Under review as a conference paper at ICLR 2020

GATING REVISITED: DEEP MULTI-LAYER RNNS
THAT CAN BE TRAINED

Anonymous authors
Paper under double-blind review

ABSTRACT

Recurrent Neural Networks (RNNs) are widely used models for sequence data.
Just like for feedforward networks, it has become common to build ”deep” RNN,
i.e., stack multiple recurrent layers to obtain higher-level abstractions of the data.
However, this works only for a handful of layers. Unlike feedforward networks,
stacking more than a few recurrent units (e.g., LSTM cells) usually hurts model
performance, the reason being vanishing or exploding gradients during training.
We investigate the training of multi-layer RNNs and examine the magnitude of
the gradients as they propagate through the network. We show that, depending
on the structure of the basic recurrent unit, the gradients are systematically atten-
uated or amplified, so that with an increasing depth they tend to vanish, respec-
tively explode. Based on our analysis we design a new type of gated cell that bet-
ter preserves gradient magnitude, and therefore makes it possible to train deeper
RNNs. We experimentally validate our design with five different sequence mod-
elling tasks on three different datasets. The proposed stackable recurrent (STAR)
cell allows for substantially deeper recurrent architectures, with improved perfor-
mance.

1 INTRODUCTION

Recurrent Neural Networks (RNN) have established themselves as a powerful tool for modelling
sequential data. They have significantly advanced a number of applications, notably language pro-
cessing and speech recognition (Sutskever et al., 2014} |Graves et al., 2013 |Vinyals & Lel 2015)).

The basic building block of an RNN is a computational unit (or cell) that combines two inputs:
the data of the current time step in the sequence and the unit’s own output from the previous time
step. While RNNs are an effective approach that can in principle handle sequences of arbitrary and
varying length, they are (in their basic form) challenged by long-term dependencies, since learning
those would require the propagation of gradients over many time steps. To alleviate this limita-
tion, gated architectures have been proposed, most prominently Long Short-Term Memory (LSTM)
cells (Hochreiter & Schmidhuber, [1997)) and Gated Recurrent Units (GRU, |Chung et al.| [2014).
They use a gating mechanism to store and propagate information over longer time intervals, thus
mitigating the vanishing gradient problem.

Although such networks can, in principle, capture long-term dependencies, it is known that more
abstract and longer-term features are often represented better by deeper architectures (Bengio et al.,
2009). To that end, multiple recurrent cells are stacked on top of each other in a feedforward manner,
i.e., the output (or the hidden state) of the lower cell is connected to the input gate of the next-higher
cell. Many works have used such deep recurrent architectures, e.g., (Chung et al., 2015} |Zilly et al.,
2017), and have shown their ability to extract more complex features from the input and make better
predictions. The need for multi-layer RNNs is particularly apparent for image-like input data, where
multiple convolutional layers are required to extract a good representation, while the recurrence
captures the evolution of each layer over time.

Since recurrent architectures are trained by propagating gradients across time, it is convenient to
“unwrap” them into a lattice with two axes for depth (abstraction level) and time, see Fig. |1l This
view makes it apparent that gradients flow in two directions, namely backwards in time and down-
wards from deeper to shallower layers. In this paper we ask the question how the basic recurrent
unit must be designed to ensure the vertical” gradient flow across layers is stable and not impaired
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by vanishing or exploding gradients. We show that stacking several layers of common RNN cells,
by their construction, leads to instabilities (e.g., for deep LSTMs the gradients tend to vanish; for
deep vanilla RNNs they tend to explode). Our study makes three contributions: (i) We analyse how
the magnitude of the gradient changes as it propagates through a cell of the two-dimensional deep
RNN lattice. We show that, depending on the inner architecture of the employed RNN cell, gra-
dients tend to be either amplified or attenuated. As the depth increases, the repeated amplification
(resp., attenuation) increases the risk of exploding (resp., vanishing) gradients. (ii) We then leverage
our analysis to design a new form of gated cell, termed the STAR (stackable recurrent) unit, which
better preserves the gradient magnitude inside the RNN lattice. It can therefore be stacked to much
greater depth and still remains trainable. (iii) Finally, we compare deep recurrent architectures built
from different basic cells in an extensive set of experiments with three popular datasets. The results
confirm our analysis: training deep recurrent nets fail with most conventional units, whereas the
proposed STAR unit allows for significantly deeper architectures. In several cases, the ability to go
deeper also leads to improved performance.

2 RELATED WORK

Vanishing or exploding gradients during training are a long-standing problem of recurrent (and
other) neural networks (Hochreiter, 1991} Bengio et al., [1994). Perhaps the most effective mea-
sure to address them so far has been to introduce gating mechanisms in the RNN structure, as first
proposed by (Hochreiter & Schmidhuber, |1997) in the form of the LSTM (long short-term memory),
and later by other architectures such as gated recurrent units (GRU, (Chung et al., 2014)).

Importantly, RNN training needs proper initialisation. (Le et al.| 2015) and (Henaff et al., [2016)
have shown that initializing the weight matrices with identity and orthogonal matrices can be useful
to stabilise the training. (Arjovsky et all |2016) and (Wisdom et al.| 2016)) further develop this
idea and impose orthogonality throughout the entire training to keep the amplification factor of
the weight matrices close to unity, leading to a more stable gradient flow. Unfortunately, it has been
shown (Vorontsov et al., 2017) that such hard orthogonality constraints hurt the representation power
of the model and in some cases even destabilise the optimisation.

Another line of work has studied ways to mitigate the vanishing gradient problem by introducing
additional (skip) connections across time and/or layers. (Campos et all |2018) have shown that
skipping state updates in RNN shrinks the effective computation graph and thereby helps to learn
longer-range dependencies. (Kim et al., 2017)) introduce a residual connection between LSTM lay-
ers. (Chung et al., |2015) propose a gated feedback RNN that extends the stacked RNN architecture
with extra connections. An obvious disadvantage of such an architecture are the extra computation
and memory costs of the additional connections. Moreover, the authors only report results for rather
shallow networks up to 3 layers.

Despite the described efforts, it remains challenging to train deep RNNs. (Zilly et al., 2017)) have
proposed Recurrent Highway Networks (RHN) that combine LSTMs and highway networks (Sri-
vastava et al., |2015)) to train deeper architectures. RHN are popular and perform well on language
modelling tasks, but they are still prone to exploding gradients, as illustrated in our experiments. (L1
et al., [2018a) propose a restricted RNN where all interactions are removed between neurons in the
hidden state of a layer. This appears to greatly reduce the exploding gradient problem (allowing up
to 21 layers), at the cost of a much lower representation power per layer.

To process image sequence data, computer vision systems often rely on Convolutional LSTMs
(convLSTM, [Xingjian et al., 2015). But while very deep CNNs are very effective and now stan-
dard (Krizhevsky et al., 2012; [Simonyan & Zisserman, [2015)), stacks of more than a few convLSTMs
do not train well. In practice, shallow versions are preferred, for instance (Li et al., 2018b) use a
single layer for action recognition, and (Zhang et al., 2018)) use two layers to recognize for hand
gestures (combined with a deeper feature extractor without recursion).

We note that attempts to construct a deep counterpart to the Kalman filter can also be interpreted as
recurrent networks (Krishnan et al., 2015; Becker et al.,|2019; |Coskun et al.,|2017)). These provide
a probabilistic, generative perspective on RNNs, but are even more complicated to train. It is at this
point unclear how the basic units of these architectures could be stacked into a deep, multi-layer
representation.
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Figure 1: (a) General structure of an unfolded deep RNN (b) Detail of the gradient backpropagation
in the two dimensional lattice.

3 BACKGROUND AND PROBLEM STATEMENT

A RNN cell is a non-linear transformation that maps the input signal x; at time ¢ and the hidden
state of the previous time step ¢ — 1 to the current hidden state h;:

h; :f(wt;htfhw) (D

with W the trainable parameters of the cell. The input sequences have an overall length of T,
which can be variable. It depends on the task whether the relevant target prediction, for which also
the loss £ should be computed, is the final state hy, the complete sequence of states {h;}, or a
single sequence label, typically defined as the average % >~ hi. Learning amounts to fitting W to
minimise the loss, usually with stochastic gradient descent.

When stacking multiple RNN cells on top of each other, one passes the hidden state of the lower
level I — 1 as input to the next-higher level [, see Fig.[l] which in mathematical terms corresponds
to the recurrence relation

hl = f(hi™' hl_|,w). 2
Temporal unfolding leads to a two-dimensional lattice with depth L and length 7', as in Fig.[I] In
this computation diagram, the forward pass runs from left to right and from bottom to top. Gradients
flow in opposite direction: at each cell the gradient w.r.t. the loss arrives at the output gate and is used
to compute the gradient w.r.t. (i) the weights, (ii) the input, and (iii) the previous hidden state. The
latter two gradients are then propagated through the respective gates to the preceding cells in time
and depth. In the following, we investigate how the magnitude of these gradients changes across the
lattice. The analysis, backed up by numerical simulations, shows that common RNN cells are biased
towards attenuating or amplifying the gradients, and thus prone to destabilising the training of deep
recurrent networks.

3.1 GRADIENT MAGNITUDES

At a single cell in the lattice the gradient w.r.t. the trainable weights are

Oh!
Guw = %ghg ) 3)
1
where % denotes the Jacobian matrix and 9n! is a column vector containing the partial derivatives

of the loss w.r.t. the cell’s output (hidden) state. From the equation, it becomes clear that the Jacobian
acts as a ”gain matrix” on the gradients, and should on average preserve their magnitude to prevent
them from vanishing or exploding. By expanding the gradient g;: we obtain the recurrence for
propagation,

ohi*! Ohlir

Wghgﬂ = Jtlﬂghﬁl + H§+1th €]
t

t+1’
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with J! the Jacobian w.r.t. the input and H/ the Jacobian w.r.t. the hidden state. Ideally we would like
the gradient magnitude [|gy,; ||> to remain stable for arbitrary [ and ¢. Characterising that magnitude

completely is difficult, since correlations may exist between gni,, and G+t Still, it is clear that

the two Jacobians Jtl+1 and H! 11 play a fundamental role: if their singular values are small, they
will attenuate the gradients and cause them to vanish sooner or later. If their singular values are
large, they will amplify the gradients and make them explode

In the following, we analyze the behaviour of the two matrices for two extreme cases. Let us first
consider the simplest RNN cell, hereinafter called Vanilla RNN (vRNN). Its recurrence equation
reads

h! = tanh(W,h!"' + W,,h! | +b) 5)
from which we get the two Jacobians
1 _
Ji = Dtanh(thi71+W;LhLl+b)’Wm (©)
l
H; = Dtanh(WIhi_lJrWhhi_ler)/Wh @)

where D, denotes a diagonal matrix with the elements of vector x as diagonal entries. Ideally,
we would like to know the expected values of the two matrices’ singular values. Unfortunately,
there is no easy way to derive closed-form analytical expressions for them, but we can compute
them for a fixed, representative point. Perhaps the most natural and illustrative choice is to set
hiil = h! | = b =0, and to further choose orthogonal weight matrices W}, and W, a popular
initialisation strategy. Since the derivative tanh’(0) = 1, the singular values of all matrices in Eq.
are equal to 1 in this configuration.

Consequently, by combining the contributions of Gpi+ and g, ., We expect to obtain a gradient
9n! with larger magnitude. A deep network made of vVRNN cells and orthogonal initialisation can
thus be expected to suffer from exploding gradients as we move towards shallower layers and further
back in time. To validate this analysis we set up a toy example of a deep VRNN and compute the
average gradient magnitude w.r.t. the network parameters for each cell in the unfolded network. For
this numerical simulation we initialise all the hidden states and biases to zero and chose random
orthogonal matrices for the weights. Input sequences are generated with the random process x; =
ari—1 + (1 — a)z, where z ~ N(0,1) and the correlation factor & = 0.5 (the choice of the
correlation factor does not seem to affect qualitatively the results). Figure [2] depicts the average
gradient magnitudes over 10K runs with different weight initialisations and input sequences. Indeed,
the magnitude grows rapidly towards the earlier and shallower part of the network, as expected from
our analysis.

We go on to perform a similar analysis for the classical LSTM cell, as proposed by Hochreiter
& Schmidhuber| (1997, recurrence equations reproduced in the appendix for convenience). The
Jacobians in this case are

Tt = Diannet) Doty Waot Duann(ely Dot (Dey_, Digty Wy +D 3y Dy Wit Dy D1y W)

(8)
Hfl = Dtanh(clt)D(oi)’ Wh0+Dtanh(c§)’Do§ (Dci71 D(ftl)’ th+Dzi D(zi)/W$l+Dzlt D(zé)/WhZ)

(€))
The equations are slightly more complicated, but are still amenable to the same type of analysis.
We again choose the same exemplary conditions as for the VRNN above, i.e., hidden states and
biases equal to zero and orthogonal weight matrices. This time we additionally need the value of the
sigmoid activation at the considered point, o(0) = 0.5. By substituting the numerical values in the
above equations we can see that the sigmoid function causes the singular values of the two Jacobians
to drop to 0.25. Contrary to the VRNN cell, we expect that even the two Jacobians combined will
produce an attenuation factor well below 1, such that the gradient magnitude will rapidly decline and
eventually vanish. We point out that t LSTM cells have a second hidden state, the so-called cell
state”. The cell state only propagates along the time dimension and not across layers, which makes
the overall effect of the corresponding gradients more difficult to analyse. However, for the same
reason one would, in a first approximation, expect that the cell state mainly influences the gradients

'A subtle point is that sometimes large gradients are the precursor of vanishing gradients if the associated
large parameter updates cause the non-linearities to saturate.
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Figure 2: Mean value of gradient magnitude with respect to the parameters for different RNN units.
top row: loss L(hk) only on final prediction. bottom row: loss L(h ... hL) over all time steps.
As the gradients flow back through time and layers, for a network of vanilla RNN units they get
amplified; for LSTM units they get attenuated; whereas the proposed STAR unit approximately
preserves their magnitude.

in the time direction, but cannot help the flow through the layers. Again the numerical simulation
results support our hypothesis, as can be seen in Fig.[2] The LSTM gradients propagate relatively
well backward through time, but vanish quickly towards shallower layers. We refer to the appendix
for further numerical analysis, e.g., LSTMs with only a forget gate, and GRUs.

Here, we briefly draw some connections between our analysis and the empirical results of
(2015), who propose a gated feedback RNN (GFRNN) that extends the stacked RNN ar-
chitecture with extra connections between adjacent layers. Empirically, GFRNN improves a 3-layer
LSTM, but degrades the vanilla RNN performance. We conjecture that this might be due to the extra
connections strengthening the gradient propagation. According to our findings, the additional gra-
dient flow would benefit the LSTM, by bolstering the dwindling gradients; whereas for the vRNN,
where the initial gradients are already too high, the added flow might be counterproductive.

4 THE STAR UNIT

Building on the analysis above, we introduce a novel RNN cell designed to avoid vanishing or ex-
ploding gradients as much as possible. We start from the Jacobian matrix of the LSTM cell and
examine in more detail which design features are responsible for the low singular values. In equa-
tion[8|we see that every multiplication with tanh non-linearities (Dtanh(.)), gating functions (Da(,) ),
and with their derivatives can only ever decrease the singular values of W, since all this terms are
always <1. The effect is particularly pronounced for the sigmoid and its derivative, |o’(-)| < 0.25
and E[|o’(z)]] = 0.5 for zero-mean, symmetric distribution of . In particular, the output gate o} is
a sigmoid and plays a major role in shrinking the overall gradients, as it multiplicatively affects all
parts of both Jacobians. As a first measure, we thus propose to remove the output gate. A secondary
consequence of this measure is that now hl and ¢! carry the same information (the hidden state
becomes an element-wise non-linear transformation of the cell state). To avoid this duplication and
further simplify the design, we transfer the tanh non-linearity to the hidden state and remove the
cell state altogether.

As a final modification, we also remove the input gate i. from the architecture. We have empirically
observed that the presence of the input gate does not significantly improve performance, moreover, it
actually harms the training for deeper networks. This empirical observation is in line with the results
of [van der Westhuizen & Lasenby| (2018)), who show that removing the input and output gates does
not greatly affect the performance of LSTMs.
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Figure 3: Gradient magnitudes in pix-by-pix MNIST. (a) Mean gradient norm per layer at the start
of training. (b) Evolution of gradient norm during 1% training epoch. (c) Loss during 1% epoch.

at time ¢ and non-linearly projects it to the space where the hidden vector h' lives, equation
Furthermore, the previous hidden state and the new input are combined into the gating variable k;
(equation . k! is our analogue of the forget gate and controls how the information from previous
hidden state and the new input are fused into a new hidden state. One could also intuitively interpret
ké as a sort of “Kalman gain™: if it is large, the new observation is deemed reliable and dominates;
otherwise the previous hidden state is conserved. The complete dynamics of the STAR unit is given
by the expressions

More formally, our proposed STAR cell in the [-th layer takes the input hi_l (in the first layer, a

z! = tanh(W.h.™! +b.) (10)
El = o(W,h!"' + W,h! | +by) (11
h. =tanh ((1 —k})ohl_, + kjo z}). (12)
These equations lead to the following Jacobian matrices:
Jt = Deannnl_, +kio(zi—ni_,)y (Dzini_ Dty W + Dy Dy W) (13)
H{ = Dyunnni_ +kio(zi—nt_ I+ Dyi_pi Dy Wi — Dy). (14)

Coming back to our previous analysis for state zero and orthogonal weight matrices, each of the
two Jacobians now has singular values equal to 0.5. Le., they lie between the vVRNN cell and the
LSTM cell, and when added together roughly preserve the gradient magnitude. We repeat the same
numerical simulations as above for the STAR cell, and find that it indeed maintains healthy gradient
magnitudes throughout most of the deep RNN, see Fig.[2] In the next section, we show also on real
datasets that deep RNNs built from STAR units can be trained to a significantly greater depth.

As a final remark, the proposed modifications mean that the STAR architecture requires significantly
less memory. With the same input and the same capacity in the hidden state, it reduces the memory
footprint to <40% of a classical LSTM and even uses slightly less memory than a recurrent highway
net. A more detailed comparison is given in the appendix.

5 EXPERIMENTS

We evaluate the performance of several well-known RNN baselines as well as that of the proposed
STAR cell on five different sequence modelling tasks with three different datasets: sequential ver-
sions of MNIST, which are a popular common testbed for recurrent networks; the more realistic
TUM dataset, where time series of intensities observed in satellite images shall be classified into
different agricultural crops; and Jester, for hand gesture recognition with convolutional RNNs. The
recurrent units we compare include the vRNN, the LSTM, the LSTM with only a forget gate (van der
Westhuizen & Lasenbyl [2018)), the RHN, and the proposed STAR. The experimental protocol is sim-
ilar for all tasks: For each RNN variant, we train multiple versions with different depth (number of
layers). For each variant and each depth, we report the performance of the model with the lowest
validation loss. Classification performance is measured by the rate of correct predictions (top-1 ac-
curacy). Throughout, we use the orthogonal initialisation for weight matrices. Code and trained
models (in Tensorflow), as well as code for the simulations (in PyTorch), will be released. Training
and network details for each experiment can be found in the appendix.
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Figure 4: Results for pixel-by-pixel MNIST tasks.

Table 1: Performance comparison for pixel-by-pixel MNIST tasks.

Method MNIST pMNIST #units #params

VRNN (1 layers) 24.3% 44.0% 128 18k
LSTM (4 layers) 99.0% 91.5% 128 463k
iRNN (Le et al., [2015)) 97.0% 82.0% 100 11k
uRNN (Arjovsky et al., 2016) 95.1% 91.4% 512 9k

FC uRNN (Wisdom et al.| [2016]) 96.9% 94.1% 512 270k
Soft ortho (Vorontsov et al.,[2017) 94.1% 91.4% 128 18k
AntisymRNN (Chang et al.} 2019)  98.8% 93.1% 128 10k
STAR (4 layers) 99.1% 90.5% 128 166k
STAR (16 layers) 99.0% 92.4% 64 190k

5.1 PIXEL-BY-PIXEL MNIST

The first experiment uses the MNIST dataset (LeCun et al., | 1998)). The 28 x28 grey-scale images of
handwritten digits are flattened into 784 x 1 vectors, and the 784 values are sequentially presented to
the RNN. After seeing all pixels, the model predicts the digit. The second task, pMNIST, is more
challenging. Before flattening the images, the pixels are shuffled with a fixed random permutation,
turning correlations between spatially close pixels into non-local long-range dependencies. The
model needs to remember those dependencies between distance parts of the sequence to classify
the digit correctly. Fig. [3a] shows the average gradient norms per layer at the start of training, for
12-layer networks built from different RNN cells. Like in the simulations above, the propagation
through the network increases the gradients for the VRNN and shrinks them for the LSTM. As
the optimisation proceeds, we find that STAR remains stable, whereas all other units see a rapid
decline of the gradients already within the first epoch, except for RHN, where the gradients explode,
see Fig. Consequently, STAR is the only unit for which a 12-layer model can be trained,
as also confirmed by the evolution of the training loss, Fig. Fig. [ confirms that stacking into
deeper architectures does benefit RNNs (except for VRNN); but it increases the risk of a catastrophic
training failure. STAR is significantly more robust in that respect and can be trained up to a depth
of 20 layers. On the comparatively easy and saturated MNIST data, the performance is comparable
that of a successfully trained LSTM (at depth 2-8 layers, LSTM training already often fails; the
displayed accuracies are averaged only over successful training runs).

5.2 TUM TIME SERIES CLASSIFICATION

In this experiment, the models are evaluated on a more realistic sequence modelling problem. The
task is to classify agricultural crop types using sequences of satellite images, exploiting the fact that
different crops have different growing patterns over the season. The input is a time series of 26
multi-spectral Sentinel-2A satellite images with a ground resolution of 10 m, collected over a 102
km x 42 km area north of Munich, Germany between December 2015 and August 2016 (RuSwurm
& Korner, 2017). The input data points for the classifier are patches of 3x3 pixels recorded in
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Figure 5: Time series classification. (a,b) Crop classes. (¢) Hand gestures (convolutional RNNs).

6 spectral channels, flattened into 54x1 vectors. In the first task these vectors are sequentially
presented to the RNN model, which outputs a prediction at every time step (note that for this task
the correct answer can sometimes be “cloud”, ”’snow”, ”cloud shadow” or “water”’, which are easier
to recognise than many crops). In the second task, the model makes only one crop prediction for
the complete sequence, via an additional layer that averages across time. From Fig. [5] we see that
STAR outperforms all baselines and its again more robust to stacking. For the single-output task
also the STAR network fails at 14 layers. We have not yet been able to identify the reason for this,
possibly it is due to cloud cover that completely blanks out the signal over extended time windows

and degrades the propagation.

5.3 HAND-GESTURE RECOGNITION FROM VIDEO

This experiment serves to evaluate the performance of different recurrent cells, and in particular the
proposed STAR cell, in a convolutional RNN (see appendix for details about convolutional STAR).
To that end, we use the 20BN-Jester dataset V1 (jes). Jester is a large collection of densely-labeled
short video clips, where each clip contains a predefined hand gesture performed by a worker in
front of a laptop camera or webcam. In total, the dataset includes 148’094 RGB video files of
27 types of gestures. The task is to classify which gesture is seen in a video. 32 consecutive
frames of size 112x 112 pixels are sequentially presented to the convolutional RNN. At the end,
the model again predicts a gesture class via an averaging layer over all time steps. The outcome
for convolutional RNNSs is coherent with the previous results, see Fig. Going deeper improves
the performance of all three tested convRNNs. The improvement is strongest for convolutional
STAR, and the best performance is reached at high depth (12 layers), where training the baselines
mostly fails. In summary, the results confirm both our intuition that depth is particularly useful for
convolutional RNNs; and that STAR is more suitable for deeper architectures, where it achieves
higher performance with better memory efficiency. We note that the in the shallow 1-2 layer setting
the conventional LSTM performs a bit better than the two others, likely due to its larger capacity.

6 CONCLUSION

We have investigated the problem of vanishing/exploding gradient in deep RNNSs. In a first step, we
analyse how the derivatives of the non-linear activation functions rescale the gradients as they prop-
agate through the temporally unrolled network. From both, the theoretical analysis, and associated
numerical simulations, we find that standard RNN cells do not preserve the gradient magnitudes
during backpropagation, and therefore, as the depth of the network grows, the risk that the gradients
vanish or explode increases. In a second step, we have proposed a new RNN cell, termed the STAck-
able Recurrent unit, which better preserves gradients through deep architectures and facilitates their
training. An extensive evaluation on three popular datasets confirms that STAR units can be stacked
into deeper architectures than other RNN cells.

We see two main directions for future work. On the one hand, it would be worthwhile to develop
a more formal and thorough mathematical analysis of the gradient flow, and perhaps even derive
rigorous bounds for specific cell types, that could, in turn, inform the network design. On the other
hand, it appears promising to investigate whether the analysis of the gradient flows could serve as a
basis for better initialisation schemes to compensate the systematic influences of the cells structure,
e.g., gating functions, in the training of deep RNNs.
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A RNN CELLS DYNAMICS

A.1 VANILLA RNN

Vanilla RNN update rule:
h! = tanh(W,h!"! + W,h! | +b) (15)
A.2 LSTM
LSTM update rule:
it = o(Wyihi ™' + Wihi_; + b)) (16)
fi=0(Woshi™" + Wishi_y +by) (17
oL = o(Woohl ™' + Wiohl_| +b,) (18)
zl = tanh(Wmhff1 +Wi.hl | +b.) (19)
¢, =fioci i tijoz (20)
h! = ol o tanh(cl). Q1)

A.3 LSTM WITH ONLY FORGET GATE

LSTM with only forget gate update rule:

fi=o(Worhi™ + Wiphi_, + by) 22)
2} = tanh(W,.h{ ™' + Wj,.hl_| +b.) (23)
hy = tanh(ff o hi_; + (1 = f{) o z;) (24)
A.4 GRU
GRU update rule:
zi = o(Wyhy™' + Wihy_, +b.) (25)
rl =o(Wyhl™' + Wi,.h! | +b,) (26)
hé =(1- zi) o hi,l + zi o tanh (thhfl + Whh(ri o hi,l) + bh) 27)

A.5 CONVOLUTIONAL STAR

We briefly describe the convolutional version of our proposed cell. The main difference is matrix
multiplications now become convolution operation. The dynamics of the convSTAR cell is given in
the following equations.

K. =o(W,«H"" + W, «H._ | +Bg) (28)
Z! — tanh(W, «H."' + B,) (29)
H, = tanh(H,_; + Kl o (ZL —H._))) (30)

B FURTHER NUMERICAL GRADIENT PROPAGATION ANALYSIS

In this section we extend the numerical simulations of the gradient propagation in the unfolded
recurrent neural network to two further cell architectures, namely the GRU (Chung et al.,|2014) and
the LSTM with only forget gate (dynamics can be found in Appendix [A]). The setup of the numerical
simulations is the same as the one described in Section[3] As can be seen from Fig. [6|the GRU and
the LSTM with only forget gate mitigate the attenuation of gradients to some degree. However, we
observe that the corresponding standard deviations are much higher, i.e., the gradient norm greatly
varies across different runs, see Fig.|7/| We found that the gradients within a single run oscillate a lot
more, for both LSTMw/f and GRU, and make training unstable which is undesirable. Moreover, the
gradient magnitudes evolve very differently for different initial values, meaning that the training is
less robust against fluctuations of the random initialisation.
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Figure 6: Mean gradient magnitude w.r.t. the parameters for LSTM with only forget gate, GRU,
and the proposed STAR cell. top row: loss L(h%) only on final prediction. bottom row: loss
L(hE ... hE) over all time steps.
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Figure 7: Mean-normalised standard deviation of gradient magnitude for LSTM with only forget
gate, GRU, and the proposed STAR cell. top row: loss £(h%) only on final prediction. bottom row:

loss £(hY ... hk) over all time steps.

C TRAINING DETAILS

C.1 PIXEL-BY-PIXEL MNIST

Following chrono initialisation is applied for the bias term of k, by. The basic
idea is that k should not be too large; such that the memory h can be retained over longer time
intervals. The same initialisation is used for the input and forget bias of the LSTM and the RHN and
for the forget bias of LSTMw/f. For the final prediction, a feedforward layer with softmax activation
converts the hidden state to a class label. The numbers of hidden units in the RNN layers are set
to 128. All networks are trained for 100 epochs with batch size 100, using the Adam optimizer

(Kingma & Bad,[2014) with learning rate 0.001, 3; = 0.9 and 35 = 0.999.

C.2 TUM TIME SERIES CLASSIFICATION

For both tasks we use the same training schedule. Again a feedforward layer is appended to the
RNN output to obtain a prediction. The numbers of hidden units in the RNN layers is set to 128.
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All networks are trained for 30 epochs with batch size 500, using Adam (Kingma & Ba, [2014) with
learning rate 0.001 and 5; = 0.9 and 82 = 0.999.

C.3 HAND-GESTURE RECOGNITION FROM VIDEO

Throughout, convolution kernels are of size 3 x3. Each convolutional RNN layer has 64 filters. A
shallow CNN is used to convert the hidden state to a label, with 4 layers that have filter depths 128,
128, 256 and 256, respectively. All models are fitted with stochastic gradient descent (SGD) with
momentum (3 = 0.9). The batch size is set to 8, the learning rate starts at 0.001 and decays poly-
nomially to 0.000001 over a total of 30 epochs. L2-regularisation with weight 0.00005 is applied to
all parameters.

D MEMORY & COMPUTE COMPARISON

Table 2: Parameter counts (x10%) and floating point operations (#mult&add, x10°) for pixel-by-
pixel MNIST.

#layers | VRNN | LSTM | LSTMw/f | RHN | STAR
1 18 030 | 68 LIl| 35 058| 51 08| 18 030
2 51 085| 199 337 | 100 170 [ 101 170 | 67 121

4 116 197 | 463 7.84 | 232 393|200 337|166 3.0l
8 248 420 | 989 16.77 | 495 839 | 398 6.72 | 364  6.62
16 514 8.66 | 2042 34.62 | 1021 1732 | 795 13.85 | 759 13.43

E EXPERIMENTAL RESULTS

Table 3: Results for pixel-by-pixel MNIST

MNIST pMNIST

#layers | VRNN LSTM LSTMw/f RHN STAR | vRNN LSTM LSTMw/f RHN STAR
1 43.1 92.2 98.8 95.5 98.0 77.3 914 92.5 88.8  88.7
2 10.1 98.4 99.1 98.4 985 72.1 91.8 92.6 89.5 91.1
4 11.3 99.0 99.2 0 99.1 18.5 91.5 91.5 0 90.5
8 11.0 19.3 99.1 0 99.1 9.7 92.8 93.1 0 92.5
12 11.0 11.0 9.9 0 99.0 9.8 11.3 90.9 0 92.8
16 11.1 11.0 11.3 0 99.0 9.7 11.3 11.3 0 92.6

Table 4: Results for TUM time series classification
per-timestep prediction per-sequence prediction

#layers | VRNN LSTM LSTMw/f RHN STAR | vRNN LSTM LSTMw/f RHN STAR
1 81.5 82.4 83.1 725 81.8 66.3 68.2 68.3 68.0 68.1
2 83.5 85.3 85.4 59.5 85.1 68.5 70.1 70.0 69.5 70.6
4 84.9 85.5 86.1 703  86.3 68.8 70.0 70.0 70.3 719
8 85.2 47.2 85.3 67.8  86.5 33.8 33.8 69.4 704 710
12 84.6 47.2 84.8 69.0 86.3 33.7 33.8 349 70.1  70.7
16 84.2 42.5 47.5 68.6  86.1 33.7 33.8 34.8 506 387
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Table 5: Results for hand-gesture recognition

#layers | convLSTM  convLSTM w/f  convSTAR
1 87.1 83.9 84.0
2 90.3 90.2 89.6
4 91.4 91.4 91.3
8 91.8 92.0 92.3
12 9.0 92.0 92.5
16 9.0 9.9 92.4
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