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Abstract

The Wasserstein distance and its variations, e.g., the sliced-Wasserstein (SW)
distance, have recently drawn attention from the machine learning community. The
SW distance, specifically, was shown to have similar properties to the Wasserstein
distance, while being much simpler to compute, and is therefore used in various
applications including generative modeling and general supervised/unsupervised
learning. In this paper, we first clarify the mathematical connection between the
SW distance and the Radon transform. We then utilize the generalized Radon
transform to define a new family of distances for probability measures, which
we call generalized sliced-Wasserstein (GSW) distances. We further show that,
similar to the SW distance, the GSW distance can be extended to a maximum
GSW (max-GSW) distance. We then provide the conditions under which GSW and
max-GSW distances are indeed proper metrics. Finally, we compare the numerical
performance of the proposed distances on the generative modeling task of SW
flows and report favorable results.

1 Introduction

The Wasserstein distance has its roots in optimal transport (OT) theory [1] and forms a metric between
two probability measures. It has attracted abundant attention in data sciences and machine learning
due to its convenient theoretical properties and applications on many domains [2, 3, 4, 5, 6, 7, 8],
especially in implicit generative modeling such as OT-based generative adversarial networks (GANs)
and variational auto-encoders [9, 10, 11, 12].

While OT brings new perspectives and principled ways to formalize problems, the OT-based methods
usually suffer from high computational complexity. The Wasserstein distance is often the computa-
tional bottleneck and it turns out that evaluating it between multi-dimensional measures is numerically
intractable in general. This important computational burden is a major limiting factor in the appli-
cation of OT distances to large-scale data analysis. Recently, several numerical methods have been
proposed to speed-up the evaluation of the Wasserstein distance. For instance, entropic regularization
techniques [13, 14, 15] provide a fast approximation to the Wasserstein distance by regularizing the
original OT problem with an entropy term. The linear OT approach, [16, 17] further simplifies this
computation for a given dataset by a linear approximation of pairwise distances with a functional
defined on distances to a reference measure. Other notable contributions towards computational
methods for OT include multi-scale and sparse approximation approaches [18, 19], and Newton-based
schemes for semi-discrete OT [20, 21].

There are some special favorable cases where solving the OT problem is easy and reasonably
cheap. In particular, the Wasserstein distance for one-dimensional probability densities has a closed-
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form formula that can be efficiently approximated. This nice property motivates the use of the
sliced-Wasserstein distance [22], an alternative OT distance obtained by computing infinitely many
linear projections of the high-dimensional distribution to one-dimensional distributions and then
computing the average of the Wasserstein distance between these one-dimensional representations.
While having similar theoretical properties [23], the sliced-Wasserstein distance has significantly
lower computational requirements than the classical Wasserstein distance. Therefore, it has recently
attracted ample attention and successfully been applied to a variety of practical tasks [22, 24, 25, 26,
27, 28, 29, 30, 31].

As we will detail in the next sections, the linear projection process used in the sliced-Wasserstein
distance is closely related to the Radon transform, which is widely used in tomography [32, 33].
In other words, the sliced-Wasserstein distance is calculated via linear slicing of the probability
distributions. However, the linear nature of these projections does not guarantee an efficient evaluation
of the sliced-Wasserstein distance: in very high-dimensional settings, the data often lives in a thin
manifold and the number of randomly chosen linear projections required to capture the structure of
the data distribution grows very quickly [27]. Reducing the number of required projections would
thus result in a significant performance improvement in sliced-Wasserstein computations.

To address the inefficiencies caused by the linear projections, very recently, several attempts have
been made. In [34], Rowland et al. combined linear projections with orthogonal coupling in Monte
Carlo estimation to increase computational efficiency and estimation quality. In [35], Deshpande et
al. extended the sliced-Wasserstein distance to the ‘max-sliced-Wasserstein’ distance, where they
aimed at finding a single linear projection that maximizes the distance in the projected space. In
another study [36], Paty and Cuturi extended this idea to projection on linear subspaces, where they
aimed at finding the optimal subspace for the projections by replacing the projections along a vector
with projections onto the nullspace of a matrix. While these methods reduce the computational cost
induced by the projection operations by choosing a single vector or an orthogonal matrix, they incur
an additional cost since they need to solve a non-convex optimization over manifolds.

In this paper, we address the aforementioned computational issues of the sliced-Wasserstein distance
by taking an alternative route. In particular, we extend the linear slicing to non-linear slicing of
probability measures. Our main contributions are summarized as follows:

• Using the theory of the generalized Radon transform [37] we extend the definition of the
sliced-Wasserstein distance to an entire class of distances, which we call the generalized sliced-
Wasserstein (GSW) distance. We prove that replacing the linear projections with non-linear
projections can still yield a valid distance metric and we then identify general conditions under
which the GSW distance is a proper metric function. To the best of our knowledge, this is the
first study to generalize SW to non-linear projection.
• Similar to [35], we then show that, instead of using infinitely many projections as required by

the GSW distance, we can still define a valid distance metric by using a single projection, as
long as the projection gives the maximal distance in the projected space. We aptly call this
distance the max-GSW distance.
• As instances of non-linear projections, we first investigate projections with polynomial ker-

nels, which fulfill all the conditions that we identify. However, we observe that the memory
complexity of such projections has a combinatorial growth with respect to the dimension of
the problem, hence restricts their applications to modern problems. This motivates us to con-
sider a neural-network-based projection scheme, where we observe that fully connected or
convolutional networks with leaky ReLU activations fulfill all the crucial conditions so that
their resulting GSW becomes a pseudo-metric for probability measures. In addition to its
practical advantages, this scheme also brings an interesting perspective on adversarial generative
modeling, showing that such algorithms contain an implicit stage for learning projections with
different cost functions than ours.
• Due to their inherent non-linearity, the GSW and max-GSW distances are expected to capture the

complex structure of high-dimensional distributions by using much less projections, which will
reduce the iteration complexity in a significant amount. We verify this fact in our experiments,
where we illustrate the superior performance of the proposed distances in both synthetic and
real-data settings.
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2 Background

We review in this section the preliminary concepts and formulations needed to develop our framework,
namely the p-Wasserstein distance, the Radon transform, the sliced p-Wasserstein distance and
the maximum sliced p-Wasserstein distance. In what follows, we denote by Pp(Ω) the set of
Borel probability measures with finite p’th moment defined on a given metric space (Ω, d) and
by µ ∈ Pp(X) and ν ∈ Pp(Y ) probability measures defined on X,Y ⊆ Ω with corresponding
probability density functions Iµ and Iν , i.e. dµ(x) = Iµ(x)dx and dν(y) = Iν(y)dy.

Wasserstein Distance. The p-Wasserstein distance, p ∈ [1,∞), between µ and ν is defined as the
solution of the optimal mass transportation problem [1]:

Wp(µ, ν) =

(
inf

γ∈Γ(µ,ν)

∫
X×Y

dp(x, y)dγ(x, y)

) 1
p

(1)

where dp(·, ·) is the cost function, and Γ(µ, ν) is the set of all transportation plans γ ∈ Γ(µ, ν) such
that:

γ(A× Y ) = µ(A) for any Borel A ⊆ X, γ(X ×B) = ν(B) for any Borel B ⊆ Y.
Due to Brenier’s theorem [38], for absolutely continuous probability measures µ and ν (with respect
to the Lebesgue measure), the p-Wasserstein distance can be equivalently obtained from

Wp(µ, ν) =

(
inf

f∈MP (µ,ν)

∫
X

dp
(
x, f(x)

)
dµ(x)

) 1
p

(2)

where MP (µ, ν) = {f : X → Y | f#µ = ν} and f#µ represents the pushforward of measure µ,
characterized as ∫

A

df#µ(y) =

∫
f−1(A)

dµ(x) for any Borel subset A ⊆ Y.

Note that in most engineering and computer science applications, Ω is a compact subset of Rd
and d(x, y) = |x − y| is the Euclidean distance. By abuse of notation, we will use Wp(µ, ν) and
Wp(Iµ, Iν) interchangeably.

One-dimensional distributions: The case of one-dimensional continuous probability measures is
specifically interesting as the p-Wasserstein distance has a closed-form solution. More precisely, for
one-dimensional probability measures, there exists a unique monotonically increasing transport map
that pushes one measure to another. Let Fµ(x) = µ((−∞, x]) =

∫ x
−∞ Iµ(τ)dτ be the cumulative

distribution function (CDF) for Iµ and define Fν to be the CDF of Iν . The optimal transport map is
then uniquely defined as f(x) = F−1

ν (Fµ(x)) and, consequently, the p-Wasserstein distance has an
analytical form given as follows:

Wp(µ, ν) =

(∫
X

dp
(
x, F−1

ν (Fµ(x))
)
dµ(x)

) 1
p

=

(∫ 1

0

dp
(
F−1
µ (z), F−1

ν (z)
)
dz

) 1
p

(3)

where Eq. (3) results from the change of variable Fµ(x) = z. Note that for empirical distributions, Eq.
(3) is calculated by simply sorting the samples from the two distributions and calculating the average
dp(·, ·) between the sorted samples. This requires only O(M) operations at best and O(M logM) at
worst, where M is the number of samples drawn from each distribution (see [30] for more details).
The closed-form solution of the p-Wasserstein distance for one-dimensional distributions is an
attractive property that gives rise to the sliced-Wasserstein (SW) distance. Next, we review the Radon
transform, which enables the definition of the SW distance. We also formulate an alternative OT
distance called the maximum sliced-Wasserstein distance.

Radon Transform. The standard Radon transform, denoted by R, maps a function I ∈ L1(Rd),
where

L1(Rd) = {I : Rd → R /

∫
Rd
|I(x)|dx <∞},

to the infinite set of its integrals over the hyperplanes of Rd and is defined as

RI(t, θ) =

∫
Rd
I(x)δ(t− 〈x, θ〉)dx, (4)
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for (t, θ) ∈ R × Sd−1, where Sd−1 ⊂ Rd stands for the d-dimensional unit sphere, δ(·) the one-
dimensional Dirac delta function, and 〈·, ·〉 the Euclidean inner-product. Note that R : L1(Rd)→
L1(R× Sd−1). Each hyperplane can be written as:

H(t, θ) = {x ∈ Rd | 〈x, θ〉 = t}, (5)

which alternatively can be interpreted as a level set of the function g ∈ Rd × Sd−1 → R defined as
g(x, θ) = 〈x, θ〉. For a fixed θ, the integrals over all hyperplanes orthogonal to θ define a continuous
functionRI(·, θ) : R→ R which is a projection (or a slice) of I .

The Radon transform is a linear bijection [39, 33] and its inverseR−1 is defined as:

I(x) = R−1
(
RI(t, θ)

)
=

∫
Sd−1

(RI(〈x, θ〉, θ) ∗ η(〈x, θ〉)dθ (6)

where η(·) is a one-dimensional high-pass filter with corresponding Fourier transform Fη(ω) =
c|ω|d−1, which appears due to the Fourier slice theorem [33], and ‘∗’ is the convolution operator.
The above definition of the inverse Radon transform is also known as the filtered back-projection
method, which is extensively used in image reconstruction in the biomedical imaging community.
Intuitively each one-dimensional projection (or slice)RI(·, θ) is first filtered via a high-pass filter
and then smeared back into Rd along H(·, θ) to approximate I . The summation of all smeared
approximations then reconstructs I . Note that in practice, acquiring an infinite number of projections
is not feasible, therefore the integration in the filtered back-projection formulation is replaced with a
finite summation over projections (i.e., a Monte-Carlo approximation).

Sliced-Wasserstein and Maximum Sliced-Wasserstein Distances. The idea behind the sliced
p-Wasserstein distance is to first, obtain a family of one-dimensional representations for a higher-
dimensional probability distribution through linear projections (via the Radon transform), and then,
calculate the distance between two input distributions as a functional on the p-Wasserstein distance of
their one-dimensional representations (i.e., the one-dimensional marginals). The sliced p-Wasserstein
distance between Iµ and Iν is then formally defined as:

SWp(Iµ, Iν) =

(∫
Sd−1

W p
p

(
RIµ(., θ),RIν(., θ)

)
dθ

) 1
p

(7)

This is indeed a distance function as it satisfies positive-definiteness, symmetry and the triangle
inequality [23, 24].

The computation of the SW distance requires an integration over the unit sphere in Rd. In practice,
this integration is approximated by using a simple Monte Carlo scheme that draws samples {θl} from
the uniform distribution on Sd−1 and replaces the integral with a finite-sample average:

SWp(Iµ, Iν) ≈
(

1

L

∑L

l=1
W p
p

(
RIµ(·, θl),RIν(·, θl)

))1/p

(8)

In higher dimensions, the random nature of slices could lead to underestimating the distance between
the two probability measures. To further clarify this, let Iµ = N (0, Id) and Iν = N (x0, Id), x0 ∈ Rd,
be two multivariate Gaussian densities with the identity matrix as the covariance matrix. Their
projected representations are one-dimensional Gaussian distributions of the formRIµ(·, θ) = N (0, 1)
and RIν(·, θ) = N (〈θ, x0〉, 1). It is therefore clear that W2(RIµ(·, θ),RIν(·, θ)) achieves its
maximum value when θ = x0

‖x0‖2 and is zero for θ’s that are orthogonal to x0. On the other hand,
we know that vectors that are randomly picked from the unit sphere are more likely to be nearly
orthogonal in high-dimension. More rigorously, the following inequality holds: Pr(|〈θ, x0

‖x0‖2 〉| <
ε) > 1− e(−dε2), which implies that for a high dimension d, the majority of sampled θ’s would be
nearly orthogonal to x0 and therefore, W2(RIµ(·, θ),RIν(·, θ)) ≈ 0 with high probability.

To remedy this issue, one can avoid uniform sampling of the unit sphere, and pick samples θ’s that
contain discriminant information between Iµ and Iν instead. This idea was for instance used in
[28, 35, 36]. For instance, Deshpande et al. [28] first calculate a linear discriminant subspace and
then measure the empirical SW distance by setting the θ’s to be the discriminant components of the
subspace.
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A similarly flavored but less heuristic approach is to use the maximum sliced p-Wasserstein (max-SW)
distance, which is an alternative OT metric defined as [35]:

max-SWp(Iµ, Iν) = max
θ∈Sd−1

Wp

(
RIµ(·, θ),RIν(·, θ)

)
(9)

Given that Wp is a distance, it is straightforward to show that max-SWp is also a distance: we
will prove in Section 3.2 that the metric axioms would also hold for the maximum generalized
sliced-Wasserstein distance, which contains the max-SW distance as a special case.

3 Generalized Sliced-Wasserstein Distances

Figure 1: Visualizing the slicing process for classi-
cal and generalized Radon transforms for the Half
Moons distribution. The slices GI(t, θ) follow
Equation (10).

We propose in this paper to extend the definition
of the sliced-Wasserstein distance to formulate a
new optimal transport metric, which we call the
generalized sliced-Wasserstein (GSW) distance.
The GSW distance is obtained using the same pro-
cedure as for the SW distance, except that here,
the one-dimensional representations are acquired
through nonlinear projections. In this section,
we first review the generalized Radon transform,
which is used to project the high-dimensional dis-
tributions, and we then formally define the class
of GSW distances. We also extend the concept of
max-SW distance to the class of maximum gener-
alized sliced-Wasserstein (max-GSW) distances.

3.1 Generalized Radon Transform

The generalized Radon transform (GRT) extends
the original idea of the classical Radon trans-
form introduced by [32] from integration over
hyperplanes of Rd to integration over hyper-
surfaces, i.e. (d − 1)-dimensional manifolds
[37, 40, 41, 42, 43, 44]. The GRT has various applications, including Thermoacoustic Tomog-
raphy, where the hypersurfaces are spheres, and Electrical Impedance Tomography, which requires
integration over hyperbolic surfaces.

To formally define the GRT, we introduce a function g defined on X × (Rn\{0}) with X ⊂ Rd. We
say that g is a defining function when it satisfies the four conditions below:

H1. g is a real-valued C∞ function on X × (Rn\{0})
H2. g(x, θ) is homogeneous of degree one in θ, i.e., ∀λ ∈ R, g(x, λθ) = λg(x, θ).

H3. g is non-degenerate in the sense that ∀(x, θ) ∈ X × Rn\{0}, ∂g
∂x (x, θ) 6= 0.

H4. The mixed Hessian of g is strictly positive, i.e. det
((

∂2g
∂xi∂θj

)
i,j

)
> 0.

Then, the GRT of I ∈ L1(Rd) is the integration of I over hypersurfaces characterized by the level
sets of g, which are characterized by Ht,θ = {x ∈ X | g(x, θ) = t}.
Let g be a defining function. The generalized Radon transform of I , denoted by GI , is then formally
defined as:

GI(t, θ) =

∫
Rd
I(x)δ(t− g(x, θ))dx (10)

Note that the standard Radon transform is a special case of the GRT with g(x, θ) = 〈x, θ〉. Figure 1
illustrates the slicing process for standard and generalized Radon transforms for the Half Moons
dataset as input.
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3.2 Generalized Sliced-Wasserstein and Max-Generalized Sliced-Wasserstein Distances

Following the definition of the SW distance in Equation (7), we define the generalized sliced p-
Wasserstein distance using the generalized Radon transform as:

GSWp(Iµ, Iν) =

(∫
Ωθ

W p
p

(
GIµ(·, θ),GIν(·, θ)

)
dθ

) 1
p

(11)

where Ωθ is a compact set of feasible parameters for g(·, θ) (e.g., Ωθ = Sd−1 for g(·, θ) = 〈·, θ〉).
The GSW distance can also suffer from the projection complexity issue described before; that is
why we formulate the maximum generalized sliced p-Wasserstein distance, which generalizes the
max-SW distance as defined in (9):

max-GSWp(Iµ, Iν) = max
θ∈Ωθ

Wp

(
GIµ(·, θ),GIν(·, θ)

)
(12)

Proposition 1. The generalized sliced p-Wasserstein distance and the maximum generalized sliced p-
Wasserstein distance are, indeed, distances over Pp(Ω) if and only if the generalized Radon transform
is injective.

The proof is given in the supplementary document.
Remark 1. If the chosen generalized Radon transform is not injective, then we can only say that the
GSW and max-GSW distances are pseudo-metrics: they still satisfy non-negativity, symmetry, the
triangle inequality, and GSWp(Iµ, Iµ) = 0 and max-GSWp(Iµ, Iµ) = 0.
Remark 2. Proposition 1 shows that the injectivity of GRT is sufficient and necessary for GSW to be
a metric. In this respect, our result brings a different perspective on the results of [23] by showing
that SW is indeed distance since the standard Radon transform is injective.

3.3 Injectivity of the Generalized Radon Transform

We have shown that the injectivity of the GRT is crucial for the GSW and max-GSW distances to be,
indeed, distances between probability measures. Here, we enumerate some of the known defining
functions that lead to injective GRTs.

The investigation of the sufficient and necessary conditions for showing the injectivity of GRTs is a
long-standing topic [37, 44, 45, 41]. The circular defining function, g(x, θ) = ‖x−r∗θ‖2 with r ∈ R+

and Ωθ = Sd−1 was shown to provide an injective GRT [43]. More interestingly, homogeneous
polynomials with an odd degree also yield an injective GRT [46], i.e. g(x, θ) =

∑
|α|=m θαx

α, where

we use the multi-index notation α = (α1, . . . , αdα) ∈ Ndα , |α| =
∑dα
i=1 αi, and xα =

∏dα
i=1 x

αi
i .

Here, the summation iterates over all possible multi-indices α, such that |α| = m, where m denotes
the degree of the polynomial and θα ∈ R. The parameter set for homogeneous polynomials is then set
to Ωθ = Sdα−1. We can observe that choosing m = 1 reduces to the linear case 〈x, θ〉, since the set
of the multi-indices with |α| = 1 becomes {(α1, . . . , αd);αi = 1 for a single i ∈ J1, dK, and αj =
0, ∀j 6= i} and contains d elements.

While the polynomial projections form an interesting alternative to linear projections, their memory
complexity dα grows exponentially with the dimension of the data and the degree of the polynomial,
hence deteriorate their potential in modern machine learning problems. As a remedy, given the current
success of the neural networks in various application domains, a natural task in our context would be
to come up with a neural network, which would yield a valid GSW or max-GSW, when used as the
defining function in the GRT. As a neural network-based defining function, we propose a multi-layer
fully connected network with ‘leaky ReLU’ activations. Under this specific network architecture, one
can easily show that the corresponding defining function satisfies H1 to H4 on (X\{0})× (Rn\{0}).
On the other hand, it is highly non-trivial to show the injectivity of the associated GRT, therefore
the GSW associated with this particular defining function is a pseudo-metric, as we discussed in
Remark 1. However, as illustrated later on in Section 5, this neural network-based defining function
still performs well in practice, and specifically, the non-differentiability of the leaky ReLU function
at 0 does not seem to be a big issue in practice.
Remark 3. With a neural network as the defining function, minimizing max-GSW between two distri-
butions is analogical to adversarial learning, where the adversary network’s goal is to distinguish
the two distributions. In the max-GSW case, the adversary network (i.e. the defining function) seeks
optimal parameters that maximize the GSW distance between the input distributions.
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4 Numerical Implementation

4.1 Generalized Radon Transforms of Empirical PDFs

In most machine learning applications, we do not have access to the distribution Iµ but to a set of
samples {xi}Ni=1 drawn from Iµ, for which the empirical density is: Iµ(x) ≈ 1

N

∑N
i=1 δ(x−xi) The

GRT of the empirical density is then given by: GIµ(t, θ) ≈ 1
N

∑N
i=1 δ

(
t− g(xi, θ)

)
Moreover, for

high-dimensional problems, estimating Iµ in Rd requires a large number of samples. However, the
projections of Iµ, GI(·, θ), are one-dimensional and it may not be critical to have a large number of
samples to estimate these one-dimensional densities.

4.2 Numerical Implementation of GSW Distances

Let {xi}Ni=1 and {yj}Nj=1 be samples respectively drawn from Iµ and Iν , and let g(·, θ) be a defining
function. Following the work of [30], the Wasserstein distance between one-dimensional distributions
GIµ(·, θ) and GIν(·, θ) can be calculated from sorting their samples and calculating the Lp distance
between the sorted samples. In other words, the GSW distance between Iµ and Iν can be approximated
from their samples as follows:

GSWp(Iµ, Iν) ≈
( 1

L

∑L

l=1

∑N

n=1
|g(xi[n], θl)− g(yj[n], θl)|p

)1/p

where i[m] and j[n] are the indices of sorted {g(xi, θ)}Ni=1 and {g(yj , θ)}Nj=1. The procedure to
approximate the GSW distance is summarized the supplementary document.

4.3 Numerical Implementation of max-GSW Distances

To compute the max-GSW distance, we perform an EM-like optimization scheme: (a) for a fixed θ,
g(xi, θ) and g(yi, θ) are sorted to compute Wp, (b) θ is updated with a Projected Gradient Descent
(PGD) step:

θ = Proj
Ωθ

(
Optim

(
∇θ(

1

N

∑N

n=1
|g(xi[n], θ)− g(yj[n], θ)|p), θ

))
where Optim(·) refers to the preferred optimizer, for instance Gradient Descent (GD) or ADAM [47],
and Proj

Ωθ

(·) is the operator projecting θ onto Ωθ. For instance, when θ ∈ Sn−1, Proj
Ωθ

(θ) = θ
‖θ‖ .

Remark 4. Here, we find the optimal θ by optimizing the actual Wp, as opposed to the heuristic
approaches proposed in [28] and [30], where the pseudo-optimal slice is found via perceptrons or
penalized linear discriminant analysis [48].

Finally, once convergence is reached, the max-GSW distance is approximated with:

max-GSWp(Iµ, Iν) ≈
( 1

N

∑N

n=1
|g(xi[n], θ

∗)− g(yj[n], θ
∗)|p

) 1
p

The whole procedure is summarized as pseudocode in the supplementary document.

5 Experiments

In this section, we conduct experiments on the generalized Sliced-Wasserstein flows. We also
implemented GSW-based auto-encoders, whose results are reported in the supplementary document
due to space limitations. We provide the source code to reproduce the experiments of this paper.2

Our goal is to demonstrate the effects of the choice of the GSW distance in its purest form by
considering the following problem: minµGSWp(µ, ν), where ν is a target distribution and µ is the
source distribution, which is initialized to be the normal distribution. The optimization is then solved
iteratively via: ∂tµt = −∇GSWp(µt, ν), µ0 = N (0, 1).

2See https://github.com/kimiandj/gsw.
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Figure 2: Log 2-Wasserstein distance between the source and target distributions as a function of the
number of iterations for 4 classical target distributions.

Figure 3: 2-Wasserstein distance between source and target distribu-
tions for the MNIST dataset.

We started by using 4
well-known distributions
as the target, namely the
25-Gaussians, 8-Gaussians,
Swiss Roll, and Circle
distributions. We compare
GSW and max-GSW for
optimizing the flow with
linear (i.e., SW distance),
homogeneous polynomials
of degree 3 and 5, and
neural networks with 1,
2, and 3 hidden layers as
defining functions. We used the exact same optimization scheme for all methods, and kept only
L = 1 projection, and calculated the 2-Wasserstein distance between µt and ν at each iteration of the
optimization (via solving a linear programming at each step). We repeated each experiment 100
times and reported the mean of the 2-Wasserstein distance for all target datasets in Figure 2. We also
showed a snapshot of µt and ν at t = 100 iterations for all datasets. We observe that (i) max-GSW
outperforms GSW, of course at the cost of an additional optimization, and (ii) while the choice
of the defining function g(·, θ) is data-dependent, one can see that the homogeneous polynomials
are often among the top performers for all datasets. Specifically, SW is always outperformed by
GSW with polynomial projections (‘Poly 3’ and ‘Poly 5’ in Figure 2, left) and by all the variants
of max-GSW. Besides, max-linear-SW is consistently outperformed by max-GSW-NN. The only
variant of GSW that is outperformed by SW is GSW with neural network-based defining function,
which was expected because of its inherent complexity of approximating the integral over a very
large domain (11) with a simple Monte Carlo average. To circumvent this issue, max-GSW replaces
sampling with optimization.

To move to more realistic datasets, we considered GSW flows for the hand-written digit recognition
dataset, MNIST, where we initialize 100 random images and optimize the flow via max-SW and max-
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Max-GSWMax-SW

Figure 4: Flow minimization comparison between max-SW and max-GSW on the CelebA dataset.

GSW and measure the 2-Wasserstein distance between the µt (the 100 images) and ν (the training set
of MNIST). See supplementary material for videos. Given the high-dimensional nature of the problem
(i.e., 784-dims.) we cannot use the homogeneous polynomials due to memory constraints caused by
the combinatorial growth of the coefficients. Therefore, we chose a 3-layer neural network for our
defining function. Figure 3 shows the 2-Wasserstein between the source and target distributions as
a function of number of training epochs. We observe that with the proposed approach the error is
decreasing significantly faster when compared to the linear projections. We also observe this in the
quality of the generated images, where we obtain crisper results.

Finally, we applied our methodology on a larger dataset, namely CelebA [49]. We performed flow
optimization in a 256-dimensional latent space of a pre-trained auto-encoder, and compared max-SW
with max-GSW using a 3 layer neural network. We then measured the 2-Wasserstein between the
real and optimized distributions in the 256-dimensional latent space. Figure 4 shows the results of
this experiment. As can be seen, max-GSW finds a better solution than max-SW in fewer iterations
and the quality of the generated images is slightly better.

6 Conclusion

We introduced a new family of optimal transport metrics for probability measures that generalizes the
sliced-Wasserstein distance: while the latter is based on linear slicing of distributions, we propose
to perform nonlinear slicing. We provided theoretical conditions that yield the generalized sliced-
Wasserstein distance to be, indeed, a distance function, and we empirically demonstrated the superior
performance of the GSW and max-GSW distances over the classical sliced-Wasserstein distance in
various generative modeling applications.
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