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ABSTRACT

Unsupervised domain adaptation aims to generalize the hypothesis trained in a
source domain to an unlabeled target domain. One popular approach to this prob-
lem is to learn domain-invariant embeddings for both domains. In this work, we
study, theoretically and empirically, the effect of the embedding complexity on
generalization to the target domain. In particular, this complexity affects an upper
bound on the target risk; this is reflected in experiments, too. Next, we specify
our theoretical framework to multilayer neural networks. As a result, we develop
a strategy that mitigates sensitivity to the embedding complexity, and empirically
achieves performance on par with or better than the best layer-dependent com-
plexity tradeoff.

1 INTRODUCTION

Domain adaptation is critical in many applications where collecting large-scale supervised data is
prohibitively expensive or intractable, or where conditions at prediction time can change. For in-
stance, self-driving cars must be robust to different weather, change of landscape and traffic. In
such cases, the model learned from limited source data should ideally generalize to different target
domains. Specifically, unsupervised domain adaptation aims to transfer knowledge learned from a
labeled source domain to similar but completely unlabeled target domains.

One popular approach to unsupervised domain adaptation is to learn domain-invariant representa-
tions (Ben-David et al., 2007; Long et al., 2015; Ganin et al., 2016), by minimizing a divergence
between the representations of source and target domains. The prediction function is learned on
these “aligned” representations with the aim of making it domain-independent. A series of theoret-
ical works justifies this idea (Ben-David et al., 2007; Mansour et al., 2009; Ben-David et al., 2010;
Cortes & Mohri, 2011).

Despite the empirical success of domain-invariant representations, exactly matching the representa-
tions of source and target distribution can sometimes fail to achieve domain adaptation. For example,
Wu et al. (2019) show that exact matching may increase target error if label distributions are dif-
ferent between source and target domain, and propose a new divergence metric to overcome this
limitation. Zhao et al. (2019) establish lower and upper bounds on the risk when label distributions
between source and target domains differ. Johansson et al. (2019) point out the information lost in
non-invertible embeddings, and propose different generalization bounds based on the overlap of the
supports of source and target distribution.

In contrast to previous analyses that focus on changes in the label distributions or joint support, we
study the effect of embedding complexity. In particular, we show a general bound on the target
risk that reflects a tradeoff between embedding complexity and the divergence of source and target
domains. A too powerful class of embeddings can result in overfitting the source data and the match-
ing of source and target distributions, resulting in arbitrarily high target risk. Hence, a restriction is
needed. We observe that indeed, without appropriately constraining the embedding complexity, the
performance of state-of-the-art methods such as domain-adversarial neural networks (Ganin et al.,
2016) can deteriorate significantly.

Next, we tailor the bound to multilayer neural networks. In a realistic scenario, one may have a
total depth budget and divide the network into an encoder (embedding) and predictor by aligning
the representations of source and target in a chosen layer, which defines the division. In this case,
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a more complex encoder necessarily implies a weaker predictor, and vice versa. This tradeoff is
reflected in the bound and, we see that, in practice, there is an “optimal” division.

To better optimize the tradeoff between encoder and predictor without having to tune the division,
we propose to optimize the tradeoffs in all layers jointly via a simple yet effective objective that
can easily be combined with most current approaches for learning domain-invariant representations.
Implicitly, this objective restricts the more powerful deeper encoders by encouraging a simultaneous
alignment across layers. In practice, the resulting algorithm achieves performance on par with or
better than standard domain-invariant representations, without tuning of the division.

Empirically, we examine our theory and learning algorithms on sentiment analysis (Amazon review
dataset), digit classification (MNIST, MNIST-M, SVHN) and general object classification (Office-
31). In short, this work makes the following contributions:

• General upper bounds on target error that capture the effect of embedding complexity when
learning domain-invariant representations;

• Fine-grained analysis for multilayer neural networks, and a new objective with implicit
regularization that stabilizes and improves performance;

• Empirical validation of the analyzed tradeoffs and proposed algorithm on several datasets.

2 UNSUPERVISED DOMAIN ADAPTATION

For simplicity of exposition, we consider binary classification with input space X ⊆ Rn and output
space Y = {0, 1}. Define H to be the hypothesis class from X to Y . The learning algorithm
obtains two datasets: labeled source data XS from distribution pS , and unlabeled target data XT

from distribution pT . We will use pS and pT to denote the joint distribution on data and labels X,Y
and the marginals, i.e., pS(X) and pS(Y ). Unsupervised domain adaptation seeks a hypothesis
h ∈ H that minimizes the risk in the target domain measured by a loss function ` (here, zero-one
loss):

RT (h) = Ex,y∼pT
[`(h(x), y)]. (1)

We will not assume common support in source and target domain, in line with standard benchmarks
for domain adaptation such as adapting from MNIST to MNIST-M.

2.1 DOMAIN-INVARIANT REPRESENTATIONS

A common approach to domain adaptation is to learn a joint embedding of source and target data
(Ganin et al., 2016; Tzeng et al., 2017). The idea is that aligning source and target distributions in
a latent space Z results in a domain-invariant representations, and hence a subsequent classifier f
from the embedding to Y will generalize from source to target. Formally, this results in the following
objective function on the hypothesis h = fg := f ◦ g, where G is the class of embedding functions
g to Z , and we minimize a divergence d between the distributions pgS(Z) = pS(g(X)), pgT (Z) =
pT (g(X)) of source and target after mapping to Z:

min
f∈F,g∈G

RS(fg) + αd(pgS(Z), pgT (Z)). (2)

The divergence d could be, e.g., the Jensen-Shannon (Ganin et al., 2016) or Wasserstein distance
(Shen et al., 2017).

2.2 UPPER BOUNDS ON THE TARGET RISK

Ben-David et al. (2007) introduced theH∆H-divergence to bound the worst-case loss from extrap-
olating between domains. Let RD(h, h′) = Ex∼D[`(h(x), h′(x))] be the expected disagreement
between two hypotheses. The H∆H-divergence measures whether there is any pair of hypotheses
whose disagreement (risk) differs a lot between source and target distribution.
Definition 1. (H∆H-divergence) Given two domain distributions pS and pT over X , and a hypoth-
esis classH, theH∆H-divergence between pS and pT is

dH∆H(pS , pT ) = sup
h,h′∈H

|RS(h, h′)−RT (h, h′)|.
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The H∆H-divergence is determined by the discrepancy between source and target distribution and
the complexity ofthe hypothesis class H. For a hypothesis class H : X → {0, 1}, the disagreement
between two hypotheses is equivalent to the exclusive or function. Hence, one can interpret the
H∆H-divergence as finding a classifier in function space H∆H = H⊕H which attempts to max-
imally separate one domain from the other (Ben-David et al., 2010). A restrictive hypothesis space
may result in small H∆H-divergence even if the source and target domain do not share common
support. This divergence allows us to bound the risk on the target domain:

Theorem 2. (Ben-David et al., 2010) For all hypotheses h ∈ H, the target risk is bounded as

RT (h) ≤ RS(h) + dH∆H(pS , pT ) + λH,

where λH is the best joint risk

λH := inf
h′∈H

[RS(h′) +RT (h′)]

Similar results exist for continuous labels (Cortes & Mohri, 2011; Mansour et al., 2009).

Theorem 2 is an influential theoretical result in unsupervised domain adaptation, and motivated work
on domain invariant representations. For example, recent work (Ganin et al. (2016); Johansson et al.
(2019)) applied Theorem 2 to the hypothesis space F that maps the representation space Z induced
by an encoder g to the output space:

RT (fg) ≤ RS(fg) + dF∆F (pgS(Z), pgT (Z)) + λF (g) (3)

where λF (g) is the best hypothesis risk with fixed g, i.e., λF (g) := inff ′∈F [RS(f ′g) + RT (f ′g)].
The F∆F divergence implicitly depends on the fixed g and can be small if g provides a suitable
representation. However, if g induces a wrong alignment, then the best hypothesis risk λF (g) is
large with any function class F . The following example will illustrate such a situation, motivating
to explicitly take the class of embeddings into account when bounding the target risk.

3 INFLUENCE OF THE EMBEDDING COMPLEXITY

Figure 1: Illustrative example in 2D. The 1D
representation space is illustrated as a dotted
line, and arrows indicate the embedding from
2D to 1D. (a) Optimal embedding when G is
the class of linear functions. (b) Optimal em-
bedding with a complex nonlinear function
class: zero source error and divergence loss,
but the embedding destroys label consistency
and leads to maximal target risk.

We begin with an illustrative toy example. Fig-
ure 1 shows a binary classification problem in 2D
with disjoint support and a slight shift in the label
distributions from source to target: pS(y = 1) =
pT (y = 1) + 2ε. Assume the representation space Z
is one dimensional, so the embedding g is a function
from 2D to 1D. If we allow arbitrary, nonlinear em-
beddings, then, for instance, the embedding in Fig-
ure 1(b), together with an optimal predictor, achieves
zero source loss and a zero divergence which is op-
timal according to the objective in equation (2). But
the target risk of this combination of embedding and
predictor is maximal: RT (fg) = 1.

If we restrict the class G of embeddings to linear
maps g(x) = Wx where W ∈ IR1×2, then the
embeddings that are optimal with respect to the ob-
jective (2) are of the form W = [a, 0]. Together
with an optimal source classifier f , they achieve a
non-zero value of 2ε for objective (2) due to the shift
in class distributions. However, these embeddings
retain label correspondences and can thus minimize
target risk.

This example illustrates that a too rich class of embeddings can “overfit” the alignment, and hence
lead to arbitrarily bad solutions. Hence, the complexity of the encoder class plays an important role
in learning domain invariant representations.
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3.1 BOUNDS FOR DOMAIN-INVARIANT REPRESENTATIONS

Motivated by the above example, we next expose how the bound on the target risk depends on the
complexity of the embedding class. To do so, we apply Theorem 2 to the hypothesis h = fg:

RT (fg) ≤ RS(fg) + dFG∆FG(pS , pT ) + λFG . (4)

This bound differs in two ways from the previous bound (equation (3)), which was based only on
F : the best in-class joint risk now minimizes over both F and G, i.e.,

λFG := inf
f∈F,g∈G

[RS(fg) +RT (fg)], (5)

which is smaller than λF (g) and reflects the fact that we are learning both f and g. In return, the
divergence term dFG∆FG(pS , pT ) becomes larger than the one in equation (3). To better understand
these tradeoffs, we will reformulate bound (4) to be more interpretable. To this end, we define a
version of theH∆H-divergence that explicitly measures variation of the embeddings in G:
Definition 3. (FG∆G-divergence) For two domain distributions pS and pT over X , an encoder class
G, and predictor class F , the FG∆G-divergence between pS and pT is

dFG∆G (pS , pT ) = sup
f∈F ; g,g′∈G

|RS(fg, fg′)−RT (fg, fg′)|.

Importantly, the FG∆G-divergence is smaller than the FG∆FG-divergence, since the two hypothe-
ses in the supremum, fg and fg′, share the same predictor f .
Theorem 4. For all f ∈ F and g ∈ G,

RT (fg) ≤ RS(fg) + dF∆F (pgS(Z), pgT (Z))︸ ︷︷ ︸
Latent Divergence

+ dFG∆G (pS , pT )︸ ︷︷ ︸
Embedding Complexity

+λFG(g). (6)

where λFG(g) is the best in-class joint risk defined as

λFG(g) = inf
f ′∈F,g′∈G

2RS(f ′g) +RS(f ′g′) +RT (f ′g′).

We prove all theoretical results in the Appendix. This target generalization bound is small if (C1)
the source risk is small, (C2) the latent divergence is small (because the domains are well-aligned
and/or F is restricted), (C3) the complexity of G is restricted to avoid overfitting of alignments, and
(C4) good source and target risk is in general achievable with F and G.

Comparison to Previous Bounds. The last two terms in Theorem 2 express a similar complexity
tradeoff, but with respect to the overall hypothesis class H, which here combines encoder and pre-
dictor. Directly applying Theorem 2 to the composition H = FG (equation (4)) treats both jointly
and does not make the role of the embedding as explicit as Theorem 4. The recent bound (3) as-
sumes a fixed embedding g and focuses on the predictor class F . As a result, it captures embedding
complexity even less explicitly: the first two terms in bound (3) and Theorem 4 are the same. The
last term in (3), λF (g), contains the target risk with the given g. Hence, bound (3) replaces (C3)
and (C4) above by saying F and the specific g (which is much harder to control since in practice it
is also optimized) can achieve good source and target risk. In contrast, Theorem 4 states an explicit
complexity penalty on the variability of the embeddings, and uses the fixed g only in the source risk,
which can be better estimated empirically.

If F is not too rich, the latent divergence can be empirically minimized by finding a well-aligned
embedding. Hence, we can minimize the upper bound in Theorem 4 by minimizing the usual source
loss and domain-invariant loss (2) and by choosing F and G appropriately to tradeoff the complexity
penalty dFG∆G , the latent divergence (which increases with complexity of F and decreases with
complexity of G), and the best in-class joint risk (which decreases with complexity of F and G).

3.2 EMBEDDING COMPLEXITY TRADEOFFS EMPIRICALLY

To empirically verify the embedding complexity tradeoff, we keep the predictor class F fixed, vary
the embedding class G, and minimize the source loss and alignment objective (2). Concretely, we
train domain adversarial neural networks (DANNs) (Ganin et al., 2016) on the Amazon reviews
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(a) (b) Figure 2: Empirical ver-
ification on Amazon reviews
dataset. (a) Vary the number
of layers in the encoder while
fixing the predictor. (b) Fix
the total number of layers and
optimize the domain-invariant
loss in different layers.

dataset (Book→ Kitchen). Our hypothesis class is a multi-layer ReLU network, and the divergence
is minimized against a discriminator. For more experimental details and results, please refer to
section 6. We train different models by varying the number of layers in the encoder while fixing the
predictor to 4 layers. Figure 3.2(a) shows that, when increasing the number of layers in the encoder,
the target error decreases initially and then increases as more layers are added. This supports our
theory: the smaller encoders are not rich enough to allow for good alignments and λFG(g), but
overly expressive encoders may overfit.

Predictor Complexity. Theoretically, the complexity of the predictor class F also affects the gener-
alization bound in Theorem 4. Empirically, we found that the predictor complexity has much weaker
influence on the target risk (see experiments in Appendix B). Indeed, theoretically, while the com-
plexity of F affects the latent divergence, if the alignment via g is very good, this divergence can
still be small. In addition, the FG∆G-divergence is more sensitive to the embedding complexity than
the predictor complexity. This offers a possible explanation for our observations. In the remainder
of this paper, we focus on the role of the embedding.

Discussion. The results in this section indicate that, without constraining the embedding complexity,
we may overfit the distribution alignment and thereby destroy label consistency as in Figure 1. The
bound suggests to choose the minimal complexity encoder class G that is is still expressive enough
to minimize the latent space divergence. Practically, this can be done by regularizing the encoder,
e.g., restricting Lipschitz constants or norms of weight matrices. More explicitly, one may limit
the number of layers of a neural network, or apply inductive biases via network architectures. For
instance, compared to fully connected networks, convolutional neural networks (CNNs) restrict the
output representations to be spatially consistent with respect to the input.

4 BOUNDS FOR MULTILAYER NEURAL NETWORKS

Due to their wide empirical success, multilayer neural networks have been adopted for learning
domain-invariant representations. Next, we adapt the bound in Theorem 4 to multilayer networks.
Specifically, we consider the number of layers as an explicit measurement of complexity. This will
lead to a simple yet effective algorithm to mitigate the negative effect of very rich encoders.

4.1 EFFECT OF LAYER DIVISIONS

Assume we have an N -layer feedforward neural network h ∈ H. The model h can be decomposed
as h = figi ∈ FiGi = H for i ∈ {1, 2, . . . , N − 1} where the embedding gi is formed by the first
layer to the i-th layer and the predictor fi is formed by the i + 1-th layer to the last layer. We can
then rewrite the bound in Theorem 4 in layer-specific form:

RT (h) ≤ RS(h) + dFi∆Fi(p
gi
S (Z), pgiT (Z))︸ ︷︷ ︸

Latent Divergence in i-th layer

+ dFiGi∆Gi
(pS , pT )︸ ︷︷ ︸

Embedding Complexity w.r.t Gi

+λFiGi(gi). (7)

This yields N − 1 layer-specific upper bounds. Importantly, minimizing the domain-invariant loss
in different layers leads to different tradeoffs between fit and complexity penalties. This is reflected
by the following inequalities that relate different layer divisions.
Proposition 5. (Monotonicity) In an N -layer feedforward neural network h = figi ∈ FiGi = H
for i ∈ {1, 2, . . . , N − 1}, the following inequalities hold for all i ≤ j:

dFiGi∆Gi
(pS , pT ) ≤ dFjGj∆Gj

(pS , pT ) (embedding complexity) (8)

dFi∆Fi
(pgiS (Z), pgiT (Z)) ≥ dFj∆Fj

(p
gj
S (Z), p

gj
T (Z)) (latent divergence) (9)
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Proposition 5 states that the latent divergence is monotonically decreasing and the complexity
penalty is monotonically increasing with respect to the embedding’s depth. This is a tradeoff within
the fixed combined hypothesis class H. A deeper embedding allows for better alignments and si-
multaneously reduces the depth (power) of F ; both reduce the latent divergence. At the same time,
it incurs a larger FG∆G-divergence.

This suggests that there might be an optimal division that minimizes the bound on the target risk.
In practice, this translates into the question: in which intermediate layer should we optimize the
domain-invariant loss? Figure 3.2(b) shows how the target error changes as a function of the layer
division, with a total of n = 8 layers. Indeed, empirically there is an optimal division with minimum
target error, suggesting that for a fixedH, i.e., total network depth, not all divisions are equal.

If the exact layer-specific bounds could be computed, one could simply select the layer division with
the lowest bound. But, this is in general computationally nontrivial. Instead, we take a different
perspective. In fact, the layer-specific bounds (7) all hold simultaneously, independent of the layer
we selected for distribution alignment.
Corollary 6. Let h be an N -layer feedforward neural network h = figi ∈ FiGi = H for i ∈
{1, 2, . . . , N − 1}, we have the layer-agnostic bound

RT (h) ≤ RS(h) + min
{1≤i<N}

{
dFi∆Fi

(pgiS (Z), pgiT (Z)) + dFiGi∆Gi
(pS , pT ) + λFiGi(gi)

}
.

where λFG(g) is the best in-class joint risk defined in Theorem 4.

The corollary implies that at least one of these bounds should be small. Recall that the bounds
depend on how well we can minimize the source risk and align the distributions via a sufficiently
powerful embedding, while, at the same time, limiting the complexity of F and G.

4.2 MULTILAYER DIVERGENCE MINIMIZATION AND REGULARIZATION

Corollary 6 points to various algorithmic ideas: (1) Simultaneously optimizing several bounds may
result in approximately minimizing at least one of them, without having to select an optimal one. (2)
We may attain small latent divergence with a deeper encoder, if we achieve to restrict the complexity
of G appropriately. It turns out that these two ideas are related.

Optimizing the domain-invariant loss with alignment in a specific layer may result in large bounds
for the other layers, due to the monotonicity of the two divergences (Proposition 5) and potentially
non-aligned embeddings in lower layers. Hence, we propose to instead solve a multi-objective
optimization problem where we jointly align source and target distributions in multiple layers. Let
L ⊆ {1, 2, . . . , N − 1} be a subset of layers. We minimize the weighted sum of divergences, and
refer to this objective as Multilayer Divergence Minimization (MDM):

minh∈H RS(h) +
∑

i∈L
αid(pgiS (Z), pgiT (Z)). (10)

This objective encourages alignment throughout the layer-wise embeddings in the network. First, a
good alignment minimizes the latent divergence, if F is not too rich. For the lower layers (shallow
embeddings), this comes together with a very restricted class of embeddings, and hence limits both
latent divergence and complexity penalty. Without the optimization across layers, the embeddings
in lower layers are not driven towards alignment.

Second, enforcing alignment in lower layers implicitly restricts the deeper embeddings in higher
layers, since the embeddings are such that alignment happens early on. This effect may be viewed
as an implicit regularization. By this perspective, the bounds for higher layers profit from low latent
divergences (deeper embeddings and shallow predictors) and restricted complexity of G.

In general, one can simply set L = {1, 2, . . . , N − 1}. To improve computational efficiency, we can
sub-sample layers or exclude the first and the last few layers. MDM is simple and general, and can
be combined with most algorithms for learning domain-invariant representations. For DANN, for
instance, we minimize the divergence in multiple layers by adding discriminators.

5 OTHER RELATED WORKS

Existing approaches for learning domain-invariant representations may be distinguised, e.g., by
which divergence they measure between source and target domain. Examples include domain adver-
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Figure 3: Amazon reviews dataset. First row: Fixed predictor class, varying number of layers in the
encoder. Second row: Fixed total number of layers and optimizing domain-invariant loss in a single
intermediate layer or MDM.

sarial learning approaches (Ganin & Lempitsky, 2014; Tzeng et al., 2015; Ganin et al., 2016), max-
imum mean discrepancy (MMD) (Long et al., 2014; 2015; 2016) and Wasserstein distance (Courty
et al., 2016; 2017; Shen et al., 2017; Lee & Raginsky, 2018).

Other works improve performance by combining the domain-invariant loss with other objectives.
Shu et al. (2018) penalize the violation of the cluster assumption. In addition to the shared feature
encoder between source and target domain, Bousmalis et al. (2016) include private encoders for each
domain to capture domain-specific information. Long et al. (2018) propose a domain discriminator
that is conditioned on the cross-covariance of domain-specific embeddings and classifier predictions
to leverage discriminative information. Besides the usual distribution alignment, Hoffman et al.
(2017) further align the input space with a generative model that maps the target input distribution to
the source distribution. These previous works can be interpreted as adding additional regularization
via auxiliary objectives, and thereby potentially reducing the complexity penalty.

Some previous works also optimize the domain-invariant loss in multiple layers. Long et al. (2016)
fuse the representations from a bottleneck layer and a classifier layer by a tensor product and min-
imize the domain divergence based on the aggregated representations. Joint adaptation networks
(JADs) (Long et al., 2017) minimize the MMD in the last few layers to make the embeddings more
transferable. MDM can be seen as a generalization of JADs that minimizes domain divergence in
nearly every layer, driven by a strong theoretical motivation. Importantly, minimizing the divergence
only in the last few layers could still be suboptimal, since the embeddings may not be sufficiently
regularized.

6 EXPERIMENTS

We test our theory and algorithm on several standard benchmarks: sentiment analysis (Amazon
reviews dataset), digit classification (MNIST, MNIST-M, SVHN) and general object classification
(Office-31). In all experiments, we train DANN (Ganin et al., 2016), which measures the latent
divergence via a domain discriminator (Jensen Shannon divergence). A validation set from the
source domain is used as an early stopping criterion during learning. In all experiments, we use
the Adam optimizer (Kingma & Ba, 2014) and a progressive training strategy for the discriminator
(Ganin et al., 2016). We primarily consider three types of complexity: number of layers, number of
hidden neurons, and inductive bias (CNNs). In all experiments, we retrain each model for 5 times
and plot the mean and standard deviation of the target error.

For evaluating MDM, we consider three weighting schemes: uniform weights (αi = α0), linearly
decreasing (αi = α0−c×i), and exponentially decreasing (αi = α0 exp(−c×i)) where c ≥ 0. The
decreasing weights encourage the network to minimize the latent divergence in the first few layers,
where the embedding complexity is low. This may also further restrict the deeper embeddings. More
experimental details can be found in Appendix C.
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Figure 4: Digit classification. (a) Fixed predictor class, varying number of layers in the encoder.
(b) Fixed predictor class, varying the hidden width of the encoder. (c) Fixed total number of layers
and optimizing domain-invariant loss in a single intermediate layer or MDM.

Sentiment Classification. We first examine complexity tradeoffs on the Amazon reviews data,
which has four domains (books (B), DVD disks (D), electronics (E), and kitchen appliances (K))
with binary labels (positive / negative review). Reviews are encoded into 5000 dimensional feature
vectors of unigrams and bigrams. The hypothesis class are multi-layer ReLU networks. We show the
results on B→K, K→B, B→D, and D→B in Figure 3. To probe the effect of embedding complexity
by itself, we fix the predictor class to 4 layers and vary the number of layers of the embedding. In
agreement with the results in Section 3.2, the target error decreases initially, and then increases as
more layers are added to the encoder.

Next, we probe the tradeoff when the total number of layers is fixed to 8. The bottom row of Figure 3
shows that there exists an optimal setting for all tasks. For MDM, we optimize alignment in all inter-
mediate layers. The results suggest that MDM’s performance is comparable to the hypothesis with
the optimal division, without tuning the division. The three weighting schemes perform similarly,
suggesting that MDM is robust to weight selection.

Digit Classification. We next verify our findings on standard domain adaptation benchmarks:
MNIST→MNIST-M (M→M-M) and SVHN→MNIST (S→M). We use standard CNNs as the hy-
pothesis class; architecture details are in Appendix C.

Number of Layers in Encoder

Number of Layers in Encoder

Figure 5: DANN with FC layers.

To analyze the effect of the embedding complexity, we aug-
ment the original two-layer CNN encoders with 1 to 6 addi-
tional CNN layers for M→M-M and 1 to 24 for S→M, leav-
ing other settings unchanged. Figure 4(a) shows the results.
Again, the target error decreases initially and increase as the
encoder becomes more complex. Notably, the target error in-
creases by 19.8% in M→M-M and 8.8% in S→M compared to
the optimal case, when more layers are added to the encoder.
We also consider the width of hidden layers as a complexity
measure, while fixing the depth of both encoder and predictor.
The results are shown in Figure 4(b). This time, the decrease
in target error is not significant compared to increasing encoder depth. This suggests that depth plays
a more important role than width in learning domain-invariant representations.

Next, we fix the total number of CNN layers of the neural network to 7 and 26 for M→M-M and
S→M, respectively, and optimize the domain-invariant loss in different intermediate layers. The
results in Figure 4(c) again show a “U-curve”, indicating the existence of an optimal division. Even
with fixed total size of the network (H), the performance gap between different divisions can still
reach 19.5% in M→M-M and 10.4% in S→M. For MDM, L contains all the augmented CNN layers
for M→M-M. For S→M, we sub-sample a CNN layer every four layers to form L. We also observe
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Figure 6: Office-31 Dataset. First row: Fixed predictor class, varying encoder depth. Second row:
Fixed total number of layers, optimizing domain-invariant loss in a single layer or MDM.

that MDM with all weighting schemes consistently achieves comparable performance with the best
division in S→M and even better performance in M→M-M.

To investigate the importance of inductive bias in domain-invariant representations, we replace the
CNN encoder by an MLP encoder. The results for M→M-M are shown in Figure 5. Comparing
to CNNs, which encode invariance via pooling and learned filters, MLPs do not have any inductive
bias and lead to worse performance. In fact, the target error with MLP-based domain adaptation is
higher than merely training on the source: without an appropriate inductive bias, learning domain
invariant representations can even worsen the performance.

Object Classification. Office-31 (Saenko et al., 2010), one of the most widely used benchmarks in
domain adaptation, contains three domains: Amazon (A), Webcam (W), and DSLR (D) with 4,652
images and 31 categories. We show results for A→W, A→D, W→A, and D→A in Figure 6. To
overcome the lack of training data, similar to (Li et al., 2018; Long et al., 2018), we use ResNet-
50 (He et al., 2016) pretrained on ImageNet (Deng et al., 2009) for feature extraction. With the
extracted features, we adopt multi-layer ReLU networks as hypothesis class. Again, we increase the
depth of the encoder while fixing the depth of the predictor to 2 and show the results Figure 6. Even
with a powerful feature extractor, the embedding complexity tradeoff still exists. Second, we fix
the total network depth to 14 and optimize MDM, with L containing all even layers in the network.
MDM achieves comparable performance to the best division for most of the tasks, albeit slightly
worse performance in D→A.

7 CONCLUSION

In this paper, we theoretically and empirically analyze the effect of embedding complexity on the
target risk in domain-invariant representations. We find a complexity tradeoff that has mostly been
overlooked by previous work. In fact, without carefully selecting and restricting the encoder class,
learning domain invariant representations might even harm the performance. We further develop a
simple yet effective algorithm to approximately optimize the tradeoff, achieving performance across
tasks that matches the best network division, i.e., complexity tradeoff. Interesting future directions
of work include other strategies for model selection, and a more refined analysis and exploitation of
the effect of inductive bias.
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A PROOFS

A.1 PROOF OF THEOREM 4

Theorem 4. For all f ∈ F and g ∈ G,

RT (fg) ≤ RS(fg) + dF∆F (pgS(Z), pgT (Z)) + dFG∆G (pS , pT ) + λFG(g).

where λFG(g) is the best in-class joint risk defined as

λFG(g) = inf
f ′∈F,g′∈G

2RS(f ′g) +RS(f ′g′) +RT (f ′g′).

Proof. We first define the optimal composition hypothesis f∗g∗ with respect to an encoder g to be
the hypothesis which minimizes the following error

f∗g∗ = arg min
f ′∈F,g′∈G

2RS(f ′g) +RS(f ′g′) +RT (f ′g′) (11)

By the triangle inequality for classification error (Ben-David et al. (2007)),

RT (fg) ≤ RT (f∗g∗) +RT (fg, f∗g∗) (12)
≤ RT (f∗g∗) +RT (fg, f∗g) +RT (f∗g, f∗g∗) (13)

The second term in the R.H.S of Eq. 13 can be bounded as

RT (fg, f∗g) ≤ RS(fg, f∗g) + |RS(fg, f∗g)−RT (fg, f∗g)| (14)

≤ RS(fg, f∗g) + sup
f,f ′∈F

|RS(fg, f ′g)−RT (fg, f ′g)| (15)

= RS(fg, f∗g) + dF∆F (pgS(Z), pgT (Z)) (16)

≤ RS(fg) +RS(f∗g) + dF∆F (pgS(Z), pgT (Z)) (17)

The third term in the R.H.S of Eq. 13 can be bounded as

RT (f∗g, f∗g∗) ≤ RS(f∗g, f∗g∗) + |RS(f∗g, f∗g∗)−RT (f∗g, f∗g∗)| (18)

≤ RS(f∗g, f∗g∗) + sup
f∈F,g,g′∈G

|RS(f ′g, f ′g′)−RT (f ′g, f ′g′)| (19)

= RS(f∗g, f∗g∗) + dFG∆G (pS(X), pT (X)) (20)
≤ RS(f∗g) +RS(f∗g∗) + dFG∆G (pS(X), pT (X)) (21)
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Combine the above bounds, we have

RT (fg) ≤ RS(fg) + dF∆F (pgS(Z), pgT (Z)) + dFG∆G (pS(X), pT (X)) + λFG(g) (22)

where

λFG(g) = 2RS(f∗g) +RS(f∗g∗) +RT (f∗g∗) (23)

= inf
f ′∈F,g′∈G

2RS(f ′g) +RS(f ′g′) +RT (f ′g′) (24)

A.2 PROOF OF PROPOSITION 5

Proposition 5. In an N -layer feedforward neural network h = figi ∈ FiGi = H for i ∈
{1, 2, . . . , N − 1}, the following inequalities hold for all i ≤ j:

dFiGi∆Gi
(pS , pT ) ≤ dFjGj∆Gj

(pS , pT )

dFi∆Fi(p
gi
S (Z), pgiT (Z)) ≥ dFj∆Fj (p

gj
S (Z), p

gj
T (Z))

Proof. Given a class of multilayer feedforward neural network, We define a class of functionQij to
represent the function class formed by the intermediate hidden layer i to layer j.

We now prove the first inequality. By the definition of FG∆G-divergence, for every i ≤ j

dFiGi∆Gi
(pS , pT ) (25)

= sup
f∈Fi

g,g′∈Gi

|RS(fg, fg′)−RT (fg, fg′)| (26)

= sup
f∈Fj ,q∈Qij

g,g′∈Gi

|RS(fqg, fqg′)−RT (fqg, fqg′)| (27)

≤ sup
f∈Fj

q,q′∈Qij

g,g′∈Gi

|RS(fqg, fq′g′)−RT (fqg, fq′g′)| (28)

= sup
f∈Fj

g,g′∈Gj

|RS(fg, fg′)−RT (fg, fg′)| (29)

=dFjGj∆Gj
(pS , pT ) (30)

We next prove the second inequality. By the definition of F∆F-divergence, for every i ≤ j

dFj∆Fj (p
gj
S (Z), p

gj
T (Z)) (31)

= sup
f,f ′∈Fj

|RS(fgj , f
′gj)−RT (fgj , f

′gj)| (32)

= sup
f,f ′∈Fj

|RS(fqijgi, f
′qijgi)−RT (fqijgi, f

′qijgi)| (33)

≤ sup
q∈Qij

f,f ′∈Fj

|RS(fqgi, f
′qgi)−RT (fqgi, f

′qgi)| (34)

≤ sup
q,q′∈Qij

f,f ′∈Fj

|RS(fqgi, f
′q′gi)−RT (fqgi, f

′q′gi)| (35)

= sup
f,f ′∈Fi

|RS(fgi, f
′gi)−RT (fgi, f

′gi)| (36)

=dFi∆Fi(p
gi
S (Z), pgiT (Z)) (37)
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B PREDICTOR COMPLEXITY

We investigate the effect of predictor complexity on MNIST→MNIST-M. Follow the procedure in
section 6, we augment the original predictor with 1 to 7 additional CNN layers and fix the number of
layers in encoder to 4 or vary the hidden width. The results are shown in Figure 7. The target error
slightly decreases as the number of layers in the predictor increases. Even we augment 7 layers to
the predictor, the target error only decrease 0.9% which is nearly ignorable. Therefore, we focus on
the embedding complexity in the main paper which is both theoretically and empirically interesting.
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(a) Vary Layer Number (b) Vary Hidden Size

Figure 7: Predictor complexity trade-off on MNIST→MNIST-M. (a) Fix the encoder class and
vary the number of layers in the predictor. (b) Fix the encoder class and vary the hidden width of
the predictor.

C EXPERIMENT DETAILS AND NETWORK ARCHITECTURES

C.1 AMAZON REVIEW DATASET

The learning rate of Adam optimizer is set to 1 × e−3 and the model are trained for 50 epochs.
We adopt the original progressive training strategy for discriminator (Ganin et al., 2016) where the
weight α for domain-invariant loss in equation (2) is initiated at 0 and is gradually changed to 1
using the following schedule:

α =
2

1 + exp(−10 · p)
− 1 (38)

where p is the training progress linearly changing from 0 to 1. The architecture of the hypothesis
and discriminator are as follows:

Encoder

nn.Linear(5000, 128)
nn.ReLU

nn.Linear(128, 128)
nn.ReLU

×n (depends on the number of layers)

Predictor

nn.Linear(128, 128)
nn.ReLU

×n (depends on the number of layers)
nn.Linear(128, 2)

nn.Softmax

Discriminator

nn.Linear(128, 256)
nn.ReLU

nn.Linear(256, 256)
nn.ReLU
×5

nn.Linear(256, 2)
nn.Softmax
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C.2 DIGIT CLASSIFICATION

The learning rate of Adam optimizer is set to 1× e−3 and the model are trained for 100 epochs. The
weight α for domain-invariant loss in equation (2) is initiated at 0 and is gradually changed to 0.1
using the same schedule in section C.1. The architecture of the hypothesis and discriminator are as
follows:

Encoder

nn.Conv2d(3, 64, kernel size=5)
nn.BatchNorm2d
nn.MaxPool2d(2)

nn.ReLU
nn.Conv2d(64, 128, kernel size=5)

nn.BatchNorm2d
nn.Dropout2d (only added for MNIST→MNIST-M)

nn.MaxPool2d(2)
nn.ReLU

nn.Conv2d(128, 128, kernel size=3, padding=1)
nn.BatchNorm2d

nn.ReLU
×n (depends on the number of layers)

Predictor

nn.Conv2d(128, 128, kernel size=3, padding=1)
nn.BatchNorm2d

nn.ReLU
×n (depends on the number of layers)

flatten
nn.Linear(2048, 256)

nn.BatchNorm1d
nn.ReLU

nn.Linear(256, 10)
nn.Softmax

Discriminator

nn.Conv2d(128, 256, kernel size=3, padding=1)
nn.ReLU

nn.Conv2d(256, 256, kernel size=3, padding=1)
nn.ReLU
×4

Flatten
nn.Linear(4096, 512)

nn.ReLU
nn.Linear(512, 512)

nn.ReLU
nn.Linear(512, 2)

nn.Softmax

In the hidden width experiments, we treat the architectures above as the pivot and multiply their
hidden width with the ratios.

C.3 OFFICE-31

We exploit the feature after average pooling layer of the ResNet-50 (He et al., 2016) pretrained on
ImageNet (Deng et al., 2009) for feature extraction. The learning rate of Adam optimizer is set
to 3 × e−4 and the model are trained for 100 epochs. The weight α for domain-invariant loss in
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equation (2) is initiated at 0 and is gradually changed to 1 using the same schedule in section C.1.
The architecture of the hypothesis and discriminator are as follows:

Encoder

nn.Linear(2048, 256)
nn.ReLU

nn.Linear(256, 256)
nn.ReLU

×n (depends on the number of layers)

Predictor

nn.Linear(256, 256)
nn.ReLU

×n (depends on the number of layers)
nn.Linear(256, 2)

nn.Softmax

Discriminator

nn.Linear(256, 256)
nn.ReLU
×6

nn.Linear(256, 2)
nn.Softmax

C.4 MULTILAYER DIVERGENCE MINIMIZATION

In all the experiments, we minimize the divergence in multiple layers by augmenting additional
discriminators for each layer-specific representations where the discriminators share the same archi-
tecture as the standard setting.

For uniform weighting scheme (αi = α0), αi is set to the normalized same value α in the stand
setting. For linear decreasing scheme (αi = α0 − c × i), αi decreases from α0 = α to 0 linearly.
For exponentially decreasing scheme (αi = α0 exp(−c × i)), α0 is set to α and c increases from 0
to 2 linearly.
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