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We present a novel interactive segmentation framework incorporating a priori knowledge learned from train-

ing data. The knowledge is learned as a structured patch model (StPM) comprising sets of corresponding local

patch priors and their pairwise spatial distribution statistics which represent the local shape and appearance

along its boundary and the global shape structure, respectively. When successive user annotations are given,

the StPM is appropriately adjusted in the target image and used together with the annotations to guide the

segmentation. The StPM reduces the dependency on the placement and quantity of user annotations with lit-

tle increase in complexity since the time-consuming StPM construction is performed offline. Furthermore, a

seamless learning system can be established by directly adding the patch priors and the pairwise statistics of

segmentation results to the StPM. The proposed method was evaluated on three datasets, respectively, of 2D

chest CT, 3D knee MR, and 3D brain MR. The experimental results demonstrate that within an equal amount

of time, the proposed interactive segmentation framework outperforms recent state-of-the-art methods in

terms of accuracy, while it requires significantly less computing and editing time to obtain results with com-

parable accuracy.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

With the advancement of medical imaging technology, high qual-

ty medical images have significantly increased. Accordingly, the de-

and for effective techniques to analyze medical images has in-

reased as well. Segmentation of target objects is an especially im-

ortant task required to study pathological changes of organs, com-

are inter-subject variability, monitor disease progression and ana-

yze clinical trials. However, manual segmentation is laborious and

ime-consuming. Thus, various approaches to enable efficient seg-

entation have been proposed. The wide variety of segmentation

ethods can be loosely classified as either interactive or automatic.

Interactive methods require the user to provide annotations to

ncrementally refine the segmentation. To update the segmenta-

ion efficiently, most interactive segmentation methods are based on

ow-level statistics of appearance, including live-wire (Barrett and

ortensen, 1997), region growing (Pohle and Toennies, 2001), inter-

ctive graph cut (Boykov and Funka-Lea, 2006; Shim et al., 2009a,b),
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andom walk (Grady, 2006; Kim et al., 2008) and geodesic segmen-

ation (Bai and Sapiro, 2007). Although these methods are fast, flexi-

le, and facilitate intuitive editing, extremely detailed user annota-

ions may be required for noisy images or target objects with ob-

cure boundaries. Many different approaches are taken to overcome

his problem. One is to leverage simpler user interactions such as

he bounding box of the target object (Rother et al., 2004; Lempit-

ky et al., 2009). Another is to reduce the amount of required user

nnotations by using sophisticated graphs which reflect the relation-

hips between annotated and unknown regions (Kim et al., 2010). Yet

nother approach is to introduce multiple categories of annotations

hat better represents user intention (Yang et al., 2010). Although

hese methods may reduce the amount of required annotations, the

hanges in annotation often affect the segmentation results signifi-

antly. To receive more informative user annotations on ambiguous

egions, methods based on the active learning strategy have been

roposed. In the method by Wang et al. (2012), the expected confi-

ence change of superpixels is measured to inform the user about

he regions where annotation is more desired. In the method of Top

t al. (2011), the two-dimensional plane having the highest uncer-

ainty among a three dimensional image space is provided to the user

t each editing step for the next annotation. Although these methods

http://dx.doi.org/10.1016/j.media.2015.01.003
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1 We use the acronym StPM to avoid confusion with statistical parametric mapping

(SPM).
guide the user to provide effective annotations, a significant amount

of annotations is nonetheless necessary for accurate segmentation of

ambiguous regions because the methods still rely on low-level statis-

tics, such as intensity distributions and gradients. Basically, all the

aforementioned methods do not utilize a priori knowledge of the ob-

ject of interest. While this enables the methods to be generalized to

various target objects, it hinders use of informative cues of target

objects. Moreover, this restricts the reproducibility of the methods.

Therefore, the user will need to laboriously repeat similar annota-

tions when segmenting a common target object within many simi-

lar images. Clinicians burdened in these situations, which occur very

often in clinical practices, will indeed benefit from more automated

methods.

On the other hand, most automatic segmentation methods take

advantage of a priori knowledge of target objects learned from

training data, based on the assumption that target images share

the similar appearance and structure. These methods can be di-

vided into example-based and model-based. Example-based meth-

ods (Heckemann et al., 2006; Aljabar et al., 2009; van der Lijn et al.,

2008; Lotjonen et al., 2010; Coupe et al., 2011; Rousseau et al., 2011;

Park et al., 2013a; Asman and Landman, 2013; Bai et al., 2013; Tong

et al., 2013) search for relevant example images and their labels from

the training set which are directly used to guide the segmentation of

the target image. In works of Heckemann et al. (2006) and Aljabar

et al. (2009), the segmentation is determined by majority voting of

aligned manual segmentation labels. In works of van der Lijn et al.

(2008) and Lotjonen et al. (2010), the label information is incorpo-

rated into the graph cut framework of Boykov and Funka-Lea (2006)

to further deal with local variations. Unlike the methods which di-

rectly use the labels of aligned training images, in works of Coupe

et al. (2011) and Rousseau et al. (2011), the labels are determined

by non-local weighted voting of labels of local atlas patches accord-

ing to appearance similarity. Tong et al. (2013) proposed a similar

patch based label fusion method, but used sparse representation to

determine the weight for fusion. Though these methods are effective

with a small number of training images, highly complex registration

or per-patch similarity computation is required. Thus they are not

scalable to the size of training set. Model-based methods overcome

the limitation of example-based methods by modeling the target ob-

ject from training data (Cootes et al., 1995; Duta and Sonka, 1998;

van Ginneken et al., 2002; Sukno et al., 2007; Gleason et al., 2002;

Seghers et al., 2007; Ibragimov et al., 2012; Yang and Ramanan, 2011;

Zhang et al., 2012). For example, in the active shape model (ASM)

by Cootes et al. (1995), the average and variations of the shape are

modeled by statistics of object boundary landmarks. However, these

methods require a large enough training set for the model to be suf-

ficiently generalizable, which is hard to obtain in many clinical tasks

where it is common to only have a small number of images. They also

require laborious tasks during training such as manual extraction of

landmarks or annotation of local parts. While the example-based and

model-based methods have reduced the user efforts for many clini-

cal applications, the segmentation results can often be inaccurate due

to aforementioned weaknesses, especially at ambiguous regions. Al-

though user editing is necessary in these cases, most automatic meth-

ods cannot be easily extended to include an effective interactive edit-

ing process.

Recently, several example-based and model-based interactive

methods that incorporate a priori knowledge of the target objects

or images have been proposed. In works of Barnes et al. (2009)

and Barnes et al. (2010), the example-based method PatchMatch is

proposed for labeling problems by efficiently searching for image

patch correspondences and propagating their manual annotations.

These methods have been extended to super-resolution of cardiac

MRI (Shi et al., 2013) and hippocampus segmentation (Ta et al.,
014) for medical image analyses. Nonetheless, they may not be ap-

licable for target objects with specific shape, since spatial relation-

hips between adjacent patches are neglected. In works of Branson

t al. (2011) and Wah et al. (2011), the deformable part model (DPM)

Felzenszwalb et al., 2010) is utilized in an interactive recognition

ramework supporting seamless learning. However, since the DPM

s based on part labels, it is not easily extended to interactive seg-

entation framework which relies on user annotations, often given

s detailed pixelwise labels. In the work by Schwarz et al. (2008). ASM

s incorporated into the interactive segmentation framework by en-

bling the user to edit the positions of landmark points in the deter-

ined boundary. Whenever incorrect landmark points are edited by

he user, adjacent landmarks are accordingly modified by Gaussian

nterpolation and the whole boundary is regularized based on the

SM. In the work by Sun et al. (2013), the segmentation boundary

s determined by the optimal surface finding (OSF) method, based on

n initial segmentation using ASM. The user can correct errors in OSF

esults by marking points on the correct boundary, which are used

s constraints to recompute the OSF. While these methods also incor-

orate interactive editing with prior information, the required user

nteraction of 3D point positions can be difficult to achieve with only

common 2D interface.

In this paper, we present an efficient model-based interactive

ramework using the structured patch model (StPM)1 for segmenta-

ion of target objects within a large number of medical images ac-

uired in a common environment. The proposed StPM is an example-

ased-model, comprising sets of corresponding local patch priors and

heir pairwise spatial distribution statistics compiled from the ex-

mple images and their segmentations in the training set. When a

est image is given, the optimal local patch priors are adaptively se-

ected and localized through a global probabilistic optimization based

n the user annotations, local patch similarity, and the likelihood

f global structure based on the pairwise spatial distribution. Then,

oxel-wise segmentation labels are computed through a global prob-

bilistic optimization based on the selected StPM and the user anno-

ations.

The key advantages of the proposed framework based on StPM

re as follows: First, we enforce the example-based multiple patch

riors, which encapsulate a wide variety of specific local instances,

nto a model structure. It enables the method to use the optimal ex-

mples, in terms of both local adaptiveness and global consistency,

s priors for segmentation. Second, user annotations are easily incor-

orated into the segmentation framework. Since the StPM is com-

atible with all types of annotations, the user can freely insert an-

otations on ambiguous regions without any restrictions based the

odel, making efficient segmentation possible for any image. Third,

ince interactive segmentation is constrained by the StPM as well as

ser annotations, the segmentation result is robust to the quantity

nd placement of the annotations. Compared to the previous interac-

ive methods, the proposed method requires fewer annotations and

s more robust to their changes due to the StPM. Finally, the StPM

an easily be expanded by directly incrementing the local image and

egmentation patch set and the pairwise distribution with the results

btained from the proposed framework for a new test image. This in-

remental learning system is particularly effective when constructing

he training image set since the required laborious manual annota-

ion is significantly reduced.

We note that this paper is based on our preliminary work pre-

ented by Park et al. (2013b). The preliminary method was sensi-

ive to initial user annotations and could not handle the drifting
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roblem where localization errors of adjacent patches accumulated

s their distance from the annotations increased. In this paper, we

resent a more comprehensive framework with the advanced model

ncluding the spatial distribution between neighboring local regions

nd a new method based on Markov random field (MRF) structure to

ocalize the StPM within a test image. The MRF structure allows us to

lleviate the sensitivity of the user interactions as well as avoid the

rifting problem. Furthermore, we extend the method to handle seg-

entation of multiple objects by adopting a multi-label optimization

olver.

The proposed structured patch model and the segmentation

ramework are described in Section 2. The framework is evaluated on

arious target objects in chest CT images, knee MR images, and brain

R images. The experimental settings and the results are described

n Section 3. Finally, the paper is concluded in Section 4.

. Interactive segmentation framework based on structured

atch model

Our framework is comprised of the following steps: (1) Construct

he StPM from a small number of training images offline; (2) localize

he StPM within a given test image to perform initial segmentation;

3) interactively correct the specific state of the localized StPM and

he segmentation of incorrect regions with manual annotations un-

il necessary; (4) add the test image and its segmentation result to

he training set to incrementally update the StPM. As the number of

raining sets increases, the StPM is able to handle more general im-

ges. Thus, better initial segmentations will be generated in step 2

nd the amount of annotations required in step 3 will be reduced.

ig. 1 provides a visual description of the proposed framework.

The StPM is comprised of the set of patch sets P and their struc-

ure, represented by pairwise distance and orientation statistics be-

ween the patch sets. P = {P j| j = 1, . . . , n} comprises n patch sets,

here each patch set P j represents a corresponding local region cen-

ered at the target object boundary. Each P j = {Pi
j
|i = 1, . . . , m} com-

rises m patch pairs from the training data T = {T i|i = 1, . . . , m},

here each pair includes the image and its segmentation labels.
ig. 1. Proposed framework based on the structured patch model (StPM). Dots around the b

ach lung are also given below the segmentation results. Erroneous regions (black circles) ar

bject and background scribbles, respectively) until the segmentation results are satisfactory

eferences to color in this figure legend, the reader is referred to the web version of this artic
e note that subscripts i and j denote the index of the particu-

ar training image and local region, respectively. The patch structure

omprises histograms of distances and angles between P j and P j′ . For

oth the initial segmentation and the interactive editing, the StPM is

rst localized and configured by optimization of a patch-level MRF.

hen the segmentation is computed by optimizing a second voxel-

evel MRF based on the configured StPM.

Given a target volume V, appropriate patches Px = {Px j | j =
, . . . , n} are selected among each P j and are transferred to optimal

ocations v = {v j| j = 1, . . . , n} within V. That is, x j denotes the index

f the most suitable training patch among P j , and x is the set of all x j .

his problem is formulated on a patch-level MRF as:

(v, x) =
∑

φ(v j, x j|P j,Uj) + λx

∑
ψ(v j, v j′ |P j, P j′), (1)

here Uj denotes the user annotation labels, within the jth local

egion. In our framework, the user can provide object and back-

round scribbles for the annotation. The first voxelwise potential

erm φ(v j, x j|P j,Uj) is based on the similarity between the test vol-

me patch at v j and Px j ∈ P j along with the consistency between la-

els of Px j at v j and Uj . The second pairwise potential term is based

n the StPM spatial patch distribution statistics. Optimization of (1) is

fficiently done in the interactive editing stage, since only the portion

f φ(v j, x j|P j,Uj) depending on the updated annotations Uj needs to

e recomputed.

Next, segmentation is done using the prior patches Px localized at

and user annotations U. The problem is formulated on a voxel-level

RF as:

(L) =
∑
v∈V

φ(l(v)|Px,U) + λL

∑
u,v∈�

δl(u)�=l(v) · exp
|I(u) − I(v)|

2β
, (2)

here

l(u)�=l(v) =
{

1 if l(u) �= l(v)

0 if l(u) = l(v)
(3)

s the Kronecker delta. l(v) is the random variable representing the

abel of voxel v and L is the label variable set. Here, the first term
oundaries of right and left lungs represent the centers of patches. The DSC values for

e repeatedly corrected with respect to the user annotations (red and blue denote the

. The final result can be directly used to increment the StPM. (For interpretation of the

le.)
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represents the unary potential representing the likelihood of v for

each label and the second term represents the pairwise potential

which enforces the smoothness between labels of neighboring voxel

pair (u, v) in the neighbor set �. I(u) is the intensity of voxel u and β
is the average square-distance of intensities between adjacent voxels

in V (Boykov and Funka-Lea, 2006).

In the initial step, segmentation is performed automatically by

optimizing (1) and (2). Here, specific prior locations v are searched

within a predetermined search range which is assumed to contain

the optimal locations. The user is then requested to provide anno-

tations at erroneous regions. When additional user annotation is

given, the segmentation is immediately updated by recomputing (1)

and (2) with updated U. This interactive editing is repeated until

the user is satisfied. Further details are described in the following

subsections.

2.1. Preprocessing

Images of different cases must be aligned in order to construct a

relevant model of the target object. We randomly select an instance

T i′ = (V i′ , Mi′) from the training data T, where V i′ and Mi′ denote the

image volume and ground truth labels, respectively, to assign as the

reference. Then, all other training images and labels are aligned to

this reference in the training step.

In the test step, only the reference T i′ is aligned to test vol-

ume V to constrain the possible localized patch prior coordinates.

We use the non-rigid registration method proposed by Glocker

et al. (2008), namely, the Drop method based on a pairwise MRF

energy model. We note that this alignment takes less than one

minute because only the reference training data is aligned to

V with coarse registration parameters. More accurate alignment

is performed in subsequent steps. Also, intensity distributions of

the aligned volumes are normalized to that of V i′ by histogram

matching.

2.2. Construction of structured patch model

The StPM includes the sets of corresponding patch across training

sets and their pairwise connections. First, n patches and their connec-

tions are extracted from the reference data T i′ , and then correspond-

ing patches are found from the other training data. After all patches

are extracted from T, the priors of corresponding patch sets and

the spatial relationship between the adjacent patch sets are learned.

Fig. 2 shows a visual description of the StPM.

The n patches Pi′ = {Pi′
j
| j = 1, . . . , n} are sampled from the sur-

face of the target object with even distribution in T i′ . Pi′
j

includes the

sub-volume V i′
j

and the sub-label Mi′
j

centered at voxel vi′
j
. Patches

within a certain distance τ are set as the adjacent patches. Here, the

patches are sampled so that the surface of target object is included in

the combined sampled patches.

To search for the corresponding patches from the other m − 1

training sets, Pi′ is first aligned using the Drop registration method

(Glocker et al., 2008). Since the aligned location is often inaccurate,

the correspondence is searched again within a search range. Within

the search range centered at the initial aligned location, the patch

having the highest similarity with V i′
j

is determined as the corre-

sponding patch. In our experiments, we set the search range as half

of the patch size and measure the similarity by normalized cross cor-

relation (NCC).

After n × m patches are determined, the priors are learned. For

each patch Pi
j
, mean μ(V i

j
) and covariance σ(V i

j
) of voxel intensities

in V i
j

are computed to accelerate comparison of the patch similarity.

The spatial distribution between each adjacent patch pair Pi
j

and Pi
j′ is
earned as histograms of distance and direction angles between vi
j

nd vi
j′ . In our experiments, distance histograms have 20 bins repre-

enting a range from 0 to 120 in voxel coordinates, while the angle

istograms contains 10 bins representing 360° for each axis.

To determine the segmentation, Mi
j

and intensity histograms are

sed as the shape and appearance priors, respectively. For each patch
i
j
, intensity histograms Hi

j
= {Hi

j
(l(v))|l(v) = 1, . . . , K} of voxels with

segmentation labels are constructed, respectively; e.g., for binary

egmentation problem with K = 2, separate histograms are con-

tructed from voxels with label 0 and 1, respectively. In addition, we

ollow the method of Park et al. (2013a) to adaptively emphasize the

hape and appearance priors according to the properties of local re-

ions. Specifically, the weight wi
j
(l(v)), which controls the emphasis

etween shape and appearance priors, is computed by the distance

s(v) from the target object surface and the appearance confidence

f i
j
(l(v)) as:

i
j(l(v)) = 1 − exp (−d2

s (v)/ f i
j(l(v))2

). (4)

higher weight is assigned to the appearance prior as the voxel co-

rdinate is closer to the surface or the appearance of target object

s clearly distinguished from other tissues. For details, we refer the

eader to Park et al. (2013a).

.3. MRF-based patch localization

Px among P and v in V are determined by optimizing (1). The

raph model consists of n nodes representing random variables rep-

esenting specific patch index and location along with their pairwise

dges. The patch index and location are determined by assigning a

abel among a set of size m × the volume of localization search range.

Since the inference of (1) respect to the all labels regarding v and

needs considerable computation due to the large label set size, we

pproximate (1) as:

(v) =
∑

φ(v j|P j,Uj) +
∑

ψ(v j, v j′ |P j, P j′), (5)

here

(v j|P j,Uj) = arg min
x j

(φ(v j, x j|P j,Uj)). (6)

hat is, potentials of m training patches are computed at each coordi-

ate in the search range and the lowest is set as the potential for that

ocation. Therefore, the number of labels for each node is reduced to

he volume of the localization search range. Also, we set the search

ange around the initial aligned position for each region and sam-

le coordinates at a regular interval within the search range. For each

ampled location, the NCC similarity Sncc(Vj,V
x j

j
) with the reference

atch V
x j

j
is computed as:

ncc(Vj,V
xj

j
) = 1

η(Vj)

∑
v∈Vj

(Vj(v) − μ(Vj))(V
xj

j
(v) − μ(V

xj

j
))

σ (Vj)σ (V
xj

j
)

, (7)

here η(Vj) is the number of voxels in Vj . Among all sampled loca-

ions, q locations having the highest NCC scores are set as candidates.

he potential of each location candidate is computed as:

(v j, x j|P j,Uj) =
{−log(Sncc(Vj,V

xj

j
)), if Sncc(Vj,V

xj

j
) > 0

∞. otherwise
(8)

ψ(v j, v j′ |P j, P j′) reflects the spatial constraints between the can-

idate locations v j and v j′ of adjacent patches. First, the differ-

nces of distance and direction angles between pairs of the candi-

ates are computed. Then, the probabilities regarding the differences

re defined by using the learned histograms. Since only decoupled
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1. Histogram of distance  
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(a) Training data 

(b) Structured patch model (d) Spatial relationship between adjacent patches 

Fig. 2. The structured patch model (StPM). (a) Training data; (b) description of StPM comprising sets of corresponding local patches and their spatial distribution; (c) examples of

corresponding local patch sets corresponding to the red, green, blue boxes of (a) and their priors; (d) the spatial relations between the adjacent patches on region shown by the

black box in (a). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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tatistics for distance and angles of patch pairs have been constructed

o reduce storage, we approximate the joint pairwise probability by

veraging the marginal probabilities based on distance and angles.

(v j, v j′ |P j, P j′) is computed as the negative log of the approximated

robability.

Since (5) is not sub-modular, the global optimal solution cannot

e determined efficiently. We use the α-expansion method (Boykov

t al., 2001; Kolmogorov and Zabih, 2004) to compute approximate

alues of v and x from (5).

In the editing steps, the user will provide annotations to erroneous

egions. At each step during editing, only the portion near the anno-

ation is modified while the rest is fixed to the previous segmentation

esult Lt−1 in order to avoid unwanted alterations. To achieve this, we

et the patches near the user annotations as the activated patches.

hen, the unary potentials within the activated patches are recom-

uted based on the consistency between the user annotation Uj and

raining set labels M
x j

j
, while the unary and pairwise potentials are

xed to 0 for all other patches. Specifically, the unary potentials of q

osition candidates in the activated patches are recomputed as:

(v j, x j|P j,Uj) = exp ( − Sovl(Uj, M
xj

j
)), (9)

here the overlapping similarity Sovl(Uj, M
x j

j
)) is defined as:

ovl(Uj, M
xj

j
) =

∑
v∈Uj

(δ
Uj(v)=M

x j
j
(v)

+ wUδ
Lt−1

j
(v)=M

x j
j
(v)

). (10)

he more the training patch labels are consistent with the user

nnotation, δ
Uj(v)=M

x j
j

(v)
is increased, while the more the training

atch is consistent with Lt−1, δ
Lt−1

j
(v)=M

x j
j

(v)
is increased. wU con-

rols the weight between the user annotation and the previous
egmentation. As wU is increased, the effect of the user annotation

s damped by Lt−1.

.4. MRF-based segmentation

The segmentation based on the priors of Px is formulated as an

RF energy minimization framework as (2). In this case, the nodes

nd the labels indicate the voxels of V and the segmentation labels,

espectively. The unary potential φ(l(v)|Px,U), which is based on the

ikelihood probability Pr(l(v)|Px,U) for v to be labeled as l(v), is de-

ned as follows:

(l(v)|Px,U) = −log(Pr(l(v)|Px,U)). (11)

he likelihood Pr(l(v)|Px,U) is determined by aggregating the likeli-

ood of local regions Pr(l(v)|Px j

j
,Uj), which are defined as:

r(l(v)|Pxj

j
,Uj) =

⎧⎪⎨
⎪⎩

1, if Uj(v) = l(v)

0, if Uj(v) �= l(v), Uj(v) �= ∅

Pr(l(v)|Pxj

j
), if Uj(v) = ∅

(12)

here

r(l(v)|Px j

j
) = w

x j

j
(l(v)) · Pr(l(v)|Mx j

j
) + (1 − w

x j

j
(l(v))) · Pr(l(v)|Hx j

j
).

(13)

he likelihood Pr(l(v)|Mx j

j
) based on the shape model is computed

s:

r(l(v)|Mxj

j
) =

{
1, if M

xj

j
(v) = l(v)

0, otherwise
(14)
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while the likelihood Pr(l(v)|Hx j

j
) based on the appearance model is

computed as:

Pr(l(v)|Hx j

j
) =

P(I(v)|Hxj

j
(l(v)))

P(I(v)|Hxj

j
(l(v))) + ∑

l̃(v) P(I(v)|Hxj

j
(l̃(v)))

. (15)

Here, l̃(v) is the label indices except l(v). Since there is no user anno-

tations (U(v) = ∅) in the initial step, the likelihoods of all voxels are

computed as (12).

In regions where adjacent patches overlap, multiple likelihoods

computed from different reference patches are averaged to deter-

mine the global likelihood probability Pr(l(v)|Px,U). The likelihoods

of voxels, not covered by any localized StPM patch, are defined based

on the labels of aligned reference set T i′ . Specifically, if the aligned T i′

label is l(v), Pr(l(v)|Px,U) = 1, otherwise Pr(l̃(v)|Px,U) = 0. To ob-

tain L, (2) is optimized by the α-expansion method (Boykov et al.,

2001; Kolmogorov and Zabih, 2004). While optimization is con-

ducted on the whole image in the initial step, it is only conducted

on the local regions patches activated by user annotations in the

editing steps.

Algorithm 1. Algorithm of the proposed framework.

Input: the structured patch model P (Section 2.2 and a

target volume V.

1: Preprocess V. (Section 2.1)

2: Transfer appropriate patches of P to V by optimizing Eq. (1).

(Section 2.3)

3: Segment the target objects in V by optimizing Eq. (2).

(Section 2.4)

4: Iterate 5–7 steps,

5: Insert user scribbles on erroneous regions.

6: Update the training patches and their positions on the

local regions where the user scribbles were given by

optimizing Eq. (1).

7: Update the segmentation on the local regions by

optimizing Eq. (2).

8: Until the segmentation is satisfied.

9: (Optional) Add V and the final result to P (Section 2.2)

The overall framework is presented in Algorithm 1.

3. Experimental evaluation

The proposed framework is evaluated for three public datasets

comprising 2D chest CT data (Shiraishi et al., 2000), 3D knee MR data

(Heimann et al., 2010), and brain MR data.2 We perform segmenta-

tion of the left and right lungs in chest CT images, the femur, tibia,

femoral and tibial cartilages in knee MR images, and fourteen parts

of the diencephalon in brain MR images. For the brain MR images, we

specifically focus on segmentation of the left and right hippocampus

and the thalamus proper among the fourteen parts. For a compre-

hensive validation of the proposed framework, we aim to evaluate

both the accuracy of the StPM-based initial automatic segmentation

(Auto-StPM) and the efficiency and robustness of the StPM-based in-

teractive framework (IA-StPM).
2 https://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main_Page/.
.1. Experimental setting

For the experimental results presented here, the parameters were

et as follows: local patch size of the StPM was manually determined

s a single value for each dataset so that all possible local variations

re covered, 141 × 141 for the chest CT data, 41 × 41 × 21 for the knee

R data, and 15 × 15 × 15 for the brain MR data, respectively; the

number of StPM patches were subsequently determined by setting

the patch sampling interval so that a certain portion, 0.6–0.7, of ad-

jacent patches overlapped. Based on the target object boundary size,

the number of StPM patches were 94, 843 and 523 for the chest CT,

knee MR and brain MR data, respectively. The search range for StPM

localization was set so that the true optimal localization position was

included, while avoiding excess computation. Specifically, 500–600

positions sampled in regular intervals within a cubic volume which

was half the patch size with each side. After NCC was computed for all

sample positions in the search range, only the 200 coordinates with

the highest NCC were retained as the candidates (q = 200) in the op-

imization of (1). λx and λL were empirically determined as 0.1 and

.0 for the chest CT data, 1.0 and 0.3 for the knee MR data, and 0.1

nd 0.15 for the brain MR data, respectively. wU , was set as 0.01 for

arge objects like lungs and bones and 0.1 for small or thin objects

ike cartilages and hippocampus.

All experiments were conducted on a PC with a 2.93 GHz Intel

uad-core i7 CPU, and 16 GB of RAM. Computation of patch similar-

ty was accelerated using OpenMP parallelization. Segmentation per-

ormance was measured by Dice similarity coefficient (DSC), which

s defined as the ratio of the overlapping volume to the combined

olume of manual label M and segmentation label L as DSC(M, L) =
2·|M∩L|
|M|+|L| .

.2. Evaluation of automatic segmentation method using StPM

For each dataset, the evaluation of initial automatic segmentation

s performed five times on ten training and ten test subjects ran-

omly selected from the dataset. To compare the performances of

nitial automatic segmentation, we provide comparison of DSC val-

es obtained by the proposed method (Auto-StPM) to that obtained

y the label fusion method (LF) of Heckemann et al. (2006) based on

ajority voting of all aligned training labels, the label fusion method

PLF) of Coupe et al. (2011) based on non-local weighted voting ac-

ording to the appearance similarity of local patches, and the label

usion method (SLF) of Tong et al. (2013) based on non-local weighted

oting according to the sparse representation of local patches. Here,

e used our own implementations for the LF, PLF, and SLF methods.

pecifically, the Drop registration (Glocker et al., 2008) with param-

ter tuning, which took 2 min on average for one-to-one matching,

as used to align training data to a test volume. The number of ex-

mples for the LF, PLF, and SLF methods as well as the patch sizes for

he PLF and SLF methods have been determined empirically by cross

alidation on the training data. Among the ten training data, seven

xamples with the highest appearance similarity measured by sum

f square distance (SSD), were used for the fusion in the experiments.

he patch size was set as 13 × 13 for the chest CT data, 9 × 9 × 9 for

he knee MR data, and 9 × 9 × 9 for the brain MR data, respectively.

he SLEP software3 was used for the sparse coding of SLF method.

he patch similarity computation in the PLF method was accelerated

y using the OpenMP like the StPM method, while the SLF method

as not accelerated because the SLEP software did not provide the

arallelization.
3 http://www.public.asu.edu/jye02/Software/SLEP/.

http://https://masi.vuse.vanderbilt.edu/workshop2013/index.php/Main_Page/
http://www.public.asu.edu/jye02/Software/SLEP/
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Table 1

Average (standard deviation) DSC values and computational time for four automatic methods tested on fifty different test subjects. LF, PLF, SLF, and Auto-StPM denote the label

fusion with majority voting (Heckemann et al., 2006), the label fusion with non-local weighted voting (Coupe et al., 2011), the label fusion method based on sparse representation

(Tong et al., 2013), and the initial segmentation of proposed method, respectively. The highest DSC and the lowest standard deviation values are highlighted as boldface.

LF PLF SLF Auto-StPM

Chest CT data set

R. lung 0.957 (0.0381) 0.958 (0.0387) 0.958 (0.0316) 0.96 (0.0206)

L. lung 0.954 (0.0306) 0.954 (0.0346) 0.954 (0.0269) 0.952 (0.0157)

Avg 0.956 (0.0344) 0.956 (0.0367) 0.956 (0.0293) 0.956 (0.0182)

Time (min.) 1 11 135 0.3

Knee MR data set

Femur 0.928 (0.0187) 0.957 (0.0172) 0.954 (0.013) 0.959 (0.0126)

Tibia 0.916 (0.0219) 0.953 (0.0175) 0.95 (0.0124) 0.967 (0.0097)

F. cartilage 0.415 (0.1054) 0.609 (0.0808) 0.642 (0.0686) 0.671 (0.0599)

T. cartilage 0.272 (0.1146) 0.517 (0.1057) 0.528 (0.092) 0.531 (0.0979)

Avg. 0.633 (0.0652) 0.759 (0.0553) 0.768 (0.0465) 0.782 (0.0451)

Time (min.) 20 110 6200 4

Brain MR data set

L. hippo. 0.778 (0.0407) 0.836 (0.0285) 0.836 (0.0236) 0.842 (0.0259)

R. hippo. 0.776 (0.0461) 0.834 (0.0348) 0.828 (0.0248) 0.835 (0.0321)

L. thalamus 0.885 (0.0236) 0.912 (0.0087) 0.904 (0.0169) 0.904 (0.0115)

R. thalamus 0.891 (0.0215) 0.913 (0.0129) 0.919 (0.0143) 0.909 (0.0125)

Avg. 0.832 (0.033) 0.874 (0.0212) 0.87 (0.0199) 0.873 (0.0205)

Time (min.) 20 35 210 2
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Table 1 presents the average and standard deviation of DSC values

f fifty subjects and the corresponding computational time for each

ethod. Fig. 3 shows the box plots which represent the variance of

he DSC values of these results. Generally, the Auto-StPM method out-

erformed the LF method, while being comparable with the PLF and

LF methods for most cases in terms of accuracy. For the left lung in

he chest CT dataset, the median DSC value of the Auto-StPM method

as less than the label fusion based methods. Nonetheless, the Auto-

tPM method showed to be more stable, in that, it had smaller stan-

ard deviation. This is due to the large shape variations of the left lung

ompared to other objects, which cause large variance for the regis-

ration in the label fusion based methods. For the thalamus proper

n the brain MR dataset, the PLF and SLF methods slightly outper-

ormed the Auto-StPM method, by less than 0.01, on average. Since

he boundary of thalamus proper was often very unclear and had

mall shape variations, the finely aligned labels might better guide

egmentation than the adaptive priors of the StPM on some cases.

owever, for the other target objects, the proposed method outper-

ormed the label fusion based methods without complex non-rigid

egistration. In terms of computational time, the Auto-StPM method

as 3–5 times faster than the LF method, more than 17 times faster

han the PLF method, and more than 105 times faster than the SLF

ethods. The Auto-StPM method would be more than 20 times faster

han the SLF method even if the SLF method was parallelized in the

ame setting.

We also present the statistical significance between the automatic

egmentation results based on p-values obtained by paired t-tests

f the DSC scores in Table 2. Except for the lung dataset, the Auto-

tPM method obtained results with higher statistical significance

han them of the LF method, rejecting the null hypothesis beyond the

5% of confidence level. The Auto-StPM method also statistically out-

erformed the PLF method for the tibia and femoral cartilage cases

nd the SLF method for the femur, tibia and femoral cartilage cases.

or other target objects, the Auto-StPM method was neither better

or worse with statistical significance, except for the left thalamus

roper where the PLF method outperformed the StPM. Overall, the

uto-StPM method was statistically comparable with that by PFL and

FL methods.

t

Finally, we present the performance change of the Auto-StPM re-

ults depending on the StPM with different training dataset size to

alidate the model-based framework. The experiment was conducted

n twenty test volumes. The average DSC values presented in Fig. 4

how that the DSC performance is generally improved as the num-

er of training data increases. This demonstrates the validity of the

xample-based-model framework, in which the relevant information

ncapsulated by the StPM becomes better by incrementing the num-

er of examples.

.3. Evaluation of interactive editing using StPM

To measure the effectiveness of the proposed interactive frame-

ork, denoted as IA-StPM, we evaluate the quantitative segmentation

ccuracy of the results obtained by performing IA-StPM on the results

f Auto-StPM segmentation with an StPM constructed from thirty

raining subjects. We denote this full framework combining Auto-

tPM and IA-StPM as Auto+IA-StPM. We compare these results to re-

ults obtained from (1) different fully automatic methods, namely,

he LF, PLF, SLF and Auto-StPM methods, (2) different editing frame-

orks, namely, manual correction (Manual), interactive graph cuts

pecifically modified for local editing (GC-Edit), and IA-StPM, applied

o the results of the PLF method, denoted as PLF+Manual, PLF+GC,

nd PLF+IA-StPM, respectively, and (3) different interactive segmen-

ation frameworks, namely, the graph cuts (GC) method of Shim et al.

2009a) and the TurtleSeg (TS) method of Top et al. (2011) based on

ctive learning. In this context, an editing framework is one used to

orrect errors in a precomputed segmentation while a segmentation

ramework is one to compute a clinically satisfactory segmentation

rom the image.

For interactive editing frameworks, editing comprised both user

nnotation and re-computing the segmentation was conducted for

fixed amount of time. The correction time of each subject were

et as 40 s, 8 min and 8 min for the chest CT images, knee MR im-

ges and the brain MR images, respectively. This respectively trans-

ated to two, five and six user corrections, on average, for each

ung in the chest CT, each bone and cartilage in the knee MR, and

ach hippocampus and thalamus proper in the brain MR. Compu-

ational time to update the segmentation given an additional user
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Fig. 3. DSC performance of automatic methods for fifty test volumes. LF, PFL, SPL, and A-StPM denote the label fusion with majority voting (Heckemann et al., 2006), the label

fusion with non-local weighted voting (Coupe et al., 2011), the label fusion with sparse representation (Tong et al., 2013), and the initial automatic segmentation results of the

proposed method (Auto-StPM), respectively. The DSC values are represented as boxes with top and bottom positions representing the upper and lower quartile and a subdivision

representing the median value. The whiskers connected to each box indicate the DSC values of top and bottom 5% subjects.

Table 2

Statistical significance (paired t-test) between the DSC values obtained from three

label fusion based methods (LF, PLF, SLF) and the initial automatic segmentation of

proposed method (Auto-StPM) for fifty different test subjects.

LF PLF SLF

Chest CT data set

R. lung 0.6047 0.813 0.6739

L. lung 0.5962 0.6263 0.5833

Knee MR data set

Femur 6.99e−16 0.4199 0.012

Tibia 9.70e−27 3.12e−06 2.06e−13

F. cartilage 1.41e−26 3.30e−05 0.0235

T. cartilage 7.37e−21 0.5086 0.4072

Brain MR data set

L. hippo. 2.62e−15 0.24 0.2176

R. hippo. 4.17e−11 0.888 0.2462

L. thalamus 1.20e−06 1.64e−04 0.9101

R. thalamus 1.30e−06 0.1113 0.5892
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annotation took less than one second for the chest CT and brain MR

images, and three seconds for the knee MR due to larger local patch

size. The majority of the editing time was spent on finding ambiguous

regions and providing the user annotations.
.3.1. Comparison with fully automatic segmentation methods

The DSC values of automatic segmentation results by the LF,

LF, SLF and Auto-StPM methods with 30 training images tested

n 5 test images are measured. For the three label fusion meth-

ds, the optimal number of training data was empirically deter-

ined as twenty. The average and standard deviation of DSC val-

es and overall computational time of these methods evaluated on

ve test subjects are presented in Table 3. Since segmentation er-

ors mostly occurred in relatively small ambiguous portions of the

mage, the segmentation accuracy was largely improved by the IA-

tPM even with the small numbers of user annotations, from DSC

alue 0.961 to 0.975 for lung, 0.813 to 0.833 for knee, 0.89 to 0.905

or brain. In terms of computational time, even when considering

he time taken for user annotations, the IA-StPM method was 1.6–

.5 times faster than the LF method, more than 7 times faster than

he PLF method, and more than 30 times faster than the SLF meth-

ds. The comparison in terms of statistical significance is presented

n Table 4. Due to the small number of test subjects, most of the p-

alues are relatively higher than the p-values of Table 2. Nonethe-

ess, the IA-StPM framework statistically outperformed the LF, PLF,

nd SLF methods for all cases, except for the femur in knee MR

mages and thalamus proper in brain MR images. Although there

as no statistical significance for the femur and thalamus proper
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Fig. 4. Change of the initial automatic segmentation accuracy of the Auto-StPM method with different training dataset size 2, 5, 10, 20 and 30 measured by DSC. Values for (a)

femur and tibia, (b) femoral and tibial cartilages, (c) right and left lungs, and (d) right and left hippocampus and thalamus proper.

Table 3

Average (standard deviation) DSC values and computational time for three label fusion methods (LF (Heckemann et al., 2006), PLF (Coupe et al., 2011), SLF (Tong et al., 2013)),

the initial automatic segmentation of StPM (Auto-StPM) and the interactive segmentation based on StPM (IA-StPM) evaluated on five test subjects. IA-StPM represents results

obtained after interactively editing the results of Auto-StPM for a fixed time. The highest DSC and the lowest standard deviation values are highlighted as boldface.

LF PLF SLF Auto-StPM Auto+IA-StPM

Chest data

R. lung 0.967 (0.0088) 0.967 (0.0087) 0.969 (0.0064) 0.972 (0.0047) 0.977 (0.0022)

L. lung 0.957 (0.0082) 0.959 (0.007) 0.959 (0.0071) 0.949 (0.0213) 0.973 (0.0045)

Avg. 0.962 (0.0085) 0.963 (0.0078) 0.964 (0.0067) 0.961 (0.013) 0.975 (0.0033)

Time (min.) 2 22 270 0.5 1.2

Knee data

Femur 0.94 (0.0212) 0.966 (0.0091) 0.966 (0.0114) 0.965 (0.0074) 0.971 (0.0031)

Tibia 0.923 (0.0278) 0.964 (0.0069) 0.964 (0.0078) 0.972 (0.0081) 0.974 (0.0065)

F. cart. 0.523 (0.0802) 0.68 (0.0505) 0.701 (0.0375) 0.719 (0.0183) 0.746 (0.0133)

T. cart. 0.277 (0.1203) 0.584 (0.0283) 0.588 (0.0302) 0.595 (0.0244) 0.641 (0.0259)

Avg. 0.666 (0.0624) 0.798 (0.0237) 0.805 (0.0215) 0.813 (0.0145) 0.833 (0.0122)

Time (min.) 60 240 12,500 8 16

Brain data

L. Hippo. 0.8 (0.0497) 0.859 (0.0207) 0.862 (0.0159) 0.866 (0.0168) 0.89 (0.0086)

R. Hippo. 0.79 (0.046) 0.848 (0.0237) 0.852 (0.0155) 0.858 (0.0134) 0.882 (0.009)

L. Tha. 0.909 (0.0071) 0.92 (0.0079) 0.919 (0.0093) 0.917 (0.0099) 0.922 (0.0076)

R. Tha. 0.907 (0.0087) 0.922 (0.0081) 0.921 (0.0076) 0.918 (0.0106) 0.925 (0.0088)

Avg. 0.852 (0.0279) 0.887 (0.0151) 0.889 (0.0121) 0.89 (0.0127) 0.905 (0.0085)

Time (min.) 60 90 520 5 13
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ases, the DSC values of edited results were nonetheless larger than

he comparison methods for all test subjects (five subjects for each

ataset). We expect that the statistical significance would be better

s the number of test subjects increase.

.3.2. Comparison with different interactive editing methods

The segmentation accuracy of results obtained by the

LF+Manual, PLF+GC-Edit, and PLF+IA-StPM are measured. We note
hat as long as an appropriate StPM has been constructed, the

A-StPM can be applied to results obtained by any other method.

he IA-StPM is initialized by optimizing Eq. (1) and localizing the

tPM among candidate positions sampled from the surface boundary

f the given precomputed segmentation. After initialization, the

A-StPM is performed identically as when following Auto-StPM. For

he GC method, here, we applied a modified version of the method of

him et al. (2009a) so that the segmentation result is changed only in
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Table 4

Statistical significance (paired t-test) between the DSC values obtained from au-

tomatic methods (LF, PLF, SLF, Auto-StPM) and interactive StPM method (IA-StPM)

for five test subjects.

LF PLF SLF Auto-StPM

Chest CT data set

R. lung 0.0375 0.0373 0.0252 0.0451

L. lung 0.0049 0.0041 0.005 0.0389

Knee MR data set

Femur 0.0171 0.3529 0.4281 0.3049

Tibia 0.0037 0.0344 0.0449 0.5899

F. cartilage 0.0003 0.0226 0.0357 0.0286

T. cartilage 0.0002 0.0109 0.0186 0.021

Brain MR data set

L. Hippo. 0.0041 0.0137 0.0083 0.022

R. Hippo. 0.0023 0.0167 0.0054 0.0094

L. Thalamus 0.0222 0.6475 0.5884 0.3295

R. Thalamus 0.0118 0.5121 0.447 0.2552

Table 5

Average (standard deviation) DSC values for different interactive editing methods

tested on five test subjects. The editing was conducted for a fixed time on re-

sults obtained by fully automatic methods – the patch based label fusion (PLF)

method for the left three columns and Auto-StPM method for the rightmost col-

umn. Manual, GC-Edit, and IA-StPM denote the manual editing method, the mod-

ified local graph cut method, and the proposed interactive method, respectively.

The highest DSC and the lowest standard deviation values are highlighted as

boldface.

PLF+Manual PLF+GC PLF+IA-StPM Auto+IA-StPM

Chest data

R. lung 0.971 (0.0119) 0.974 (0.0054) 0.977 (0.0026) 0.977 (0.0022)

L. lung 0.962 (0.0057) 0.965 (0.0061) 0.974 (0.0044) 0.973 (0.0045)

Avg. 0.967 (0.0088) 0.97 (0.0058) 0.976 (0.0035) 0.975 (0.0033)

Knee data

Femur 0.968 (0.0078) 0.97 (0.0043) 0.973 (0.0028) 0.971 (0.0031)

Tibia 0.965 (0.0055) 0.969 (0.0063) 0.973 (0.0046) 0.974 (0.0065)

F. cart. 0.706 (0.042) 0.711 (0.0318) 0.739 (0.0266) 0.746 (0.0133)

T. cart. 0.601 (0.0258) 0.622 (0.0265) 0.632 (0.0221) 0.641 (0.0259)

Avg. 0.81 (0.0203) 0.818 (0.0172) 0.829 (0.014) 0.833 (0.0122)

Brain data

L. Hippo. 0.871 (0.0078) 0.869 (0.0115) 0.885 (0.0074) 0.89 (0.0086)

R. Hippo. 0.87 (0.0072) 0.865 (0.0104) 0.88 (0.0055) 0.882 (0.009)

L. Tha. 0.922 (0.0079) 0.919 (0.0096) 0.924 (0.0082) 0.922 (0.0076)

R. Tha. 0.924 (0.0088) 0.923 (0.0091) 0.926 (0.0087) 0.925 (0.0088)

Avg. 0.897 (0.0079) 0.894 (0.0102) 0.904 (0.0075) 0.905 (0.0085)

Fig. 5. (a) Initial segmentation by the Auto-StPM method (green), the ground truth

boundary (white line), and foreground (red) and background (blue) user annotations.

(b) Enlarged view of image region in white square of (a) and (c) enlarged view in-

cluding label information. (d) The local likelihood computed by the appearance model

for the modified graph cut (GC-Edit) method (Shim et al., 2009a). The GC-Edit is con-

ducted on the local region (red box) near the user annotations. (e) GC-Edit result with

low smoothness cost and (f) GC-Edit result with high smoothness cost. (g) The local

likelihood computed by adaptive priors of StPM. (h) The result of IA-StPM editing. (For

interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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regions near user annotations, hence the notation GC-Edit. With-

out this modification, unwanted change may occur, frequently, in

correct regions far from the annotations. Also, unary likelihoods

are computed based on intensity histograms of annotated voxels

together with voxels of the initial segmentation for foreground

and background, respectively. For Manual method, only voxels that

receive user annotations are updated directly. For all methods,

annotations are given as scribbles using a mouse as in common
rawing applications, where brush size and image zoom can be

ontrolled.

Table 5 presents the performances of editing results. Since the

anual editing method required accurate and fine user annotations

n erroneous regions, the performance was limited compared to the

ther methods. Though the GC-Edit method gave better results for

egions with clearly distinguishable boundaries, it often gave much

orse results for boundaries with low contrast as shown in Fig. 5. Es-

ecially, due to the similar foreground and background appearance of

he hippocampus and thalamus proper, the performance of GC-Edit

as even worse than that of Manual method. On the other hand, the

LF+IA-StPM and Auto+IA-StPM methods gave robust results even on

mbiguous regions. Also, editing can be more effectively performed

or cases where large errors occur on a small number of local re-

ions. Specifically, a few local user scribbles sufficed to correct the

rrors for the lung, bones and hippocampus (0.008–0.03 DSC gain)

ecause their errors occurred on small number of ambiguous weak

oundary regions. On the other hand, the gains of GC-Edit and IA-

tPM editing methods were relatively small (0.005–0.007 DSC gain)

or the thalamus proper because the automatic segmentation bound-

ry was mostly close to the true boundary. In this case, erroneous

egmentation regions in the form of thin strips are distributed evenly
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Fig. 6. DSC performance versus the cumulative processing time for segmentation of

femur, tibia, femoral cartilage, and tibial cartilage from a knee MR image. Blue, green,

red represent the results of the graph cut (GC) method (Shim et al., 2009a), TurtleSeg

method (TS) (Top et al., 2011), and the proposed method (StPM), respectively. The pro-

cessing times for GC and TS linearly increase for the number of objects. On the other

hand, for the StPM method, editing is performed on the initial segmentation results

obtained automatically for the four compartments within 8 min (gray line). (For inter-

pretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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Fig. 7. DSC performance versus the cumulative processing time for segmentation of

the right and left hippocampus and thalamus proper from a brain MR image. Blue,

green, red represent the results of the graph cut (GC) method (Shim et al., 2009a),

TurtleSeg method (TS) (Top et al., 2011), and the proposed method (StPM), respectively.

The processing times for GC and TS linearly increase for the number of objects. On

the other hand, for the StPM method, editing is performed on the initial segmentation

results obtained automatically for the four compartments within 5 min (gray line). (For

interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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Fig. 8. DSC performance versus the cumulative processing time for segmentation of

femur, tibia, femoral cartilage, and tibial cartilage from a knee MR image. Editing was

performed on the segmentation results obtained by patch based label fusion (PLF)

method. Black, green, blue, red represent the results of the PLF, PLF+Manual method,

PLF+GC-Edit method (Shim et al., 2009a), and PLF+IA-StPM method, respectively. (For

interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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Fig. 9. DSC performance versus the cumulative processing time for segmentation of

the right and left hippocampus and thalamus proper from a brain MR image. Editing

was performed on the segmentation results obtained by patch based label fusion (PLF)

method. Black, green, blue, red represent the results of the PLF, PLF+Manual method,

PLF+GC-Edit method (Shim et al., 2009a), and PLF+IA-StPM method, respectively. (For

interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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4 http://www.turtleseg.org.
long the boundary, making it difficult for the user to insert

cribbles.

.3.3. Qualitative comparison of segmentation efficiency

We compare the Auto+IA-StPM method with two interactive

ethods, namely, the graph cuts (GC) method of Shim et al.

2009a) and the TurtleSeg (TS) method of Top et al. (2011) based

n active learning, as well as the different editing frameworks

pplied to the results of the PLF method (PLF+Manual, PLF+GC,

LF+IA-StPM) in the previous subsection. The comparison is per-

ormed only on three-dimensional image data sets since the TS

ethod is not applicable to two-dimensional images. For the GC

nd TS methods, implementations by the original authors were

sed. Since the GC method requires a considerable amount of user

cribbles, especially for background regions, the software provides
crop function so that the segmentation is conducted on a spe-

ific region when the target object is small within a large image.

o limit computation and provide a fair comparison, the GC opti-

ization was conducted on a cropped region of interest covering the

arget objects. For the TS method, we used the default setting pro-

ided in the authors website.4 Figs. 6 and 7 show the DSC values of

he GC, TS, and StPM methods versus the cumulative annotation and

rocessing time for segmenting multiple objects in a test subject.

ere, the multiple objects were sequentially segmented. The com-

utational time of GC and TS methods increased proportionally to

he number of target objects of the test subject. On the other hand,

he proposed StPM was much more efficient due to the initial au-

omatic segmentation which simultaneously computed results for

ll objects. Specifically, the average computational time required for

he Auto-StPM segmentation was 8 and 5 min, for MR images of the

nee joint comprising four compartments and MR images of the brain

http://www.turtleseg.org
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Fig. 10. Comparison of required user annotations to obtain similar segmentation results (green) within front and back views of femur and tibia. (a) and (b): User annotations for the

TurtleSeg (TS) method (Top et al., 2011) represented as orange lines; (c) and (d): user annotations for the graph cut (GC) method (Shim et al., 2009a) represented as red (object) and

blue (background) scribbles, respectively; (e) and (f): user annotations for the proposed IA-StPM method represented as red (object) and blue (background) scribbles, respectively.

More than 10 delineations and 20 pairs of object and background scribbles are required for the TS and GC methods, respectively. On the other hand, 5 pairs of scribbles are required

for the proposed method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Comparison of required user annotations to obtain similar segmentation results (green) within front and back views of femoral and tibial cartilage. (a) and (b): User

annotations for the TurtleSeg (TS) method (Top et al., 2011) represented as orange lines; (c) and (d): user annotations for the graph cut (GC) method (Shim et al., 2009a) represented

as red (object) and blue (background) scribbles, respectively; (e) and (f): user annotations for the proposed IA-StPM method represented as red (object) and blue (background)

scribbles, respectively. More than 10 delineations and 20 pairs of object and background scribbles are required for the TS and GC methods, respectively. On the other hand, 8 pairs

of scribbles are required for the proposed method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Comparison of required user annotations to obtain similar segmentation results (green) within front and back views of hippocampus and thalamus proper. (a) and (b): User

annotations for the TurtleSeg (TS) method (Top et al., 2011) represented as orange lines; (c) and (d): user annotations for the graph cut (GC) method (Shim et al., 2009a) represented

as red (object) and blue (background) scribbles, respectively; (e) and (f): user annotations for the proposed IA-StPM method represented as red (object) and blue (background)

scribbles, respectively. More than 7 delineations and 10 pairs of object and background scribbles are required for the TS and GC methods, respectively. On the other hand, 4 pairs of

scribbles are required for the proposed method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Robustness of the proposed IA-StPM method regarding different user annotations. (a) Test image, (b) initial segmentation (magenta) and ground truth boundary (white

line), (c) enlarged view of region corresponding to the black square in (b), (d)-1 to (d)-7: different user annotations (red, blue markings represent the object and background,

respectively) in the region of (c), and (e)-1 to (e)-7: corrected results based on the StPM corresponding to the annotations in (d)-1 to (d)-7. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 14. Qualitative segmentation results of (a) lungs from 2D lung CT images, (b) bone (left) and cartilage (right) from 3D knee and (c) hippocampus (left) and thalamus proper

(right) from 3D brain MR images. Initial results from Auto-StPM, user scribbles (highlighted in circles), and corrected results are shown in first, second, third column of each set.

Segmentation is successfully corrected from small amount of user annotations.
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comprising fourteen compartments, respectively. To obtain the same

level of accuracy with the Auto-StPM results, the GC method required

over 40 and 18 min and the TS method over 40 and 15 min, respec-

tively. Moreover, the accuracy of the TS method often converged on a

lower DSC value than the other methods, depending on the target ob-

ject shape. On the other hand, since the editing of StPM started from

the initial segmentation results, laborious initial user annotation was

largely reduced.

Figs. 8 and 9 show the DSC values of PLF+Manual, PLF+GC,

and PLF+IA-StPM methods versus the cumulative annotation and

processing time for the same test subject. Since these meth-

ods also assume an initial segmentation like the Auto+IA-StPM

method, user interaction can be reduced significantly. However,

the starting time of editing was relatively slow due to the high
omplexity of the PLF method. Excluding the starting time, the

erformance change of PLF+IA-StPM method was similar with that

f Auto-IA-StPM method shown in Figs. 6 and 7. On the other hand,

uch more time was required to improve the segmentation accuracy

sing the Manual or GC method. Furthermore, when using the GC

ethod, segmentation accuracy even became worse for some edit-

ng steps because new errors were introduced on ambiguous regions,

s in the example shown in Fig. 5. On the other hand, since the

ser annotations can be given as a small number of dots or rough

cribbles in the IA-StPM method, the correction time to obtain the

ame level of accuracy, 8 min, was less than the PLF+Manual and

LF+GC methods, which were over 20 min and 16 min for knee im-

ge and 14 min and 20 min for brain image, respectively (see Figs. 8

nd 9).
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Fig. 10, Fig. 11 and Fig. 12 show the difference of user anno-

ations for the three interactive methods. Specifically, for the GC

ethod, the user was required to provide scribbles surrounding

ost of the true boundary to prevent the segmentation ‘leaking’

ver, especially on boundaries with weak image gradient such as

pper part of femur, bottom part of tibia, boundaries between car-

ilages, and the thalamus proper. Relatively, the TS method re-

uired a smaller amount of user delineations since they were re-

uired only on uncertain 2-D planes. Although the TS method was

ffective to simple shaped objects like tibia and thalamus proper,

e observed that the required number of delineations significantly

ncreased for thin or deformable objects like the knee cartilages,

ausing the user to repeatedly delineate the boundary in planes

ith similar orientations. On the other hand, the required anno-

ation of the StPM method was much less than the other meth-

ds and was also much less dependent on the shape of the target

bject.

Fig. 13 shows an example of the robustness of the StPM method

o the placement and quantity of user annotations. When user

cribbles were roughly given in regions that require modification,

he segmentation was correctly updated for most cases, even with

mall amounts, as small as a dot, and for substantially different

mounts and positioning. Moreover, we can see in Fig. 13(d)-6/(e)-

and (d)-7/(e)-7 that the StPM enables correction of the segmen-

ation error even though the user annotations are placed dispro-

ortionately relative to the where the boundaries require modifi-

ation. We argue that this property helps to reduce the inter vari-

bility between different users. Fig. 14 shows further qualitative

esults.

. Conclusion

In this paper, we have proposed a new interactive framework for

obust and efficient segmentation of target objects from a large num-

er of medical images. To address this problem, we incorporate the

igh-level prior knowledge of training data represented as the struc-

ured patch model (StPM) into the interactive framework. The pro-

osed framework is flexible and effective and is perhaps more useful

or clinical applications compared to previous fully automatic meth-

ds in which the performance can be critically effected by target ob-

ect characteristics or parameter settings. This is made possible since

he global shape structure as well as the local shape and appear-

nce are well represented by the proposed StPM. Within the inter-

ctive framework, configuration of the priors and structure of the

tPM and the segmentation results are repeatedly updated when-

ver more user annotation is given. The performance was compared

ith the three label fusion based methods (LF (Heckemann et al.,

006), PLF (Coupe et al., 2011), and SLF (Tong et al., 2013)) and

he interactive methods based on graph cuts (Shim et al., 2009a)

nd active learning (Top et al., 2011) for various target objects from

hest CT, knee MR, and brain MR datasets. In terms of accuracy

nd statistical significance, the Auto-StPM method outperformed the

F method for all target objects except lung, while was compara-

le with the PLF and SLF methods. On the other hand, the IA-StPM

ethod with few user annotations outperformed the LF method for

ll target objects, and the PLF and SLF methods for the most target

bjects except femur and thalamus proper. Furthermore, the pro-

osed framework was considerably more efficient, requiring approx-

mately one fifth for knee joint MR images containing femur, tibia,

nd cartilages and one third for brain MR images containing hip-

ocampus and thalamus proper, respectively, of the time required

y the compared interactive methods. In our evaluation, each edit-

ng step, consisting of updating both the StPM configuration and lo-

al segmentation, was conducted in less than three seconds. Since
ppropriate priors were initially determined overall, segmentations

an be efficiently corrected and are robust to variations in user an-

otations. As the size of patch sets in the StPM increases, the accu-

acy of segmentation results will most likely improve as well. Thus,

e believe that the proposed framework can be applied to facilitate

onstruction of larger databases and to conduct longitudinal studies

ore efficiently.
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