below significance
level. To help evaluate significance of differences in probabilities, we report a bootstrap estimate of
the standard deviation of reported probabilities.

For some domain pairs we actually have definitive ground truth answers. For rgb-to-segmentation
translation we evaluated segmentation pixel accuracy and L2 distance between stochastic matrices
of pixel class transitions between frames for generated and ground truth segmentation videos with
different label denoising levels (Table 4). For volumetric MNIST dataset we also computed L2 error
(Table 2). Since there is no single correct colorization in the colorization of moving digits task, we
evaluated average standard deviation of non-background colors within each generated image. Models
are expected to colorize digits without changing their shapes, therefore we also evaluate L2 error
between original and translated shapes (Table 1).

6 RESULTS

Method shape L2 loss Intensity mean colour σ

GT – 175.37 32.25
3D 0.79 204.36 45.65
Random 1.48 139.38 64.51
Sequence 0.84 205.49 53.96
Seq+const 0.90 198.18 54.06

Table 1: MNIST video colorization: L2 loss between masks of
ground truth and translated images, mean intensity of the digit and
standard deviation of the digit color intensity.

Method L2 σ

3D 27.21 5.27
Random 48.73 13.72
Sequence 41.73 11.40
Seq+const 73.41 5.26

Table 2: Volumetric MNIST: L2 loss be-
tween the translation (rows 2-5 on figure 6)
and ground truth videos (last row).
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P (A ≺ B) P (A ≺ GT )
Method GTA CT-MR MR-CT CT-MR MR-CT

3D 0.70 0.83 0.67 0.42 0.39
Random 0.21 0.58 0.65 0.24 0.44
Sequence 0.50 0.30 0.32 0.08 0.16
Seq+const 0.59 0.29 0.36 0.07 0.21

2× σ 0.04 0.02 0.04 0.02 0.03

Table 3: Human evaluation of generated GTA segmentation-to-
video, CT-to-MRI and MRI-to-CT translations. We report proba-
bilities of users preferring each method over other methods, and
probabilities of preferring a method over ground truth (below statis-
tical significance for GTA). Last row shows bootstrap estimate of
the variance and is similar among all methods.

Method Slow All-Test

3D 200M 0.77 0.72
2D 200M 0.60 0.70

3D 0.54 0.55
Random 0.46 0.65
Sequence 0.64 0.71
Seq+const 0.56 0.68

Table 4: Per-frame pixel accuracy of video-
to-segmentation mapping. All proposed
methods outperformed the frame-level base-
line (random) on both slower and faster
videos. With number of learnable parameters
proportional to the size of input, 3D model
outperformed all other methods.

Volumetric MNIST. Our experiments on volumetric MNIST show that standard CycleGAN is not
able to capture the global motion patterns in the image sequence (see Fig. 6). Since videos from
domain B have the same frames as videos from domainB but in different order, a model with random
batches cannot this temporal pattern and outputs a slightly dimmed input. In contrast, 3D CycleGAN
was able to learn the transformation almost perfectly. In contrast, sequential models learned the
global phase pattern properly, but were unable to generate correct shapes.

The experiment on colorization of MNIST videos showed that the “random” model is able to
colorize individual frames but cannot preserve the color throughout the whole sequence. The choice
of batch selection, however, is important: the sequential and const-loss models learned to preserve
the same color throughout the sequence even though they did not have access to previous frames.
However, we should mention that all models that succeeded in this task collapsed to colorizing digits
with a single (blue-green) color even though the training data had 20 different colors.

The GTA segmentation-to-video translation with the 3D model produced smoother and more
consistent videos compared to the framewise methods which produced undesirable artifacts such
as shadow flickering and rapid deformation or disappearance of objects and road marking. Both
sequence methods often moved static objects like road marking with camera. One of the drawbacks
of the 3D model is that it does not tolerate rapid changes in the input and hence cannot deal with
low frame-rate videos. The additional constraint on total variation resulted in better visual fidelity
and smoothness, but leaned towards rendering all objects of same semantic class using same texture,
which reduces the variability of the outputs and fine details, but at the same time reduces the amount
of spatio-temporal artifacts. The qualitative results of GTA video colorization confirm that the
spatio-temporal model produces more consistent and stable colorization (see Fig. 1).

The experiments on MRI-to-CT translation showed that all per-frame translation methods produce
image volumes that do not capture the real anatomy (e.g. shape of the skull, nasal path and eyes vary
significantly within the neighboring frames), whereas the proposed 3D method gives a continuous
and generally more realistic results for both CT-MRI and GTA segmentation-to-video tasks (Table 3).
The CT-to-MRI task is harder since it requires “hallucinating” a lot of fine details and on this task 3D
model outperformed random with a significant margin (bold numbers). On a simpler MRI-to-CT task
random and 3D models performed similarly within the limits of statistical error.

In contrast to the common practice, the sequential batch approach produced more realistic and
continuous results compared to the random batch choice. Supposedly this is due to the fact that
images within the sequence are more similar than randomly selected images, and hence the magnitude
of the sum of gradients might be higher resulting in faster convergence. Of course, order of frames
within sequential batch does not matter since all gradients are summed up during backward pass, but
the similarity between images within a batch is important.

7 CONCLUSION

We proposed a new computer vision task of unsupervised video-to-video translation as well as
datasets, metrics and multiple baselines: multiple approaches to framewise translation using image-
to-image CycleGAN and its spatio-temporal extension 3D CycleGAN. The results of exhaustive
experiments show that per-frame approaches cannot capture the essential properties of videos, such
as global motion patterns and shape and texture consistency of translated objects. However, contrary
to the previous practice, sequential batch selection helps to reduce motion artifacts.
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8 SUPPLEMENTARY MATERIAL

Figure 7: Volumetric MNIST results.

Figure 8: Results of MRI-to-CT translation.

Figure 9: Colored 3D MNIST translation results.
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