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ABSTRACT

Semantic sentence embedding models encode natural language sentences into vec-
tors, such that closeness in embedding space indicates closeness in the semantics
between the sentences. Bilingual data offers a useful signal for learning such
embeddings: properties shared by both sentences in a translation pair are likely
semantic, while divergent properties are likely stylistic or language-specific. We
propose a deep latent variable model that attempts to perform source separation
on parallel sentences, isolating what they have in common in a latent semantic
vector, and explaining what is left over with language-specific latent vectors. Our
proposed approach differs from past work on semantic sentence encoding in two
ways. First, by using a variational probabilistic framework, we introduce priors
that encourage source separation, and can use our model’s posterior to predict
sentence embeddings for monolingual data at test time. Second, we use high-
capacity transformers as both data generating distributions and inference networks
– contrasting with most past work on sentence embeddings. In experiments, our
approach substantially outperforms the state-of-the-art on a standard suite of un-
supervised semantic similarity evaluations. Further, we demonstrate that our ap-
proach yields the largest gains on more difficult subsets of these evaluations where
simple word overlap is not a good indicator of similarity.

1 INTRODUCTION

Learning useful representations of language has been a source of recent success in natural language
processing (NLP). Much work has been done on learning representations for words (Mikolov et al.,
2013; Pennington et al., 2014) and sentences (Kiros et al., 2015; Conneau et al., 2017). More
recently, deep neural architectures have been used to learn contextualized word embeddings (Peters
et al., 2018; Devlin et al., 2018) which have enabled state-of-the-art results on many tasks. We
focus on learning semantic sentence embeddings in this paper, which play an important role in
many downstream applications. Since they do not require any labelled data for fine-tuning, sentence
embeddings are useful for a variety of problems right out of the box. These include Semantic Textual
Similarity (STS; Agirre et al. (2012)), mining bitext (Zweigenbaum et al., 2018), and paraphrase
identification (Dolan et al., 2004). Semantic similarity measures also have downstream uses such as
fine-tuning machine translation systems (Wieting et al., 2019a).

There are three main ingredients when designing a sentence embedding model: the architecture, the
training data, and the objective function. Many architectures including LSTMs (Hill et al., 2016;
Conneau et al., 2017; Schwenk & Douze, 2017; Subramanian et al., 2018), Transformers (Cer et al.,
2018; Reimers & Gurevych, 2019), and averaging models (Wieting et al., 2016a; Arora et al., 2017)
have found success for learning sentence embeddings. The choice of training data and objective
are intimately intertwined, and there are a wide variety of options including next-sentence predic-
tion (Kiros et al., 2015), machine translation (Espana-Bonet et al., 2017; Schwenk & Douze, 2017;
Schwenk, 2018; Artetxe & Schwenk, 2018), natural language inference (NLI) (Conneau et al.,
2017), and multi-task objectives which include some of the previously mentioned objectives (Cer
et al., 2018) as well as additional tasks like constituency parsing (Subramanian et al., 2018).

Surprisingly, despite ample testing of more powerful architectures, the best performing models for
many sentence embedding tasks related to semantic similarity often use simple architectures that
are mostly agnostic to the interactions between words. For instance, some of the top performing
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techniques use word embedding averaging (Wieting et al., 2016a), character n-grams (Wieting et al.,
2016b), and subword embedding averaging (Wieting et al., 2019b) to create representations. These
simple approaches are competitive with much more complicated architectures on in-domain data and
generalize well to unseen domains, but are fundamentally limited by their inability to capture word
order. Training these approaches generally relies on discriminative objectives defined on paraphrase
data (Ganitkevitch et al., 2013; Wieting & Gimpel, 2018) or bilingual data (Wieting et al., 2019b).
The inclusion of latent variables in these models has also been explored (Chen et al., 2019).

Intuitively, bilingual data in particular is promising because it potentially offers a useful signal for
learning the underlying semantics of sentences. Within a translation pair, properties shared by
both sentences are more likely semantic, while those that are divergent are more likely stylistic
or language-specific. While previous work learning from bilingual data perhaps takes advantage
of this fact implicitly, the focus of this paper is modelling this intuition explicitly, and to the best
of our knowledge, this has not not been explored in prior work. Specifically, we propose a deep
generative model that is encouraged to perform source separation on parallel sentences, isolating
what they have in common in a latent semantic embedding and explaining what is left over with
language-specific latent vectors. At test time, we use inference networks (Kingma & Welling, 2013)
for approximating the model’s posterior on the semantic and source-separated latent variables to
encode monolingual sentences. Finally, since our model and training objective are generative, our
approach does not require knowledge of the distance metrics to be used during evaluation,1 and it
has the additional property of being able to generate text.

In experiments, we evaluate our probabilistic source-separation approach on a standard suite of STS
evaluations. We demonstrate that the proposed approach is effective, most notably allowing the
learning of high-capacity deep transformer architectures (Vaswani et al., 2017) while still generaliz-
ing to new domains, significantly outperforming a variety of state-of-the-art baselines . Further, we
conduct a thorough analysis by identifying subsets of the STS evaluation where simple word overlap
is not able to accurately assess semantic similarity. On these most difficult instances, we find that
our approach yields the largest gains, indicating that our system is modeling interactions between
words to good effect. We also find that our model better handles cross-lingual semantic similarity
than multilingual translation baseline approaches, indicating that stripping away language-specific
information allows for better comparisons between sentences from different languages.

Finally, we analyze our model to uncover what information was captured by the source separation
into the semantic and language-specific variables and the relationship between this encoded infor-
mation and language distance to English. We find that the language-specific variables tend to explain
more superficial or language-specific properties such as overall sentence length, amount and loca-
tion of punctuation, and the gender of articles (if gender is present in the language), but semantic
and syntactic information is more concentrated in the shared semantic variables, matching our intu-
ition. Language distance has an effect as well, where languages that share common structures with
English put more information into the semantic variables, while more distant languages put more
information into the language-specific variables. Lastly, we show outputs generated from our model
that exhibit its ability to do a type of style transfer.

2 MODEL

Our proposed training objective leverages a generative model of parallel text in two languages (e.g.
English (en) and French (fr)) that form a pair consisting of an English sentence xen and a French
sentence xfr. Importantly, this generative process utilizes three underlying latent vectors: language-
specific variation variables (language variables) zfr and zen respectively for each side of the transla-
tion, as well as a shared semantic variation variable (semantic variable) zsem. In this section we will
first describe the generative model for the text and latent variables. In the following section we will
describe the inference procedure of zsem given an input sentence, which corresponds to our core
task of obtaining sentence embeddings useful for downstream tasks such as semantic similarity.

Further, by encouraging the model to perform this source separation, the learned semantic encoders
will more crisply represent the underlying semantics, increasing performance on downstream se-
mantic tasks.

1In other words, we don’t assume cosine similarity as a metric, though it does work well in our experiments.
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Figure 1: The generative process of our model. Latent variables model-
ing the linguistic variation in French and English, zfr and zen, as well
as a latent variable modeling the common semantics, zsem, are drawn
from a multivariate Gaussian prior. The observed text in each language
is then conditioned on its language-specific variable and zsem.

The generative process of
our model, the Bilingual
Generative Transformer
(BGT), is depicted in
Figure 1 and its com-
putation graph is shown
in Figure 2. First, we
sample latent variables
〈zfr, zen, zsem〉, where
zi ∈ Rk, from a mul-
tivariate Gaussian prior
N(0, Ik). These vari-
ables are then fed into
a decoder that samples
sentences; xen is sampled
conditioned on zsem and
zen, while xfr is sampled
conditioned on zsem and
zfr. Because sentences
in both languages will
use zsem in generation,
we expect that in a well-
trained model this variable will encode semantic, syntactic, or stylistic information shared across
both sentences, while zfr and zen will handle any language-specific peculiarities or specific stylistic
decisions that are less central to the sentence meaning and thus do not translate across sentences. In
the following section, we further discuss how this is explicitly encouraged by the learning process.

Decoder Architecture. Many latent variable models for text use LSTMs (Hochreiter & Schmid-
huber, 1997) as their decoders (Yang et al., 2017; Ziegler & Rush, 2019; Ma et al., 2019). However,
state-of-the-art models in neural machine translation have seen increased performance and speed us-
ing deep Transformer architectures. We also found in our experiments (see Appendix C for details)
that Transformers led to increased performance in our setting, so they are used in our main model.

We use two decoders in our model, one for modelling p(xfr|zsem, zfr; θ) and one for modeling
p(xen|zsem, zen; θ). These decoders are depicted on the right side of Figure 2. Each decoder takes
in two latent variables, a language variable and a semantic variable. These variables are concatenated
together prior to being used by the decoder for reconstruction. We explore four ways of using this
latent vector: (1) Concatenate it to the word embeddings (Word) (2) Use it as the initial hidden state
(Hidden, LSTM only) (3) Use it as you would the attention context vector in the traditional sequence-
to-sequence framework (Attention) and (4) Concatenate it to the hidden state immediately prior to
computing the logits (Logit). Unlike Attention, there is no additional feedforward layer in this
setting. We experimented with these four approaches, as well as combinations thereof, and report
this analysis in Appendix A. From these experiments, we see that the closer the sentence embedding
is to the softmax, the better the performance on downstream tasks evaluating its semantic content.
We hypothesise that this is due to better gradient propagation because the sentence embedding is now
closer to the error signal. Since Attention and Logit performed best, we use these in our Transformer
experiments.

3 LEARNING AND INFERENCE

Our model is trained on a training set X of parallel text consisting of N examples,
X = {〈x1en, x1fr〉, . . . , 〈xNen, xNfr〉}, and Z is our collection of latent variables Z =

(〈z1en, z1fr, z1sem〉, . . . , 〈zNen, zNfr, zNsem〉). We wish to maximize the likelihood of the parameters of
the two decoders θ with respect to the observed X , marginalizing over the latent variables Z.

p(X; θ) =

∫
Z

p(X,Z; θ)dZ
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Figure 2: The computation graph for the variational lower bound used during training. The En-
glish and French text are fed into their respective inference networks and the semantic inference
network to ultimately produce the language variables zfr and zen and semantic variable zsem. Each
language-specific variable is then concatenated to zsem and used by the decoder to reconstruct the
input sentence pair.

Unfortunately, this integral is intractable due to the complex relationship between X and Z. How-
ever, related latent variable models like variational autoencoders (VAEs (Kingma & Welling, 2013))
learn by optimizing a variational lower bound on the log marginal likelihood. This surrogate objec-
tive is called the evidence lower bound (ELBO) and introduces a variational approximation, q to
the true posterior of the model p. The q distribution is parameterized by a neural network with
parameters φ. ELBO can be written for our model as follows:

ELBO =Eq(Z|X;φ)[log p(X|Z; θ)]−
KL(q(Z|X;φ)||p(Z; θ))

This lower bound on the marginal can be optimized by gradient ascent by using the reparame-
terization trick (Kingma & Welling, 2013). This trick allows for the expectation under q to be
approximated through sampling in a way that preserves backpropagation.

We make several independence assumptions for q(zsem, zen, zfr|xen, xfr;φ). Specifically,
to match our goal of source separation, we factor q as q(zsem, zen, zfr|xen, xfr;φ) =
q(zsem|xen, xfr;φ)q(zen|xen)q(zfr|xfr;φ), with φ being the parameters of the encoders that make
up the inference networks, defined in the next paragraph.

Lastly, we note that the KL term in our ELBO equation encourages explaining variation that is
shared by translations with the shared semantic variable and explaining language-specific variation
with the corresponding language-specific variables. Information shared by the two sentences will
result in a lower KL loss if it is encoded in the shared variable, otherwise that information will be
replicated and the overall cost of encoding will increase.

Encoder Architecture. We use three inference networks as shown on the left side of Figure 2: an
English inference network to produce the English language variable, a French inference network to
produce the French language variable, and a semantic inference network to produce the semantic
variable. Just as in the decoder architecture, we use a Transformer for the encoders.

The semantic inference network is a bilingual encoder that encodes each language. For each trans-
lation pair, we alternate which of the two parallel sentences is fed into the semantic encoder within
a batch. Since the semantic encoder is meant to capture language agnostic semantic information,
its outputs for a translation pair should be similar regardless of the language of the input sentence.
We note that other operations are possible for combining the views each parallel sentence offers.
For instance, we could feed both sentences into the semantic encoder and pool their representations.
However, in practice we find that alternating works well and leave further study of this to future
work.
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4 EXPERIMENTS

4.1 BASELINE MODELS

We experiment with fourteen baseline models, covering both the most effective approaches for learn-
ing sentence embeddings from the literature and ablations of our own BGT model. These baselines
can be split into three groups as detailed below.

Models from the Literature (Trained on Different Data) We compare to well known sentence
embedding models Infersent (Conneau et al., 2017), GenSen (Subramanian et al., 2018), the Univer-
sal Sentence Encoder (USE) (Cer et al., 2018), as well as BERT (Devlin et al., 2018).2 We used the
pretrained BERT model in two ways to create a sentence embedding. The first way is to concatenate
the hidden states for the CLS token in the last four layers. The second way is to concatenate the
hidden states of all word tokens in the last four layers and mean pool these representations. Both
methods result in a 4096 dimension embedding. Finally, we compare to the newly released model,
Sentence-Bert (Reimers & Gurevych, 2019). This model is similar to Infersent (Conneau et al.,
2017) in that it is trained on natural language inference data, SNLI (Bowman et al., 2015). How-
ever, instead of using pretrained word embeddings, they fine-tune BERT in a way to induce sentence
embeddings.3

Models from the Literature (Trained on Our Data) These models are amenable to being trained
in the exact same setting as our own models as they only require parallel text. These include the
sentence piece averaging model, SP, from (Wieting et al., 2019b), which is among the best of the
averaging models (i.e. compared to averaging only words or character n-grams) as well the LSTM
model, BILSTM, from (Wieting & Gimpel, 2017). These models use a contrastive loss with a
margin. Following their settings, we fix the margin to 0.4 and tune the number of batches to pool for
selecting negative examples from {40, 60, 80, 100}. For both models, we set the dimension of the
embeddings to 1024. For BILSTM, we train a single layer bidirectional LSTM with hidden states
of 512 dimensions. To create the sentence embedding, the forward and backward hidden states are
concatenated and mean-pooled. Following (Wieting & Gimpel, 2017), we shuffle the inputs with
probability p, tuning p from {0.3, 0.5}.
We also implicitly compare to previous machine translation approaches like (Espana-Bonet et al.,
2017; Schwenk & Douze, 2017; Artetxe & Schwenk, 2018) in Appendix A where we explore differ-
ent variations of training LSTM sequence-to-sequence models. We find that our translation baselines
reported in the tables below (both LSTM and Transformer) outperform the architectures from these
works due to using the Attention and Logit methods mentioned in Section 2 , demonstrating that our
baselines represent, or even over-represent, the state-of-the-art for machine translation approaches.

BGT Ablations Lastly, we compare to ablations of our model to better understand the benefits of
parallel data, language-specific variables, the KL loss term, and how much we gain from the more
conventional translation baselines.

• ENGLISHAE: English autoencoder on the English side of our en-fr data.
• ENGLISHVAE: English variational autoencoder on the English side of our en-fr data.
• ENGLISHTRANS: Translation from en to fr.
• BILINGUALTRANS: Translation from both en to fr and fr to enwhere the encoding parameters

are shared but each language has its own decoder.
• BGT W/O LANGVARS: A model similar to BILINGUALTRANS, but it includes a prior over the

embedding space and therefore a KL loss term. This model differs from BGT since it does not
have any language-specific variables.

• BGT W/O PRIOR: Follows the same architecture as BGT, but without the priors and KL loss
term.
2Note that in all experiments using BERT, including Sentence-BERT, the large, uncased version is used.
3Most work evaluating accuracy on STS tasks has averaged the Pearson’s r over each individual dataset

for each year of the STS competition. However, Reimers & Gurevych (2019) computed Spearman’s ρ over
concatenated datasets for each year of the STS competition. To be consistent with previous work, we re-ran
their model and calculated results using the standard method, and thus our results are not the same as those
reported Reimers & Gurevych (2019).
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4.2 EXPERIMENTAL SETTINGS

The training data for our models is a mixture of OpenSubtitles 20184 en-fr data and en-fr Gi-
gaword5 data. To create our dataset, we combined the complete corpora of each dataset and then
randomly selected 1,000,000 sentence pairs to be used for training with 10,000 used for validation.
We use sentencepiece (Kudo & Richardson, 2018) with a vocabulary size of 20,000 to segment
the sentences, and we chose sentence pairs whose sentences are between 5 and 100 tokens each.

In designing the model architectures for the encoders and decoders, we experimented with Trans-
formers and LSTMs. Due to better performance, we use a 5 layer Transformer for each of the
encoders and a single layer decoder for each of the decoders. This design decision was empirically
motivated as we found using a larger decoder was slower and worsened performance, but conversely,
adding more encoder layers improved performance. More discussion of these trade-offs along with
ablations and comparisons to LSTMs are included in Appendix C.

For all of our models, we set the dimension of the embeddings and hidden states for the encoders and
decoders to 1024. Since we experiment with two different architectures,6 we follow two different
optimization strategies. For training models with Transformers, we use Adam (Kingma & Ba, 2014)
with β1 = 0.9, β2 = 0.98, and ε = 10−8. We use the same learning rate schedule as (Vaswani et al.,
2017), i.e., the learning rate increases linearly for 4,000 steps to 5× 10−4, after which it is decayed
proportionally to the inverse square root of the number of steps. For training the LSTM models, we
use Adam with a fixed learning rate of 0.001. We train our models for 20 epochs.

For models incorporating a translation loss, we used label smoothed cross entropy (Szegedy et al.,
2016; Pereyra et al., 2017) with ε = 0.1. For ENGLISHVAE, BGT and BILINGUALTRANS, we
anneal the KL term so that it increased linearly for 216 updates, which robustly gave good results in
preliminary experiments. We also found that in training BGT, combining its loss with the BILIN-
GUALTRANS objective during training of both models increased performance, and so this loss was
summed with the BGT loss in all of our experiments. We note that this doesn’t affect our claim of
BGT being a generative model, as this loss is only used in a multi-task objective at training time,
and we calculate the generation probabilities according to standard BGT at test time.

Lastly, in Appendix B, we illustrate that it is crucial to train the Transformers with large batch sizes.
Without this, the model can learn the goal task (such as translation) with reasonable accuracy, but
the learned semantic embeddings are of poor quality until batch sizes approximately reach 25,000
tokens. Therefore, we use a maximum batch size of 50,000 tokens in our ENGLISHTRANS, BILIN-
GUALTRANS, and BGT W/O PRIOR, experiments and 25,000 tokens in our BGT W/O LANGVARS
and BGT experiments.

4.3 EVALUATION

Our primary evaluation are the 2012-2016 SemEval Semantic Textual Similarity (STS) shared
tasks (Agirre et al., 2012; 2013; 2014; 2015; 2016), where the goal is to accurately predict the de-
gree to which two sentences have the same meaning as measured by human judges. The evaluation
metric is Pearson’s r with the gold labels.

Secondly, we evaluate on Hard STS, where we combine and filter the STS datasets in order to make
a more difficult evaluation. We hypothesize that these datasets contain many examples where their
gold scores are easy to predict by either having similar structure and word choice and a high score or
dissimilar structure and word choice and a low score. Therefore, we split the data using symmetric
word error rate (SWER),7 finding sentence pairs with low SWER and low gold scores as well as
sentence pairs with high SWER and high gold scores. This results in two datasets, Hard+ which
have SWERs in the bottom 20% of all STS pairs and whose gold label is between 0 and 1,8 and

4http://opus.nlpl.eu/OpenSubtitles.php
5https://www.statmt.org/wmt10/training-giga-fren.tar
6We use LSTMs in our ablations.
7We define symmetric word error rate for sentences s1 and s2 as 1

2
WER(s1, s2) + 1

2
WER(s2, s2), since

word error rate (WER) is an asymmetric measure.
8STS scores are between 0 and 5.

6
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Data Sentence 1 Sentence 2 Gold Score
Hard+ Other ways are needed. It is necessary to find other means. 4.5
Hard- How long can you keep chocolate

in the freezer?
How long can I keep bread dough in
the refrigerator?

1.0

Negation It’s not a good idea. It’s a good idea to do both. 1.0

Table 1: Examples from our Hard STS dataset and our negation split. The sentence pair in the first
row has dissimilar structure and vocabulary yet a high gold score. The second sentence pair has
similar structure and vocabulary and a low gold score. The last sentence pair contains negation,
where there is a not in Sentence 1 that causes otherwise similar sentences to have low semantic
similarity.

Model Semantic Textual Similarity (STS)
2012 2013 2014 2015 2016 Avg. Hard+ Hard- Avg.

BERT (CLS) 33.2 29.6 34.3 45.1 48.4 38.1 7.8 12.5 10.2
BERT (Mean) 48.8 46.5 54.0 59.2 63.4 54.4 3.1 24.1 13.6
Infersent 61.1 51.4 68.1 70.9 70.7 64.4 4.2 29.6 16.9
GenSen 60.7 50.8 64.1 73.3 66.0 63.0 24.2 6.3 15.3
USE 61.4 59.0 70.6 74.3 73.9 67.8 16.4 28.1 22.3
Sentence-BERT 66.9 63.2 74.2 77.3 72.8 70.9 23.9 3.6 13.8
SP 68.4 60.3 75.1 78.7 76.8 71.9 19.1 29.8 24.5
BILSTM 67.9 56.4 74.5 78.2 75.9 70.6 18.5 23.2 20.9
ENGLISHAE 60.2 52.7 68.6 74.0 73.2 65.7 15.7 36.0 25.9
ENGLISHVAE 59.5 54.0 67.3 74.6 74.1 65.9 16.8 42.7 29.8
ENGLISHTRANS 66.5 60.7 72.9 78.1 78.3 71.3 18.0 47.2 32.6
BILINGUALTRANS 67.1 61.0 73.3 78.0 77.8 71.4 20.0 48.2 34.1
BGT W/O LANGVARS 68.3 61.3 74.5 79.0 78.5 72.3 24.1 46.8 35.5
BGT W/O PRIOR 67.6 59.8 74.1 78.4 77.9 71.6 17.9 45.5 31.7
BGT 68.9 62.2 75.9 79.4 79.3 73.1 22.5 46.6 34.6

Table 2: Results of our models and models from prior work. The first six rows are pretrained
models from the literature, the next two rows are strong baselines trained on the same data as our
models, and the last seven rows include model ablations and BGT, our final model. We show results,
measured in Pearson’s r × 100, for each year of the STS tasks 2012-2016 and our two Hard STS
datasets.

Hard- where the SWERs are in the top 20% of the gold scores are between 4 and 5. We also evaluate
on a split where negation was likely present in the example.9 Examples are shown in Table 1.

Lastly, we evaluate on STS in es and ar as well as cross-lingual evaluations for en-es, en-ar,
and en-tr. We use the datasets from SemEval 2017 (Cer et al., 2017). For this setting, we train
BILINGUALTRANS and BGT on 1 million examples from en-es, en-ar, and en-tr OpenSub-
titles 2018 data.

4.4 RESULTS

The results on the STS and Hard STS are shown in Table 2.10 From the results, we see that BGT has
the highest overall performance. It does especially well compared to prior work on the two Hard
STS datasets.

We show further difficult splits in Table 3, including a negation split, beyond those used in Hard
STS and compare the top two performing models in the STS task from Table 2. We also show easier
splits in the bottom of the table.

From these results, we see that both positive examples that have little shared vocabulary and structure
and negative examples with significant shared vocabulary and structure benefit significantly from
using a deeper architecture. Similarly, examples where negation occurs also benefit from our deeper
model. These examples are difficult because more than just the identity of the words is needed to

9We selected examples for the negation split where one sentence contained not or ’t and the other did not.
10We obtained values for STS 2012-2016 from prior works using SentEval (Conneau & Kiela, 2018). Note

that we include all datasets for the 2013 competition, including SMT, which is not included in SentEval.
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Data Split n BGT SP
All 13,023 75.3 74.1
Negation 705 73.1 68.7
Bottom 20% SWER, label ∈ [0, 2] 404 63.6 54.9
Bottom 10% SWER, label ∈ [0, 1] 72 47.1 22.5
Top 20% SWER, label ∈ [3, 5] 937 20.0 14.4
Top 10% SWER, label ∈ [4, 5] 159 18.1 10.8
Top 20% WER, label ∈ [0, 2] 1380 51.5 49.9
Bottom 20% WER, label ∈ [3, 5] 2079 43.0 42.2

Table 3: Performance, measured in Pearson’s r× 100, for different data splits of the STS data. The
first row shows performance across all unique examples, the next row shows the negation split, and
the last four rows show difficult examples filtered symmetric word error rate (SWER). The last two
rows show relatively easy examples according to SWER.

Model es-es ar-ar en-es en-ar en-tr
BILINGUALTRANS 83.4 72.6 64.1 37.6 59.1
BGT W/O LANGVARS 81.7 72.8 72.6 73.4 74.8
BGT W/O PRIOR 84.5 73.2 68.0 66.5 70.9
BGT 85.7 74.9 75.6 73.5 74.9

Table 4: Performance measured in Pearson’s r×100, on the SemEval 2017 STS task on the es-es,
ar-ar, en-es, en-ar, and en-tr datasets.
determine the relationship of the two sentences, and this is something that SP is not equipped for
since it is unable to model word order. The bottom two rows show easier examples where positive
examples have high overlap and low SWER and vice versa for negative examples. Both models
perform similarly on this data, with the BGT model having a small edge consistent with the overall
gap between these two models.

Lastly, in Table 4, we show the results of STS evaluations in es and ar and cross-lingual evaluations
for en-es, en-ar, and en-tr. From these results, we see that BGT has the best performance
across all datasets, however the performance is significantly stronger than the BILINGUALTRANS
and BGT W/O PRIOR baselines in the cross-lingual setting. Since BGT W/O LANGVARS also has
significantly better performance on these tasks, most of this gain seems to be due to the prior have a
regularizing effect. However, BGT outperforms BGT W/O LANGVARS overall, and we hypothesize
that the gap in performance between these two models is due to BGT being able to strip away the
language-specific information in the representations with its language-specific variables, allowing
for the semantics of the sentences to be more directly compared.

5 ANALYSIS

We next analyze our BGT model by examining what elements of syntax and semantics the language
and semantic variables capture relative both to each-other and to the sentence embeddings from the
BILINGUALTRANS models. We also analyze how the choice of language and its lexical and syntactic
distance from English affects the semantic and syntactic information captured by the semantic and
language-specific encoders. Finally, we also show that our model is capable of sentence generation
in a type of style transfer, demonstrating its capabilities as a generative model.

5.1 STS

We first show that the language variables are capturing little semantic information by evaluating the
learned English language-specific variable from our BGT model on our suite of semantic tasks. The
results in Table 5 show that these encoders perform closer to a random encoder than the seman-
tic encoder from BGT. This is consistent with what we would expect to see if they are capturing
extraneous language-specific information.

5.2 PROBING

We probe our BGT semantic and language-specific encoders, along with our BILINGUALTRANS
encoders as a baseline, to compare and contrast what aspects of syntax and semantics they are
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Model Semantic Textual Similarity (STS)
2012 2013 2014 2015 2016 Hard+ Hard-

Random Encoder 51.4 34.6 52.7 52.3 49.7 4.8 17.9
English Language Encoder 44.4 41.7 53.8 62.4 61.7 15.3 26.5
Semantic Encoder 68.9 62.2 75.9 79.4 79.3 22.5 46.6

Table 5: STS performance on the 2012-2016 datasets and our STS Hard datasets for a randomly
initialized Transformer, the trained English language-specific encoder from BGT, and the trained
semantic encoder from BGT. Performance is measured in Pearson’s r × 100.
Lang. Model STS S. Num. O. Num. Depth Top Con. Word Len. P. Num. P. First Gend.

fr

BILINGUALTRANS 71.2 78.0 76.5 28.2 65.9 80.2 74.0 56.9 88.3 53.0
Semantic Encoder 72.4 84.6 80.9 29.7 70.5 77.4 73.0 60.7 87.9 52.6
en Language Encoder 56.8 75.2 72.0 28.0 63.6 65.4 80.2 65.3 92.2 -
fr Language Encoder - - - - - - - - - 56.5

es

BILINGUALTRANS 70.5 84.5 82.1 29.7 68.5 79.2 77.7 63.4 90.1 54.3
Semantic Encoder 72.1 85.7 83.6 32.5 71.0 77.3 76.7 63.1 89.9 52.6
en Language Encoder 55.8 75.7 73.7 29.1 63.9 63.3 80.2 64.2 92.7 -
es Language Encoder - - - - - - - - - 54.7

ar
BILINGUALTRANS 70.2 77.6 74.5 28.1 67.0 77.5 72.3 57.5 89.0 -
Semantic Encoder 70.8 81.9 80.8 32.1 71.7 71.9 73.3 61.8 88.5 -
en Language Encoder 58.9 76.2 73.1 28.4 60.7 71.2 79.8 63.4 92.4 -

tr
BILINGUALTRANS 70.7 78.5 74.9 28.1 60.2 78.4 72.1 54.8 87.3 -
Semantic Encoder 72.3 81.7 80.2 30.6 66.0 75.2 72.4 59.3 86.7 -
en Language Encoder 57.8 77.3 74.4 28.3 63.1 67.1 79.7 67.0 92.5 -

ja
BILINGUALTRANS 71.0 66.4 64.6 25.4 54.1 76.0 67.6 53.8 87.8 -
Semantic Encoder 71.9 68.0 66.8 27.5 58.9 70.1 68.7 52.9 86.6 -
en Language Encoder 60.6 77.6 76.4 28.0 64.6 70.0 80.4 62.8 92.0 -

Table 6: Average STS performance for the 2012-2016 datasets, measured in Pearson’s r×100, fol-
lowed by probing results on predicting number of subjects, number of objects, constituent tree depth,
top constituent, word content, length, number of punctuation marks, the first punctuation mark, and
whether the articles in the sentence are the correct gender. All probing results are measured in
accuracy ×100.

learning relative to each other across five languages with various degrees of similarity with English.
All models are trained on the OpenSubtitles 2018 corpus. We use the datasets from (Conneau et al.,
2018) for semantic tasks like number of subjects and number of objects, and syntactic tasks like
tree depth, and top constituent. Additionally, we include predicting the word content and sentence
length. We also add our own tasks to validate our intuitions about punctuation and language-specific
information. In the first of these, punctuation number, we train a classifier to predict the number
of punctuation marks11 in a sentence. To make the task more challenging, we limit each label to
have at most 20,000 examples split among training, validation, and testing data.12 In the second
task, punctuation first, we train a classifier to predict the identity of the first punctuation mark in
the sentence. In our last task, gender, we detect examples where the gender of the articles in the
sentence is incorrect in French of Spanish. To create an incorrect example, we switch articles from
{le, la, un, une} for French and {el, la, los, las} for Spanish, with their (indefinite or definite for
French and singular or plural for Spanish) counterpart with the opposite gender. This dataset was
balanced so random chances gives 50% on the testing data. All tasks use 100,000 examples for
training and 10,000 examples for validation and testing. The results of these experiments are shown
in Table 6.

These results show that the source separation is effective - stylistic and language-specific informa-
tion like length, punctuation and language-specific gender information are more concentrated in the
language variables, while word content, semantic and syntactic information are more concentrated
in the semantic encoder. The choice of language is also seen to be influential on what these en-
coders are capturing. When the languages are closely related to English, like in French and Spanish,
the performance difference between the semantic and English language encoder is larger for word
content, subject number, object number than for more distantly related languages like Arabic and

11Punctuation were taken from the set { ’ ! ” # $ % & \’ ( ) ∗ + , − . / : ; < = > ? @ [ ] ˆ ‘ {— } ’̃ . }.
12The labels are from 1 punctuation mark up to 10 marks with an additional label consolidating 11 or more

marks.
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Turkish. In fact, word content performance is directly tied to how well the alphabets of the two lan-
guages overlap. This relationship matches our intuition, because lexical information will be cheaper
to encode in the semantic variable when it is shared between the languages. Similarly for the tasks of
length, punctuation first, and punctuation number, the gap in performance between the two encoders
also grows as the languages become more distant from English. Lastly, the gap on STS performance
between the two encoders shrinks as the languages become more distant, which again is what we
would expect, as the language-specific encoders are forced to capture more information.

Japanese is an interesting case in these experiments, where the English language-specific encoder
outperforms the semantic encoder on the semantic and syntactic probing tasks. Japanese is a very
distant language to English both in its writing system and in its sentence structure (it is an SOV
language, where English is an SVO language). However, despite these difference, the semantic
encoder strongly outperforms the English language-specific encoder, suggesting that the underlying
meaning of the sentence is much better captured by the semantic encoder.

5.3 GENERATION AND STYLE TRANSFER

Source you know what i’ve seen?
Style he said, ”since when is going fishing” had anything to do with fish?”
Output he said, ”what is going to do with me since i saw you?”
Source guys, that was the tech unit.
Style is well, ”capicci” ...
Output is that what, ”technician”?
Source the pay is no good, but it’s money.
Style do we know cause of death?
Output do we have any money?
Source we’re always doing stupid things.
Style all right listen, i like being exactly where i am,
Output all right, i like being stupid, but i am always here.

Table 7: Style transfer generations from our learned BGT model. Source refers to the sentence fed
into the semantic encoder, Style refers to the sentence fed into the English language-specific encoder,
and Output refers to the text generated by our model.

In this section, we qualitatively demonstrate the ability of our model to generate sentences. We
focus on a style-transfer task where we have original seed sentences from which we calculate our
semantic vector zsem and language specific vector zen. Specifically, we feed in a Source sentence
into the semantic encoder to obtain zsem, and another Style sentence into the English language-
specific encoder to obtain zen. We then generate a new sentence using these two latent variables.
This can be seen as a type of style transfer where we expect the model to generate a sentence that
has the semantics of the Source sentence and the style of the Style sentence. We use our en-fr
BGT model from Table 6 and show some examples in Table 7. All input sentences are from held-
out en-fr OpenSubtitles data. From these examples, we see further evidence of the role of the
semantic and language-specific encoders, where most of the semantics (e.g. topical word such as
seen and tech in the Source sentence) are reflected in the output, but length and structure are more
strongly influenced by the language-specific encoder.

6 CONCLUSION

We propose Bilingual Generative Transformers, a model that uses parallel data to learn to perform
source separation of common semantic information between two languages from language-specific
information. We show that the model is able to accomplish this source separation through probing
tasks and text generation in a style-transfer setting. We find that our model bests all baselines on
semantic similarity tasks, with the largest gains coming from a new challenge we propose as Hard
STS, designed to foil methods approximating semantic similarity as word overlap. We also find our
model to be especially effective on cross-lingual semantic similarity, due to its stripping away of
language-specific information allowing for the underlying semantics to be more directly compared.
In future work, we will explore generalizing this approach to the multilingual setting.
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A LOCATION OF SENTENCE EMBEDDING IN DECODER FOR LEARNING
REPRESENTATIONS

As mentioned in Section 2, we experimented with 4 ways to incorporate the sentence embedding
into the decoder: Word, Hidden, Attention, and Logit. We also experimented with combinations of
these 4 approaches. We evaluate these embeddings on the STS tasks and show the results, along
with the time to train the models 1 epoch in Table 8.

For these experiments, we train a single layer bidirectional LSTM (BiLSTM) ENGLISHTRANS
model with embedding size set to 1024 and hidden states set to 512 dimensions (in order to be
roughly equivalent to our Transformer models). To form the sentence embedding in this variant, we
mean pool the hidden states for each time step. The cell states of the decoder are initialized to the
zero vector.

Architecture STS Time (s)
BiLSTM (Hidden) 54.3 1226
BiLSTM (Word) 67.2 1341
BiLSTM (Attention) 68.8 1481
BiLSTM (Logit) 69.4 1603
BiLSTM (Word + Hidden) 67.3 1377
BiLSTM (Word + Hidden + Attention) 68.3 1669
BiLSTM (Word + Hidden + Logit) 69.1 1655
BiLSTM (Word + Hidden + Attention + Logit) 68.9 1856

Table 8: Results for different ways of incorporating the sentence embedding in the decoder for a
BiLSTM on the Semantic Textual Similarity (STS) datasets, along with the time taken to train the
model for 1 epoch. Performance is measured in Pearson’s r × 100.

From this analysis, we see that the best performance is achieved with Logit, when the sentence
embedding is place just prior to the softmax. The performance is much better than Hidden or Hid-
den+Word used in prior work. For instance, recently (Artetxe & Schwenk, 2018) used the Hid-
den+Word strategy in learning multilingual sentence embeddings.

A.1 VAE TRAINING

We also found that incorporating the latent code of a VAE into the decoder using the Logit strategy
increases the mutual information while having little effect on the log likelihood. We trained two
LSTM VAE models following the settings and aggressive training strategy in (He et al., 2019),
where one LSTM model used the Hidden strategy and the other used the Hidden + Logit strategy.
We trained the models on the en side of our en-fr data. We found that the mutual information
increased form 0.89 to 2.46, while the approximate negative log likelihood, estimated by importance
weighting, increased slightly from 53.3 to 54.0 when using Logit.

B RELATIONSHIP BETWEEN BATCH SIZE AND PERFORMANCE FOR
TRANSFORMER AND LSTM

It has been observed previously that the performance of Transformer models is sensitive to batch
size Popel & Bojar (2018) . We found this to be especially true when training sequence-to-sequence
models to learn sentence embeddings. Figure 3 shows plots of the average 2012-2016 STS perfor-
mance of the learned sentence embedding as batch size increases for both the BiLSTM and Trans-
former. Initially, at a batch size of 2500 tokens, sentence embeddings learned are worse than random,
even though validation perplexity does decrease during this time. Performance rises as batch size in-
creases up to around 100,000 tokens. In contrast, the BiLSTM is more robust to batch size, peaking
much earlier around 25,000 tokens, and even degrading at higher batch sizes.
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Figure 3: The relationship between average performance for each year of the STS tasks 2012-2016
(Pearson’s r × 100) and batch size (maximum number of words per batch).

Architecture STS Time (s)
Transformer (5L/1L) 70.3 1767
Transformer (3L/1L) 70.1 1548
Transformer (1L/1L) 70.0 1244
Transformer (5L/5L) 69.8 2799

Table 9: Results on the Semantic Textual Similarity (STS) datasets for different configurations of
ENGLISHTRANS, along with the time taken to train the model for 1 epoch. (XL/YL) means X layers
were used in the encoder and Y layers in the decoder. Performance is measured in Pearson’s r×100.

C MODEL ABLATIONS

In this section, we vary the number of layers in the encoder and decoder in BGT W/O PRIOR. We see
that performance increases as the number of encoder layers increases, and also that a large decoder
hurts performance, allowing us to save training time by using a single layer. These results can be
compared to those in Table 9 showing that Transformers outperform BiLSTMS in these experiments.

D CLASSIFICATION EXPERIMENTS

To explore our embeddings in more detail, we evaluated them on the Quora Question Pairs dataset13

(QQP). This is a paraphrase classification task, which is also part of GLUE (Wang et al., 2018).
Since the test set is private, we deviated slightly from the standard evaluation protocol and split
the development set into two halves of 20,215 examples each – one half for model selection and
the other for evaluation. We evaluated in two ways, cosine, where we score all pairs with cosine
similarity and then find the threshold that gives the best accuracy, and logistic regression where
we use logistic regression. Its worth noting that the pretrained baseline models on this task were
directly trained to produce the feature set used by the downstream classifier, while our embeddings
are trained without this supervision. They also tend to have larger dimensions which also gives them
an advantage which is discussed in more detail in (Wieting & Kiela, 2019). The results are shown
in Table 10 and show that our BGT model outperforms the baseline models, SP, ENGLISHTRANS,

13data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Model Dim QQP (cosine) QQP (logistic regression)
BERT (CLS) 4096 65.7 77.2
BERT (Mean) 4096 68.9 79.3
Infersent 4096 69.3 79.9
GenSen 4096 68.1 80.9
USE 512 75.8 78.9
Sentence-BERT 1024 74.5 81.0
SP 1024 69.6 76.0
ENGLISHTRANS 1024 69.5 77.3
BGT W/O PRIOR 1024 69.4 77.1
BGT 1024 69.9 77.5

Table 10: Results on the Quora Question Pairs (QQP) datasets for prior work, our baselines and our
BGT model using two classification strategies. Performance is measured in accuracy ×100.

and BILINGUALTRANS for both evaluations, and compares favorably to the pretrained models when
evaluated using cosine similarity scores. The only models which perform better are USE which was
trained on Quora data in an unsupervised way and Sentence-BERT which uses BERT. Our models
are not as strong when using classification for final predictions. This indicates that the embeddings
learned by our approach may be most useful when no downstream training is possible – though semi-
supervised objectives that consider the downstream task might aid our approach, like the baselines,
if downstream training is the goal.
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