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ABSTRACT

We introduce a new and rigorously-formulated PAC-Bayes few-shot meta-
learning algorithm that implicitly learns a model prior distribution of interest. Our
proposed method extends the PAC-Bayes framework from a single task setting to
the few-shot meta-learning setting to upper-bound generalisation errors on unseen
tasks. We also propose a generative-based approach to model the shared prior and
task-specific posterior more expressively compared to the usual diagonal Gaussian
assumption. We show that the models trained with our proposed meta-learning
algorithm are well calibrated and accurate, with state-of-the-art calibration and
classification results on mini-ImageNet benchmark, and competitive results in a
multi-modal task-distribution regression.

1 INTRODUCTION

One unique ability of humans is to be able to quickly learn new tasks with only a few training
examples. This is due to the fact that humans tend to exploit prior experience to facilitate the
learning of new tasks. Such exploitation is markedly different from conventional machine learning
approaches, where no prior knowledge (e.g. training from scratch with random initialisation) (Glorot
& Bengio, 2010), or weak prior knowledge (e.g., fine tuning from pre-trained models) (Rosenstein
et al., 2005) are used when encountering an unseen task for training. This motivates the development
of novel learning algorithms that can effectively encode the knowledge learnt from training tasks,
and exploit that knowledge to quickly adapt to future tasks (Lake et al., 2015).

Prior knowledge can be helpful for future learning only if all tasks are assumed to be distributed ac-
cording to a latent task distribution. Learning this latent distribution is, therefore, useful for solving
an unseen task, even if the task contains a limited number of training samples. Many approaches
have been proposed and developed to achieve this goal, namely: multi-task learning (Caruana,
1997), domain adaptation (Bridle & Cox, 1991; Ben-David et al., 2010) and meta-learning (Schmid-
huber, 1987; Thrun & Pratt, 1998). Among these, meta-learning has flourished as one of the most
effective methods due to its ability to leverage the knowledge learnt from many training tasks to
quickly adapt to unseen tasks.

Recent advances in meta-learning have produced state-of-the-art results in many benchmarks of
few-shot learning data sets (Santoro et al., 2016; Ravi & Larochelle, 2017; Munkhdalai & Yu, 2017;
Snell et al., 2017; Finn et al., 2017; Zhang et al., 2018; Rusu et al., 2019). Learning from a few
examples is often difficult and easily leads to over-fitting, especially when no model uncertainty
is taken into account. This issue has been addressed by several recent Bayesian meta-learning
approaches that incorporate model uncertainty into prediction, notably LLAMA that is based on
Laplace method (Grant et al., 2018), or PLATIPUS (Finn et al., 2017), Amortised Meta-learner (Ravi
& Beatson, 2019) and VERSA (Gordon et al., 2019) that use variational inference (VI). However,
these works have not thoroughly investigated the generalisation errors for unseen samples, result-
ing in limited theoretical generalisation guarantees. Moreover, most of these papers are based on
variational functions that may not represent well the richness of the underlying distributions. For
instance, a common choice for the variational function relies on the diagonal Gaussian distribution,
which can potentially worsen the prediction accuracy given its limited representability.

In this paper, we address the two problems listed above with the following technical novelties: (i)
derivation of a rigorous upper-bound for the generalisation errors of few-shot meta-learning using
PAC-Bayes framework, and (ii) proposal of a novel variational Bayesian learning based on implicit

1



Under review as a conference paper at ICLR 2020

θ wi

s
(t)
ij

s
(v)
ij

m
(t)
i

m
(v)
i

T

Figure 1: The few-shot meta-learning problem is modelled using a hierarchical model that learns a
prior p(wi; θ) using a few data points s(t)ij = {(x(t)ij , y

(t)
ij )} to infer s(v)ij = {(x(v)ij , y

(v)
ij )}. Shaded

nodes denote observed variables, while white nodes denote hidden variables.

generative models to facilitate the learning of unseen tasks. Our evaluation shows that the models
trained with our proposed meta-learning algorithm is at the same time well calibrated and accurate,
with competitive results in terms of Expected Calibration Error (ECE) and Maximum Calibration
Error (MCE), while outperforming state-of-the-art methods in a few-shot classification benchmark
(mini-ImageNet).

2 RELATED WORK

Our paper is related to Bayesian few-shot meta-learning techniques that have been developed to
incorporate uncertainty into model estimation. LLAMA (Grant et al., 2018) employs the Laplace
method to extend the deterministic estimation assumed in MAML to a Gaussian distribution. How-
ever, the need to estimate and invert the Hessian matrix makes this approach computationally chal-
lenging for large-scale models, such as deep neural networks. Variational inference (VI) addresses
such scalability issue – remarkable examples of VI-based methods are PLATIPUS (Finn et al., 2018),
BMAML (Yoon et al., 2018), Amortised meta-learner (Ravi & Beatson, 2019) and VERSA (Gordon
et al., 2019). Although these VI-based approaches have demonstrated impressive results in regres-
sion, classification as well as reinforcement learning, they do not provide any theoretical guarantee
on generalisation errors for unseen samples within a task. Moreover, the overly-simplified fam-
ily of diagonal Gaussian distributions used in most of these works limits the expressiveness of the
variational approximation, resulting in a less accurate prediction.

Our work is also related to the PAC-Bayes framework used in multi-task learning (Pentina & Lam-
pert, 2014; Amit & Meir, 2018) that provides generalisation error bounds with certain confidence
levels. These previously published papers jointly learn a single shared prior and many task-specific
posteriors without relating the shared prior to any task-specific posterior. Hence, these approaches
need to store all task-specific posteriors, resulting in un-scalable solutions, especially when the
number of tasks is large. In contrast, our proposed method learns only the shared prior of model
parameters and uses that prior to estimate the task-specific posterior through the likelihood function
by performing a fixed number of gradient updates. This proposed variant of amortised inference al-
lows a memory efficient solution, and therefore, more favourable for applications with large number
of tasks, such as few-shot meta-learning.

3 METHODOLOGY

In this section, we first define and formulate the few-shot meta-learning problem. Subsequently,
we derive the generalisation upper-bound based on PAC-Bayes framework. We then present our
proposed approach that employs implicit variational distributions for few-shot meta-learning.

3.1 FEW-SHOT META-LEARNING

We use the notation of task environment (Baxter, 2000) to describe the unknown distribution p(T )
over a family of tasks, from where tasks are sampled. Each task Ti in this family is indexed by
i ∈ {1, ..., T} and associated with a dataset {Xi,Yi} consisting of a training/support set {X (t)

i ,Y(t)
i }

and a validation/query set {X (v)
i ,Y(v)

i }, with X (t)
i = {x(t)

ij }
m

(t)
i

j=1 and Y(t)
i = {y(t)ij }

m
(t)
i

j=1 (X (v)
i and

Y(v)
i are similarly defined with m(v)

i samples). The aim of few-shot learning is to accurately predict
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the output y(v)ij of the query input x(v)
ij given the small support set for task Ti. We rely on a Bayesian

hierarchical model (Grant et al., 2018) as shown in Figure 1, where wi represents the model pa-
rameters for task Ti, and θ denotes the meta-parameters shared across all tasks. For example, in
MAML (Finn et al., 2017), wi are the neural network weights for task Ti that is initialised from θ

and obtained by performing truncated gradient descent using {X (t)
i ,Y(t)

i }.
While the conventional graphical model methods in meta-learning learn the joint probability
p(θ,w1:T |Y1:T ,X1:T ) (Amit & Meir, 2018, Section A.3), our objective function for the few-shot
meta-learning is to minimise the negative log predictive probability w.r.t. the meta-parameters θ as
follows:

θ∗ = argmin
θ

1

T

T∑
i=1

E
yij∼Y(v)

i

[
− log p(y

(v)
ij |Y

(t)
i ; θ)

]
, (1)

where we simplify the notation by dropping the explicit dependence on X (t)
i and X (v)

i from the
set of conditioning variables (this simplification is adopted throughout the paper). The predictive
probability term inside the expectation in (1) can be expanded by applying the sum rule of probability
and lower-bounded by Jensen’s inequality:

log p(y
(v)
ij |Y

(t)
i ; θ) = log

∫
p(y

(v)
ij |wi)p(wi|Y(t)

i ; θ)dwi ≥ E
p(wi|Y(t)

i ;θ)

[
log p(y

(v)
ij |wi)

]
. (2)

In practice, the task-specific posterior p(wi|Y(t)
i ; θ) is often intractable, and therefore, approximated

by a distribution q(wi;λi) parameterised by λi = λi(Y(t)
i , θ). Given this assumption and the result

in (2), the upper bound of the objective function in (1) can be presented as:

L(v)(θ) =
1

T

T∑
i=1

L(v)
i (θ), (3)

where:
L(v)
i (θ) = E

y
(v)
ij ∼Y

(v)
i

Eq(wi;λi)

[
− log p(y

(v)
ij |wi)

]
. (4)

Hence, instead of minimising the objective function in (1), we minimise the upper bound in (3).
There are two issues related to the optimisation of this upper bound: (i) the generalisation error for
(x

(v)
ij , y

(v)
ij ) sampled from the true query set {X (v)

i ,Y(v)
i }, and (ii) how to estimate q(wi;λi) that

can approximate the true posterior p(wi|Y(t)
i ; θ) accurately, so that we can evaluate and minimise

the upper-bound in (3). We address the generalisation error in Section 3.2 and present a variational
method to obtain an expressive variational posterior q(wi;λi) in Section 3.3.

3.2 PAC-BAYES GENERALISATION BOUND

We first introduce the PAC-Bayes bound for the single-task problem in Theorem 1.
Theorem 1 (PAC-Bayes bound for single-task setting (McAllester, 1999)). Let D be an arbitrary
distribution over an example domain Z . Let H be a hypothesis class, ` : H × Z → [0, 1] be a loss
function, π be a prior distribution over H, and δ ∈ (0, 1). If S = {zj}mj=1 is an i.i.d. training set
sampled according to D, then for any “posterior” Q overH, the following holds:

p

(
Ezj∼p(z)Eq∼Q`(q, zj) ≤ Ezj∼SEq∼Q`(q, zj) +

√
DKL [Q‖π] + log m

δ

2(m− 1)

)
≥ 1− δ,

where

DKL [Q‖π] = Eq∼Q
[
log

Q(q)

π(q)

]
is the Kullback-Leibler divergence.

Theorem 1 indicates that with a high probability, the expected error of an arbitrary posterior Q on
data distribution p(z) is upper-bounded by the empirical error plus a complexity regularisation term.
These two terms express the trade-off between fitting data (bias) and regularising model complexity
(variance).
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Remark 1. Despite the assumption based on bounded loss function, the PAC-Bayes bound can also
be extended to unbounded loss function (McAllester, 1999, Section 5).

Before presenting the novel bound for few-shot meta-learning, we define some notations. Recall
that m(v)

i is the number of samples in the query set {X (v)
i ,Y(v)

i }. Let δ ∈ (0, 1) and

L̂(v)
i (θ) =

∑m
(v)
i

j=1 Eq(wi;λi) [− log p(yij |wi)]

mi
+

√
DKL [q(wi;λi)‖p(wi; θ)] + log miT

δ

2(mi − 1)
. (5)

The novel bound on the generalisation error for the few-shot meta-learning problem is shown in
Theorem 2. Please refer to Appendix A for the proof.

Theorem 2 (PAC-Bayes bound for few-shot meta-learning in (3)). For the general error of few-shot
meta-learning in (3), the following holds:

p

(
L(v)(θ) ≤ 1

T

T∑
i=1

L̂(v)
i (θ)

)
≥ 1− δ.

Remark 2. The result derived in Theorem 2 is different from the one in (Amit & Meir, 2018, Theorem
2). As mentioned in Section 2, the prior work (Amit & Meir, 2018) does not relate the posterior of
model parameters q(wi;λi) to the shared prior p(wi; θ). The “hypothesis” in that case is a tuple
including the model parameters sampled from the prior and task-specific posterior. In contrast, our
approach is a variant of amortised inference that relates the posterior from the prior and likelihood
function by gradient updates (see Section 3.3). Hence, the “hypothesis” in our case includes the
parameters sampled from the task-specific posterior only. The discrepancy of the “hypothesis” used
between the two approaches results in different upper-bounds, particularly at the regularisation
term.

Given the result in Theorem 2, the objective function of interest is to minimise the generalisation
upper-bound:

L̂(v)(θ) =
1

T

T∑
i=1

L̂(v)
i (θ). (6)

3.3 GRADIENT-BASED VARIATIONAL INFERENCE

As denoted in Section 3.1, q(wi;λi) is a variational posterior that approximates the true posterior
p(wi|Y(t)

i ; θ) for task Ti, and therefore, can be obtained by minimising the following KL divergence:

λ∗i = argmin
λi

DKL

[
q(wi;λi)‖p(wi|Y(t)

i ; θ)
]

= argmin
λi

DKL [q(wi;λi)‖p(wi; θ)]− Eq(wi;λi)

[
ln p(Y(t)

i |wi)
]
+ ln p(Y(t)|θ)︸ ︷︷ ︸

const. wrt λi

. (7)

The resulting cost function (excluding the constant term) in (7) is often known as the variational free
energy (VFE). For simplicity, we denote the cost function as

L(t)
i

(
Y(t)
i , λi, θ

)
= DKL [q(wi;λi)‖p(wi; θ)] + Eq(wi;λi)

[
− ln p

(
Y(t)
i |wi

)]
. (8)

The first term of VFE can be considered as a regularisation that penalises the difference between
the shared prior p(wi; θ) and the variational task-specific posterior q(wi;λi), while the second term
is referred as data-dependent or likelihood cost. Exactly minimising the cost function in (8) is
computationally challenging, so gradient descent is used with θ as the initialisation:

λi ← θ − αt∇λi
L(t)
i

(
Y(t)
i , λi; θ

)
, (9)

where αt is the learning rate and the truncated gradient descent consists of a single step (the ex-
tension to a larger number of steps is trivial). Given the approximated posterior q(wi;λi) with
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parameter λi obtained from (9), we can calculate and optimise the generalisation upper bound in (6)
w.r.t. θ.

In Bayesian statistics, the shared prior p(wi; θ) represents a modelling assumption, and the varia-
tional task-specific posterior q(wi;λi) is a flexible function that can be adjusted to achieve a good
trade-off between performance and complexity. In general, p(wi; θ) and q(wi;λi) can be modelled
using two general types of probabilistic models: prescribed and implicit (Diggle & Gratton, 1984).
For example, Amortised Meta-learner (Ravi & Beatson, 2019) is a prescribed approach where both
distributions are assumed to be diagonal Gaussians. In this paper, we present a more expressive way
of implicitly modelling the shared prior and task-specific posterior.

Both distributions p(wi; θ) and q(wi;λi) are now defined at a more fundamental level whereby data
is generated through a stochastic mechanism without specifying parametric distributions. We use a
parameterised model (i.e., a generator G represented by a deep neural network) to model the sample
generation from the prior and posterior:{

wi ∼ p(wi; θ) ⇔ wi = G(z; θ), z ∼ p(z)
wi ∼ q(wi;λi) ⇔ wi = G(z;λi), z ∼ p(z),

(10)

where p(z) is usually denoted by a Gaussian model N (0, I) or a uniform model U(0, 1).
Due to the nature of implicit models, the KL divergence term in (8), in particular the density ratio
q(wi;λi)/p(wi; θ), cannot be evaluated either analytically or symbolically. We, therefore, propose
to employ the probabilistic classification approach (Sugiyama et al., 2012, Chapter 4) to estimate
the KL divergence term. We use a parameterised model – a discriminator D represented by a deep
neural network – as a classifier to distinguish different wi sampled from the prior p(wi; θ) (label
1) or the posterior q(wi;λi) (label 0). The objective function to train the discriminator D can be
written as:

max
ωi

LD(ωi) = max
ωi

Ep(z) [lnD (G(z; θ);ωi)] + Ep(z) [ln (1−D (G(z;λi);ωi))] , (11)

where ωi is the parameters of D for task Ti.
Given the discriminator D, the KL divergence term in (8) can be estimated as:

DKL [q(wi;λi)‖p(wi; θ)] = Eq(wi;λi)

[
ln
q(wi;λi)

p(wi; θ)

]
≈ − 1

Lt

Lt∑
l=1

V
(
G(z(l);λi);ωi

)
, (12)

where z(l) ∼ p(z), Lt is the number of Monte Carlo samples, and V (., ωi) is the output of the
discriminator D without sigmoid activation.

The variational-free energy in (8) can, therefore, be rewritten as:

L(t)
i (λi, ωi, θ) ≈ −

1

Lt

Lt∑
l=1

[
V
(
G(z(l);λi);ωi

)
+ ln p

(
Y(t)
i

∣∣∣G(z(l) ;λi))] . (13)

One problem that arises when estimating the loss in (13) is how to obtain the local optimal param-
eters ω∗i for the discriminator D. One simple approach is to generate several model parameters wi

from the prior p(wi; θ) and posterior q(wi;λi) following (10) to train D(.;ωi) by optimising the
cost in (11). The downside is the significant increase in training time and memory usage to store the
computational graph to later be used for minimising the upper-bound in (6) w.r.t. θ. To overcome
this limitation, we propose to meta-learn ωi using MAML (Finn et al., 2017). In this scenario, we
define ω0 as the meta-parameters (or initialisation) of ωi. Within each task, we initialise ωi at ω0

and use the generated wi from (10) as training data. This approach leads to our proposed algorithm,
named Statistical Implicit Bayesian Meta-Learning (SImBa), shown in Algorithm 1.

Our assumption here is that the discriminator can provide an optimal estimate of the KL divergence
term as shown in (12). This strong theoretical property only holds when the discriminator model
is correctly-specified (Sugiyama et al., 2012, Remark 4.7). To this end, we employ the universal
approximation theorem (Cybenko, 1989; Hornik, 1991) to model the discriminator as a feed-forward
fully connected neural network. We expect that under this modelling approach, the discriminator
model is approximately correctly-specified.
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Algorithm 1 SImBa

Input: task distribution p(T ) and hyper-parameters: T, Lt, Lv, LD, αt, αv, γt, γv, δ
Output: meta-parameters θ of the shared prior p(wi; θ), and discriminator meta-parameters ω0

1: initialise θ and ω0

2: while θ not converged do
3: sample a mini-batch of tasks Ti ∼ p(T ), where i = 1 : T
4: for each task Ti do
5: λi ← θ
6: ωi ← ω0

7: generate w
(p)
i,j = G(z; θ), and w

(q)
i,j = G(z;λi), where j = 1 : LD

8: update ωi ← ωi + γt∇ωiLD(ωi) {Eq. (11)}
9: generate ŵ

(lt)
i = G(z(lt);λi), lt = 1 : Lt to calculate VFE

10: update: λi ← λi − αt∇λiL
(t)
i (λi, ωi, θ) {Eq. (13)}

11: generate ŵ
(lv)
i = G(z(lv);λi), lv = 1 : Lv

12: compute L̂(v)
i (θ) {Eq. (5)}

13: repeat step 7 to calculate discriminator loss LD(ωi)
14: end for
15: update θ ← θ − αv

T ∇θ
∑T
i=1 L̂

(v)
i (θ) {Eq. (6)}

16: update ω0 ← ω0 +
γv
T ∇ω0

∑T
i=1 LD(ωi)

17: end while

Another approach to estimate the KL divergence term in (8) is to use a lower bound of f-
divergence (Nguyen et al., 2010; Nowozin et al., 2016). There is a difference between the lower
bound approach and the probabilistic classification presented in this subsection. In the former ap-
proach, the lower bound of the KL divergence is maximised to tighten the bound. In the latter
approach, a discriminator is trained to minimise the logistic regression loss to estimate the ratio
q(wi;λi)/p(wi; θ), and use Monte Carlo sampling to approximate the KL divergence of interest.

One potential drawback of the implicit modelling used in this paper is the curse of dimension-
ality, resulting in an expensive computation during training. This is an active research question
when dealing with generative models in general. This issue can be addressed by encoding the high-
dimensional data, such as images, to a feature embedding space by supervised-learning on the same
training data set (Rusu et al., 2019). This strategy reduces the dimension of the input space, leading
to smaller generator and discriminator models. The trade-off lies in the possibility of losing relevant
information that can affect the performance on held-out tasks.

It is also worthy noting that our proposed method is easier to train than prior Bayesian few-shot
meta-learning (Finn et al., 2018; Ravi & Beatson, 2019) because we no longer need to estimate the
weighting factor of the KL divergence term in (8). The trade-off of our approach lies in the need
to set the significance level δ, but tuning δ is arguably more intuitive than estimating the correct
weighting factor for the KL divergence term.

4 EXPERIMENTAL EVALUATION

We evaluate SImBa in both few-shot regression and classification problems. We also compare to
prior state-of-art meta-learning methods to show the strengths and weaknesses of SImBa.

4.1 REGRESSION

The experiment in this subsection is a multi-modal task distribution where half of the data is gener-
ated from sinusoidal functions, while the other half is from linear functions (Finn et al., 2018). The
details of the experimental setup and additional visualisation results are presented in Appendix B.
The results in Figure 2 (leftmost and middle graphs) show that SImBa is able to vary the predic-
tion variance, especially when there is more uncertainty in the training data, while MAML can only
output a single value at each data point.
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Figure 2: (Leftmost and middle graphs) SImBa and MAML are compared in a regression problem
when training is based on multi-modal data – half of the tasks are generated from sinusoidal func-
tions, and the other half are from linear functions. The shaded area is the prediction made by SImBa
± 2× standard deviation. (Right) Reliability chart of various meta-learning methods averaged over
1000 tasks.

To further evaluate the predictive uncertainty, we employ the reliability diagram based on the quan-
tile calibration for regression (Song et al., 2019). The reliability diagram shows a correlation be-
tween predicted and actual probability. A perfect calibrated model will have its predicted probability
equal to the actual probability, and hence, align well with the diagonal y = x. Figure 2 (Right) shows
the results for SImBa and some published meta-learning methods. As expected, Bayesian meta-
learning approaches, and in particular, Amortised Meta-learner, which relies on diagonal Gaussian
distributions, are better calibrated than MAML – a deterministic approach. However, the averaged
slope of the Amortised Meta-learner correlation curve is quite small, implying that its predicted
probability is peaked at the mean of the ground-truth distribution with small covariances. In con-
trast, SImBa employs a much richer variational distribution, and therefore, resulting in a model with
better calibration.

4.2 FEW-SHOT CLASSIFICATION

We evaluate SImBa on the N -way k-shot setting, where a meta learner is trained on many related
tasks containing N classes with k examples per class. We use the train-test split that consists of 64
classes for training, 16 for validation, and 20 for testing (Ravi & Larochelle, 2017). Please refer to
Appendix C for the details of the model used.

Although we target the estimation of model uncertainty, we also present the accuracy of SImBa
against the state of the art on mini-ImageNet (Vinyals et al., 2016; Ravi & Larochelle, 2017). The
results in Table 1 shows that SImBa achieves state-of-the-art in 1-shot setting when the base model
is the 4-layer convolutional neural network (CNN) (Vinyals et al., 2016), and in 5-shot setting when
different network architecture is used. We also show in Appendix D that generators with larger
networks tend to classify better.

Similar to the experiment for regression, we use reliability diagrams (Guo et al., 2017) to evaluate
the predictive uncertainty. The reliability diagrams show how well calibrated a model is when test-
ing across many unseen tasks. A perfectly calibrated model will have its values overlapped with
the identity function y = x, indicating that the probability associated with the label prediction is
the same as the true probability. Figures 3a and 3b show the results of SImBa and other Bayesian
meta-learning methods. Visually, the model trained with SImBa shows better calibration than the
ones trained with MAML and PLATIPUS, while being competitive to Amortised Meta-learner. To
further evaluate, we compute the expected calibration error (ECE) and maximum calibration error
(MCE) (Guo et al., 2017) of the models trained with these methods. The results plotted in Fig-
ure 3c show that the model trained with SImBa has smaller ECE and MCE compared to MAML
and PLATIPUS. SImBa also has lower ECE and competitive MCE compared to Amortised Meta-
learner, but notice that Amortised Meta-learner has a worse classification result than SImBa, as
shown in Table 1.

1Trained on 30-way 1-shot setting
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Table 1: The few-shot 5-way classification accuracy results (in percentage, with 95% confidence
interval) of SImBa averaged over 600 mini-ImageNet tasks are competitive to the state-of-the-art
methods. SImBa outperforms other prior methods in 1-shot setting when using the standard 4-layer
CNN, and 5-shot setting when using non-standard network architectures.

Method 1-shot 5-shot

Mini-ImageNet (Ravi & Larochelle, 2017) - standard 4-block CNN

Matching nets (Vinyals et al., 2016) 43.56 ± 0.84 55.31 ± 0.73
Meta-learner LSTM (Ravi & Larochelle, 2017) 43.44 ± 0.77 60.60 ± 0.71
MAML (Finn et al., 2017) 48.70 ± 1.84 63.15 ± 0.91
Prototypical nets (Snell et al., 2017)1 49.42 ± 0.78 68.20 ± 0.66
LLAMA (Grant et al., 2018) 49.40 ± 1.83
PLATIPUS (Finn et al., 2018) 50.13 ± 1.86
Amortised ML (Ravi & Beatson, 2019) 45.00 ± 0.60
SImBa 51.01 ± 0.31 63.94 ± 0.43

Mini-ImageNet (Ravi & Larochelle, 2017) - non-standard network

Relation nets (Sung et al., 2018) 50.44 ± 0.82 65.32 ± 0.70
VERSA (Gordon et al., 2019) 53.40 ± 1.82 67.37 ± 0.86
SNAIL (Mishra et al., 2018) 55.71 ± 0.99 68.88 ± 0.92
adaResNet (Munkhdalai et al., 2018) 56.88 ± 0.62 71.94 ± 0.57
TADAM (Oreshkin et al., 2018) 58.50 ± 0.30 76.70 ± 0.30
LEO (Rusu et al., 2019) 61.76 ± 0.08 77.59 ± 0.12
LGM-Net (Li et al., 2019) 69.13 ± 0.35 71.18 ± 0.68
SImBa 63.45 ± 0.54 77.98 ± 0.47
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(a) Reliability diagram for SImBa
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Figure 3: Uncertainty evaluation for 5-way 1-shot classification on mini-ImageNet.

5 CONCLUSION

We introduce and formulate a new Bayesian algorithm for few-shot meta-learning. The proposed
algorithm, SImBa, is based on PAC-Bayes framework which theoretically guarantees prediction
generalisation on unseen tasks. In addition, the proposed method employs a generative approach that
implicitly models the shared prior p(wi; θ) and task-specific posterior q(wi;λi), resulting in more
expressive variational approximation compared to the usual diagonal Gaussian methods, such as
PLATIPUS (Finn et al., 2018) or Amortised Meta-learner (Ravi & Beatson, 2019). The uncertainty,
in the form of the learnt implicit distributions, can introduce more variability into the decision made
by the model, resulting in well-calibrated and highly-accurate prediction. The algorithm can be
combined with different base models that are trainable with gradient-based optimisation, and is
applicable in regression and classification. We demonstrate that the algorithm can make reasonable
predictions about unseen data in a multi-modal 5-shot learning regression problem, and achieve
state-of-the-art calibration and classification results with on few-shot 5-way tasks on mini-ImageNet
data set.
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A PROOF OF PAC-BAYES FEW-SHOT META-LEARNING BOUND

First, we present the two auxiliary lemmas that helps to prove Theorem 2.
Lemma 1. For i = 1 : n, if Xi and Yi are random variables, then:

p

(
n∑
i=1

Xi ≤
n∑
i=1

Yi

)
≥ p

(
n⋂
i=1

(Xi ≤ Yi)

)
.

Proof. The proof is quite direct:

Xi ≤ Yi =⇒
n∑
i=1

Xi ≤
n∑
i=1

Yi. (14)

Hence, the proof.

Lemma 2. For n events Ai with i = 1 : n, the following holds:

p

(
n⋂
i=1

Ai

)
≥

(
n∑
i=1

p(Ai)

)
− (n− 1), ∀n ≥ 2.

Proof. Proof can be done by induction.

For n = 2:

p(A1 ∩A2) = p(A1) + p(A2)− p(A1 ∪A2) ≥ p(A1) + p(A2)− 1.

Suppose that it is true for case n:

p

(
n⋂
i=1

Ai

)
≥

(
n∑
i=1

p(Ai)

)
− (n− 1).

We prove that this is also true for case (n+ 1):

p

(
n+1⋂
i=1

Ai

)
= p

(
n⋂
i=1

Ai

)
+ p(An+1)− p

((
n⋂
i=1

Ai

)⋃
An+1

)

≥ p

(
n⋂
i=1

Ai

)
+ p(An+1)− 1

≥

(
n∑
i=1

p(Ai)

)
− (n− 1) + p(An+1)− 1

(assumption of induction for case n)

≥

(
n+1∑
i=1

p(Ai)

)
− ((n+ 1)− 1) .

It is, therefore, true for (n+ 1), and hence, the proof.

Secondly, we apply the PAC-Bayes bound in Theorem 1 on the task i to obtain an upper-bound for
a single task i shown in Corollary 1.
Corollary 1. For a single task Ti in Eq. (3) and δi ∈ (0, 1), the following holds:

p
(
L(v)
i (θ) ≤ L̂(v)

i (θ)
)
≥ 1− δi,

where: L(v)
i (θ) and L̂(v)

i (θ) are defined in Eqs. (4) and (5).

Finally, we can employ Lemmas 1 and 2 combined with Corollary 1 to derive the novel upper-bound
for few-shot meta-learning setting.
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Theorem 2 (PAC-Bayes bound for few-shot meta-learning in (3)). For the general error of few-shot
meta-learning in (3), the following holds:

p

(
L(v)(θ) ≤ 1

T

T∑
i=1

L̂(v)
i (θ)

)
≥ 1− δ.

Proof. Applying the inequality in Lemma 1 by replacing Xi = L(v)
i (θ) and Yi = L̂(v)

i (θ), and note
that

∑T
i=1 L

(v)
i (θ) = TL(v), gives:

p

(
TL(v)(θ) ≥

T∑
i=1

L̂(v)
i (θ)

)
≥ p

(
T⋂
i=1

(
L(v)
i (θ) ≤ L̂(v)

i (θ)
))

, (15)

where L(v)
i , L(v) and L̂(v)

i are defined at Eqs. (4), (3) and (5), respectively.

Applying Lemma 2 the right hand side term of Ineq. (15) gives:

p

(
T⋂
i=1

(
L(v)
i (θ) ≤ L̂(v)

i (θ)
))
≥

T∑
i=1

p
(
L(v)
i (θ) ≤ L̂(v)

i (θ)
)
− (T − 1). (16)

Applying the transitive property for Ineqs. (15), (16) and Corollary 1, and setting δi = δ/T prove
the theorem.

B SETUP OF REGRESSION EXPERIMENT

The experiment is carried out with half of the data being generated from sinusoidal functions, while
the other half from linear functions. The amplitude and phase of the sinusoidal functions are uni-
formly sampled from [0.1, 5] and [0, π], respectively, while the slope and intercept of the lines are
sampled from [-3, 3]. Data is uniformly generated from [-5, 5], and the corresponding label is added
a zero-mean Gaussian noise with a standard deviation of 0.3. Each task consists of 5 data points
used for training (|Y(t)

i | = 5), and 15 points used for validation (|Y(v)
i | = 15).

The base model used in the regression experiment is a three-hidden fully connected layer neural
network. Each hidden layer has 100 hidden units (1 → 40 → 40 → 40 → 1), followed by tanh
activation. No batch normalisation is used.

The generator is a fully connected network with two hidden layers consisting of 256 and 1024 units,
respectively (dim(z) → 256 → 1024 → dim(wi)). The discriminator is also fully connected
(dim(wi)→ 512→ dim(z)→ 1). These networks are activated by ReLU, except the last layer of
the discriminator is activated by sigmoid function. No batch normalisation is used across these two
networks.

The variational parameters λi and ωi are estimated by performing five gradient updates with learning
rate αt = 0.001 and γt = 0.001. The meta-parameters θ and the meta-parameter of the discriminator
ω0 are obtained with Adam (Kingma & Ba, 2015) with fixed step size αv = 10−4 and γv = 10−5.
At the beginning of training, we clip the gradient when updating λi with a value of 10, and then
gradually increase the clipping value. After 50,000 tasks, we remove the gradient clipping and
continue to train until convergence.

The hyper-parameters related to Monte Carlo sampling are Lt = Lv = 64 and LD = 512.

C SETUP OF CLASSIFICATION EXPERIMENT

The setup of the N -way k-shot is done with the validation consisting of 15 examples in each class
(|Y(t)

i | = kN , and |Y(v)
i | = 15N ). The latent noise z is a 100-dimensional vector sampled from a

uniform distribution U(0, 1). Adam optimiser is employed to optimise both θ and ω0. Please refer
to Table 2 for other hyper-parameters used.

12



Under review as a conference paper at ICLR 2020

Figure 4: Additional regression results comparing SImBa and MAML.

C.1 STANDARD 4-BLOCK CNN

This model corresponds to the top part of Table 1. All input images are down-sampled to 84-by-84
pixels before performing experiments to be consistent with prior few-shot meta-learning works.

The base model is a 4-block CNN, where each block consists of 32 filters with a size of 3-by-3,
followed by a batch normalisation and a ReLU activation function. The generator is a 2-hidden-
layer fully connected network (dim(z) → 256 → 1024 → dim(wi)), where each layer is acti-
vated by ReLU without batch normalisation. The discriminator is also a fully connected network
(dim(wi) → 1024 → 256 → dim(z) → 1) with ReLU activation and without batch normalisation
(the last activation function is a sigmoid).

C.2 NON-STANDARD NETWORKS

This corresponds to the bottom part of Table 1. Here, we employ the features extracted from (Rusu
et al., 2019, Section 4.2.2) as the encoding of the input images. The training for the feature em-
bedding consists of 3 steps. First, raw input images are down-sampled to 80-by-80 pixels. Second,
a wide residual neural network WRN-28-10 is trained with data and labels from the 64 classes of
the training set. Finally, the intermediate features of 640 dimensions at layer 21 are chosen as the
embedding features used for our classification experiments.

The base model used in this experiment is a fully connected network with 1 hidden layer that consists
of 128 hidden units (640→ 128→ N ) followed by ReLU activation and batch normalisation. The

Table 2: Hyper-parameters used in the classification experiments.

Hyper-parameter
Value

Standard CNN Non-standard network

T 2 10
Lt 8 32
Lv 8 32
αt 10−2 0.1
γt 3× 10−6 10−3

αv 10−5 10−3

γv 10−6 5× 10−5
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Table 3: Accuracy results in 5-way 1-shot classification carried out on mini-ImageNet using various
base network and generator.

Number of hidden units
AccuracyGenerator Base network

128 16 52.84 ± 0.32
128 64 55.64 ± 0.47
256 16 54.19 ± 0.49
256 64 56.97 ± 0.56
512 64 59.67 ± 0.62
512 128 63.45 ± 0.54

generator model is constructed as a 1-hidden layer fully connected network with 512 hidden units,
followed by ReLU without batch normalisation. The discriminator is also a fully connected network
(dim(wi)→ 512→ dim(z)→ 1) with ReLU without batch normalisation.

D EFFECT OF NETWORK ARCHITECTURE

To study the effect of network architecture on the classification performance presented in Table 1,
we repeat the classification experiment with the same setup, but different base networks. We vary
the number of hidden units in the base network from 16 to 128, and also increase the size the the
hidden layer of the generator from 256 to 512. The results in Table 3 show that the larger the base
network and the generator are, the better the classification accuracy.
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