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Abstract
Surrogate models can be used to accelerate approximate Bayesian computation (ABC).

In one such framework the discrepancy between simulated and observed data is modelled
with a Gaussian process. So far principled strategies have been proposed only for sequential
selection of the simulation locations. To address this limitation, we develop Bayesian optimal
design strategies to parallellise the expensive simulations. We also touch the problem of
quantifying the uncertainty of the ABC posterior due to the limited budget of simulations.

1. Introduction

Approximate Bayesian computation (Marin et al., 2012; Lintusaari et al., 2017) is used
for Bayesian inference when the analytic form of the likelihood function of a statistical
model of interest is either unavailable or too costly to evaluate, but simulating the model
is feasible. Unfortunately, many models e.g. in genomics and epidemiology (Numminen
et al., 2013; Marttinen et al., 2015; McKinley et al., 2018) and climate science (Holden et al.,
2018) are costly to simulate making sampling-based ABC inference algorithms infeasible. To
increase sample-efficiency of ABC, various methods using surrogate models such as neural
networks (Papamakarios and Murray, 2016; Papamakarios et al., 2019; Lueckmann et al.,
2019; Greenberg et al., 2019) and Gaussian processes (Meeds and Welling, 2014; Wilkinson,
2014; Gutmann and Corander, 2016; Järvenpää et al., 2018, 2019a,b) have been proposed.

In one promising surrogate-based ABC framework the discrepancy between the observed
and simulated data is modelled with a Gaussian process (GP) (Gutmann and Corander,
2016; Järvenpää et al., 2018, 2019a). Sequential Bayesian experimental design (or active
learning) methods to select the simulation locations so as to maximise the sample-efficiency
in this framework were proposed by Järvenpää et al. (2019a). However, one often has
access to multiple computers to run some of the simulations in parallel. In this work,
motivated by the related problem of batch Bayesian optimisation (Ginsbourger et al., 2010;
Desautels et al., 2014; Shah and Ghahramani, 2015; Wu and Frazier, 2016) and the parallel
GP-based method by Järvenpää et al. (2019b) for inference tasks where noisy and potentially
expensive log-likelihood evaluations can be obtained, we resolve this limitation by developing
principled batch simulation methods which considerably decrease the wall-time needed for
ABC inference.
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The posterior distribution is often summarised for further decision making using e.g. ex-
pectation and variance. When the computational resources for ABC inference are limited, it
would be important to assess the accuracy of such summaries, but this has not been explicitly
acknowledged in earlier work. We devise an approximate numerical method to propagate the
uncertainty of the discrepancy, represented by the GP model, to the resulting ABC posterior
summaries. We call our resulting framework as Bayesian ABC in analogy with the related
problems of Bayesian quadrature (O’Hagan, 1991; Osborne et al., 2012; Briol et al., 2019)
and Bayesian optimisation (BO) (Brochu et al., 2010; Shahriari et al., 2015).

2. Bayesian ABC framework

Let π(θ) denote the prior density of the (continuous) parameters θ ∈ Θ ⊂ Rp of a statistical
model of interest and π(xobs |θ) corresponding intractable likelihood function. Standard
ABC algorithms such as the ABC rejection sampler target the approximate posterior

πABC(θ|xobs),
π(θ)

∫
X1∆(xobs,x)≤επ(x|θ) dx∫

Θπ(θ′)
∫
X1∆(xobs,x)≤επ(x′|θ′) dx′ dθ′

, (1)

where ∆ : X 2 → R+ is a discrepancy function used to compare the similarity between
simulated data x ∈ X and observed data xobs ∈ X , and ε is a threshold parameter.

The main idea of Bayesian ABC is to explicitly use another layer of Bayesian inference to
estimate the ABC posterior in Eq. 1. The previously obtained discrepancy-parameter-pairs
are treated as data to learn a surrogate model, which will predict the discrepancy for a given
parameter value. The surrogate model is further used to form an estimator for the ABC
posterior in Eq. 1 and to adaptively acquire new data using Bayesian experimental design.

We make the assumption that the discrepancy evaluation ∆i at θi is generated as
∆i = f(θi) + νi with νi∼i.i.d.N (0, σ2

n), where σ2
n > 0 is the variance of the discrepancy. To

encode the assumptions of smoothness and e.g. potential quadratic shape of the discrepancy
∆θ, its unknown mean function f is given a GP prior. Given Dt , {(∆i,θi)}ti=1, we obtain
f |Dt ∼ GP(mt(θ), ct(θ,θ

′)). See Appendix A.1 for the details of the GP prior used and the
formulas for mt(θ) and ct(θ,θ′). We define s2

t (θ) , ct(θ,θ) and Πf
Dt

, GP(mt(θ), ct(θ,θ
′)).

If f and σ2
n were known, the ABC posterior could be obtained from Eq. 1 as

πfABC(θ) ,
π(θ)Φ ((ε− f(θ))/σn)∫

Θ π(θ′)Φ
(
(ε− f(θ′))/σn

)
dθ′

, (2)

where Φ(·) is the Gaussian cdf. As we have only access to observations Dt, our knowledge
about f is represented by the Gaussian measure f ∼ Πf

Dt
. The posterior of πfABC in Eq. 2,

describing its uncertainty due to the limited t simulations, is then obtained as the push-forward
measure through the mapping f 7→ πfABC. While this is analytically intractable, the mean,
variance and quantiles of the unnormalised ABC posterior π̃fABC(θ) , π(θ)Φ((ε− f(θ))/σn),
can be computed analytically allowing efficient computations, see Appendix A.1.

2.1. Parallel simulations

We aim to find informative simulation locations for obtaining the best possible estimate of
the ABC posterior πfABC given the postulated GP model. We here consider the (synchronous)
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batch setting where b simulations are simultaneously selected to be computed in parallel
at each iteration of our algorithm. Consider a loss function l : D2 → R+ so that l(πABC, d)
quantifies the penalty of reporting d ∈ D as our ABC posterior when the true one is
πABC ∈ D . Given Dt, the one-batch-ahead Bayes-optimal selection of the next batch of b
evaluations θopt = [θopt1 , . . . ,θoptb ] is then obtained as θopt = arg minθ∗∈Θb Lt(θ

∗), where

Lt(θ
∗) = E∆∗|θ∗,Dt

L(Πf
Dt∪D∗), L(Πf

Dt∪D∗) , min
d∈D

Ef |Dt∪D∗ l(πfABC, d). (3)

In Eq. 3, an expectation over b future discrepancy evaluations ∆∗ = (∆∗1, . . . ,∆
∗
b)
> at

locations θ∗ needs to be computed assuming ∆∗ follows the current GP model. The
expectation is taken of the Bayes risk L(Πf

Dt∪D∗) resulting from the nested decision problem
of choosing the estimator d, assuming ∆∗ are known and merged with current data Dt via
D∗ , {(∆∗i ,θ

∗
i )}bi=1.

Using a loss function based on π̃fABC instead of πfABC allows tractable computations. If
we choose L2 loss function l̃2 ,

∫
Θ(π̃fABC(θ) − d̃(θ))2 dθ between the unnormalised ABC

posterior π̃fABC and its estimator d̃, then the optimal estimator is the mean in Eq. 11. The
resulting expected integrated variance (EIV) acquisition function, denoted as Lv

t (θ
∗), is

Lv
t (θ
∗)=2

∫
Θ
π2(θ)

[
T

(
at(θ),

√
σ2
n+s2

t (θ)−τ2
t (θ;θ∗)√

σ2
n+s2

t (θ)+τ2
t (θ;θ∗)

)
−T

(
at(θ),

σn√
σ2
n+2s2

t (θ)

)]
dθ, (4)

where τ2
t (θ;θ∗)=ct(θ,θ

∗)[ct(θ
∗,θ∗)+σ2

nI]−1ct(θ
∗,θ) and T is Owen’s T function. We use

greedy optimisation as is also common in batch BO (see, e.g., Snoek et al., 2012; Wilson
et al., 2018) and the integral over Θ is computed using importance sampling. We can also
show that the corresponding L1 loss function produces the marginal median in Eq. 13 of
the Appendix as the optimal estimator. The resulting acquisition function, called expected
integrated MAD (EIMAD), in addition to some heuristically-motivated batch methods used
as baselines (called MAXV, MAXMAD), are developed in Appendix A.2.

2.2. Uncertainty quantification of the ABC posterior

Pointwise marginal uncertainty of the unnormalised ABC posterior π̃fABC was used for
selecting the simulation locations. However, knowing π̃fABC and its marginal uncertainty
in some individual θ-values is not very helpful for understanding the accuracy of the final
estimate of πfABC. Computing the distribution of e.g. ABC posterior expectation or marginals
using πfABC in Eq. 2 is clearly more intuitive. Unfortunately, such computations are difficult
due to the nonlinear dependence on the infinite-dimensional quantity f . We propose a
simulation-based approach where we combine drawing of GP sample paths and normalised
importance sampling. For full details and an illustration, see Appendix A.3 and Fig. 3.

3. Experiments

We use two real-world simulation models to compare the performance of the sequential and
synchronous batch versions of the acquisition methods. As a simple baseline, we consider
random points (RAND) drawn from the prior. ABC-MCMC (Marjoram et al., 2003) with
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extensive simulations is used to compute the ground truth ABC posterior. Median total
variation distance (TV) over 50 repeated simulations is used to measure the quality of
approximations. See Appendix B for further details and C for additional results.

Lorenz model. This model describes the dynamics of slow weather variables and
their dependence on unobserved fast weather variables. The model is represented by a
coupled stochastic differential equation which can only be solved numerically resulting in an
intractable likelihood. The model has two parameters θ = (θ1, θ2) which we estimate from
timeseries data. See Thomas et al. (2018) for full details and the experimental set-up that
we also use, with the exception that we set θ ∼ U([0, 5]×[0, 0.5]). The results are shown
in Fig. 1(a). Furthermore, Fig. 1(b-c) demonstrates the uncertainty quantification of the
expectation of the model-based ABC posterior. The effect of batch size is shown in Fig. 2(c).
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Figure 1: (a) Lorenz model. The intervals show the 90% variability. See Fig. 2(a) for the
legend. (b-c) Black line is the mean and dashed black the 95% CI of the ABC
posterior expectations. Red line shows the true value.

Bacterial infections model. This model describes transmission dynamics of bacterial
infections in day care centers and features intractable likelihood function (Numminen et al.,
2013). We estimate the internal, external and co-infection parameters β ∈ [0, 11],Λ ∈ [0, 2]
and θ ∈ [0, 1], respectively, using true data (Numminen et al., 2013) and uniform priors. The
discrepancy is formed as in Gutmann and Corander (2016). The results with all methods are
shown in Fig. 2(a) and Fig. 2(b) shows the effect of batch size for the two best methods.
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Figure 2: (a) Bacterial infections model. The intervals show the 90% variability. (b) Bacterial
infections model. (c) Lorenz model. Recall that b denotes the batch size.

Discussion. We obtain reasonable posterior approximations considering the very limited
budget of simulations. EIV and EIMAD tend to produce more stable and accurate ABC
posterior estimates than MAXV and MAXMAD. Difference in approximation quality between
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EIV and EIMAD, both based on the same Bayesian decision theoretic framework but
different loss functions, was small. In all cases, our batch strategies produced similar
evaluation locations as the corresponding sequential methods. This suggests that substantial
improvements in wall-time can be obtained when the simulations are costly. The convergence
of the uncertainty in the ABC posterior expectation in Fig. 1(b-c) is approximately towards
the true ABC posterior expectation due to a slight GP misspecification. The ABC posterior
marginals of the bacterial infection model in Appendix C contain some uncertainty after
600 iterations which our approach allows to rigorously quantify. Developing more effective
(analytical) methods for computing these uncertainty estimates is an interesting topic for
future work.
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Appendix A. Technical details

A.1. GP model for the discrepancy

We place the following hierarchical GP prior for f :

f |γ ∼ GP(m0(θ), kφ(θ,θ′)), m0(θ) ,
r∑
i=1

γihi(θ), γ ∼ N (b,B), (5)

where kφ : Θ2 → R is a covariance function with hyperparameters φ and hi : Θ→ R are basis
functions. We marginalise γ in Eq. 5, as in O’Hagan and Kingman (1978), and Riihimäki
and Vehtari (2014), to obtain the equivalent GP prior

f ∼ GP(h(θ)>b, kφ(θ,θ′) + h(θ)>Bh(θ′)), (6)

where h(θ) ∈ Rr is a column vector consisting of the basis functions hi evaluated at θ. We
assume the GP hyperparameters ψ , (σ2

n,φ) are fixed and omit ψ from our notation for
brevity.

The mean and covariance functions of the GP posterior for f , when conditioned on data
Dt, are

mt(θ) , kt(θ)K−1
t ∆t + R>t (θ)γ̄t, (7)

ct(θ,θ
′) , k(θ,θ′)− kt(θ)K−1

t k>t (θ′) + R>t (θ)[B−1 + HtK
−1
t H>t ]−1Rt(θ

′), (8)

where [Kt]ij , k(θi,θj)+1i=jσ
2
n, kt(θ) , (k(θ,θ1), . . . , k(θ,θt))

>, ∆t , (∆1, . . . ,∆t)
> and

γ̄t , [B−1+HtK
−1
t H>t ]−1(HtK

−1
t ∆t+B−1b), (9)

Rt(θ) , H(θ)−HtK
−1
t k>t (θ). (10)

Above γ̄t is the generalised least-squares estimate, Ht is the r × t matrix whose columns
consist of basis function values evaluated at θ1:t, θ1:t is a p× t matrix, and H(θ) ∈ Rr is the
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corresponding vector of test point θ. For further details of GP regression, see e.g. Rasmussen
and Williams (2006).

Formulas for the mean, median and variance of π̃fABC were derived by Järvenpää et al.
(2019a) in the case of a zero mean GP prior. It is easy to see that these formulas hold also
for our more general GP model. For example,

Ef |Dt
(π̃fABC(θ)) = π(θ)Φ(at(θ)), (11)

at(θ) , (ε−mt(θ))/
√
σ2
n+s2

t (θ), (12)

medf |Dt
(π̃fABC(θ)) = π(θ)Φ ((ε−mt(θ))/σn) , (13)

Vf |Dt
(π̃fABC(θ)) = π2(θ)

[
Φ(at(θ))Φ(−at(θ))−2T

(
at(θ), σn/

√
σ2
n+2s2

t (θ)
)]
, (14)

where med denotes the marginal (i.e. elementwise) median.

A.2. Other acquisition functions

The EIMAD acquisition function, denoted as Lm
t (θ∗) can be shown to be

Lm
t (θ∗)=2

∫
Θ
π(θ)T

(
at(θ),

√
s2
t (θ)−τ2

t (θ;θ∗)√
σ2
n+τ2

t (θ;θ∗)

)
dθ, (15)

where, similarly as for EIV in Eq. 4, T is Owen’s T function (Owen, 1956) and at is given
by Eq. 12. MAD stands for mean absolute deviation (around median). We do not show a
detailed derivation of EIV and EIMAD acquisition functions here but only note that these
can be obtained using similar computations as in Järvenpää et al. (2019a,b).

We consider also a heuristic acquisition function which evaluates where the pointwise
uncertainty of π̃fABC(θ) is highest. Such intuitive strategy is sometimes called as uncertainty
sampling and used, e.g., by Gunter et al. (2014), Järvenpää et al. (2019a) and Chai and
Garnett (2019). When variance is used as the measure of uncertainty of π̃fABC(θ), we call
the method as MAXV and when MAD is used, we obtain an alternative strategy called
analogously MAXMAD. The resulting acquisition functions can be computed analytically.
Specifically, the variance is computed using Eq. 14. A similar formula can be derived for
MAD.

Finally, we propose a heuristic approach from BO (Snoek et al., 2012) to parallellise
MAXV and MAXMAD strategies: The first point in the batch is chosen as in the sequential
case. The further points are iteratively selected as the locations where the expected variance
(or MAD), taken with respect to the discrepancy values of the pending points, that is points
that have been already chosen to the current batch, is highest. The resulting acquisition
functions are immediately obtained as the integrands of Eq. 4 and 15.

A.3. Uncertainty quantification of the ABC posterior

Fig. 3 demonstrates the GP modelling and the uncertainty quantification of the ABC posterior
in a simple 1D scenario.

To access the posterior of πfABC, it would be possible to fix a sample path f (i) ∼ Πf
Dt

, then

use it to fix a realisation of the ABC posterior πf
(i)

ABC using Eq. 2 and finally use e.g. MCMC

9



Batch simulations and uncertainty quantification in GP-based ABC

(a)

0 2 4 6

1

0

10

20

30

d
is

c
re

p
a

n
c
y

(b)

0 2 4 6

1

A
B

C
 l
ik

e
lih

o
o

d

10 0 10 1

iteration

0

2

4

6
E

A
B

C
(

1
)

(c)

0 2 4 6

1

A
B

C
 p

o
s
te

ri
o

r

(d)

Figure 3: Demonstration of ABC posterior uncertainty quantification using Lorenz model
with parameter θ2 fixed. (a) GP model for ∆θ1 (blue dashed line ε, blue stars 10

discrepancy evaluations), (b) uncertainty of unnormalised ABC posterior π̃fABC,
(c) evolution of model-based ABC posterior expectation (black line) and its 95%
CI (dashed black) for 40 iterations, (d) uncertainty of ABC posterior πfABC.

to sample from πf
(i)

ABC. This would be repeated s times and the resulting set of samples
{{θ(i,j)}nj=1}si=1 (where n is the length of the MCMC chain for each posterior realisation
i = 1, . . . , s) approximately describes the posterior of πfABC given Dt. The uncertainty of
GP hyperparameters ψ could also be taken into account by drawing ψ(i) ∼ π(ψ |Dt) as
the very first step but we here consider ψ as known for simplicity although this causes
some underestimation of the uncertainty of πfABC. The outlined approach involves a major
computational challenge as evaluating the s sample paths at n different sets of test points
scales1 as O(s(nt2 + tn2) + sn3).

We propose the following approach: In small dimensions, when p ≤ 2, we evaluate each
sample path f (i), i = 1, . . . , s at n̄p fixed grid points and compute the required integrations
numerically. This approach scales as O(n̄pt2 + n̄2p(t+s)+ n̄3p). If p > 2, then self-normalised
importance sampling is used. We draw n samples from instrumental density, the α-quantile
of π̃fABC interpreted as a pdf with α = 0.95. The samples are thinned and the resulting
ñ � n representative samples {θ(j)}ñj=1 are used to compute the normalised importance
weights ω(i,j) for each sampled posterior i = 1, . . . , s. The output is a set of weighted sample
sets {{(ω(i,j),θ(j))}ñj=1}si=1 from which moments and marginal densities can be computed
using standard Monte Carlo estimators for each i = 1, . . . , s. This approach requires only

1. Approximations such as random Fourier features (RFF) (Rahimi and Recht, 2008) and those by Pleiss
et al. (2018) can be used to reduce this cost, e.g. Hernández-Lobato et al. (2014) and Wang and Jegelka
(2017) used RFF to approximately optimise GP sample paths. However, this produces tradeoff between
exact GP but small n v.s. large n but inexact GP which we do not analyse in this paper.

10
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one MCMC sampling from the instrumental density and scales as O(nt2) so that n can be
large. Total cost is O((n+ ñ)t2 + ñ2(t+ s) + ñ3).

Appendix B. Additional details of implementation and experiments

We briefly describe some key details of our algorithm and the experiments. Locations for
fitting the initial GP model are sampled from the uniform prior in all cases. We take
10 initial points for 2D and 20 for 3D cases. We use b = 0, Bij = 1021i=j and include
basis functions of the form 1, θi, θ

2
i . The discrepancy ∆θ is assumed smooth and we use

the squared exponential covariance function k(θ,θ′) = σ2
f exp(−1

2

∑p
i=1(θi − θ′i)2/l2i ). GP

hyperparameters ψ = (σ2
n, l1, . . . , lp, σ

2
f ) are given weakly informative priors and their values

are obtained using MAP estimation at each iteration. Owen’s T function values are computed
using a C-implementation of the algorithm by Patefield and Tandy (2000).

For simplicity and to ensure meaningful comparisons to ground-truth, we fix ε to certain
small predefined values although, in practice, its value is set adaptively (Järvenpää et al.,
2019a) or based on pilot runs. We compute the estimate of the unnormalised ABC posterior
using the Eq. 11 for MAXV, EIV, RAND and Eq. 13 for MAXMAD, EIMAD. Adaptive
MCMC (Haario et al., 2006) is used to sample from the resulting ABC posterior estimates
and from instrumental densities needed for IS approximations. TV denotes the median total
variation distance between the estimated ABC posterior and the true one (2D) or the average
TV between their marginal TV values (3D) computed numerically over 50 repeated runs.
Iteration (i.e. number of batches chosen) serves as a proxy for wall-time. The number of
simulations i.e. the maximum value of t is fixed in all experiments and the batch methods
thus finish earlier.

Mahalanobis distance was used as the discrepancy for Lorenz model. The simulation
model was run 500 times to estimate the covariance matrix of the six summary statistics by
Hakkarainen et al. (2012) at the true parameter and the the inverse of the covariance matrix
was used in the Mahalanobis distance. Of course, such discrepancy is unavailable in practice
because the true parameter is unknown and the computational budget limited. However,
as the main goal of this paper is to approximate any given ABC posterior with a limited
simulation budget, we chose our target ABC posterior this way.

Gutmann and Corander (2016) defined a discrepancy for the bacterial infections model
by summing four L1-distances computed between certain individual summaries. For details,
see example 7 in Gutmann and Corander (2016). We used the same discrepancy except
that we further took square root of their discrepancy function. We obtained a similar ABC
posterior as the original article (Numminen et al., 2013) where ABC-PMC algorithm and
slightly different approach for comparing the data sets were used.

Appendix C. Additional illustrations and experiments

Fig. 4 shows the evaluation locations and the resulting estimates of the ABC posteriors after
110 simulations (corresponding 100 iterations in the sequential case and 20 iteration is the
batch-sequential case b = 5) for a synthetic 2D model called ’Banana’. This test problem
was taken from Järvenpää et al. (2019a).
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Figure 4: Illustration of evaluation locations. The first row shows the sequential methods
and the second row the corresponding greedy batch methods. The blue diamonds
show the 10 initial points and the black dots 100 additional points selected using
each acquisition function (the last two batches in the second row are however
highlighted by red plus-signs and crosses). The TV value in the title shows the
total variation distance between the true and estimated ABC posteriors for each
particular case.

Fig. 5 and 6 show typical estimated ABC posterior densities of the Lorenz and bacte-
rial infections models, respectively. These results are shown to demonstrate the accuracy
obtainable with very limited simulations. These particular results were obtained with the
sequential EIV method using 600 iterations corresponding to 610 simulations (Lorenz model)
or 620 simulations (bacterial infections model).

Fig. 7 illustrates the ABC posterior uncertainty quantification for the bacterial infections
model. Sequential EIV method was used and one typical case is shown. The results suggest
that while the ABC posterior is well estimated at the last iteration, there is some uncertainty
left about its exact shape.
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Figure 5: Estimated ABC posteriors for the Lorenz model. (a-c) Three typical estimates
of the ABC posterior with corresponding simulation locations. Initial locations
are shown as black crosses and the ones selected using EIV acquisition function
are shown as black dots. The true parameter value used to generate the data
is marked with the red diamond. (d) The true ABC posterior computed using
ABC-MCMC with extensive simulations.
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Figure 6: Estimated marginal ABC posteriors for the bacterial infections model. Red
lines show the true ABC posterior computed using ABC-MCMC with extensive
simulations. Black lines show five typical estimated ABC posteriors resulting
from different simulation model realisations and the sets of initial simulation
locations. The true parameter value used to generate the data is marked with the
red diamond.
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Figure 7: Uncertainty quantification for the ABC posterior marginals of the bacterial infec-
tions model at the 100th iteration corresponding t = 120 simulations (top row)
and at the last iteration corresponding t = 620 simulations (bottom row). Red line
shows the true ABC posterior, blue line shows the estimate based on Eq. 11 and
the black lines show some sampled ABC marginal posteriors that (approximately)
represent the uncertainty due to the limited number of simulations t.
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