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ABSTRACT

Reinforcement learning agents are typically trained and evaluated according to
their performance averaged over some distribution of environment settings. But
does the distribution over environment settings contain important biases, and do
these lead to agents that fail in certain cases despite high average-case perfor-
mance? In this work, we consider worst-case analysis of agents over environment
settings in order to detect whether there are directions in which agents may have
failed to generalize. Specifically, we consider a 3D first-person task where agents
must navigate procedurally generated mazes, and where reinforcement learning
agents have recently achieved human-level average-case performance. By opti-
mizing over the structure of mazes, we find that agents can suffer from catas-
trophic failures, failing to find the goal even on surprisingly simple mazes, de-
spite their impressive average-case performance. Additionally, we find that these
failures transfer between different agents and even significantly different architec-
tures. We believe our findings highlight an important role for worst-case analysis
in identifying whether there are directions in which agents have failed to general-
ize. Our hope is that the ability to automatically identify failures of generalization
will facilitate development of more general and robust agents. To this end, we
report initial results on enriching training with settings causing failure.

1 INTRODUCTION

Reinforcement Learning (RL) methods have achieved great success over the past few years, achiev-
ing human-level performance on a range of tasks such as Atari (Mnih et al., 2015), Go (Silver et al.,
2016), Labyrinth (Espeholt et al., 2018), and Capture the Flag (Jaderberg et al., 2018).

On these tasks, and more generally in reinforcement learning, agents are typically trained and eval-
uated using their average reward over environment settings as the measure of performance, i.e.

EP (e) [R(π(θ), e)] ,

where π(θ) denotes a policy with parameters θ, R denotes the total reward the policy receives over
the course of an episode, and e denotes environment settings such as maze structure in a navigation
task, appearance of objects in the environment, or even the physical rules governing environment
dynamics. But what biases does the distribution P (e) contain, and what biases, or failures to gener-
alize, do these induce in the strategies agents learn?

To help uncover biases in the training distribution and in the strategies that agents learn, we propose
evaluating the worst-case performance of agents over environment settings, i.e.

min
e∈E

E [R(π(θ), e)] ,

where E is some set of possible environment settings.

Worst-case analysis can provide an important tool for understanding robustness and generalization
in RL agents. For example, it can help us with:

• Understanding biases in training Catastrophic failures can help reveal situations that are
rare enough during training that the agent does not learn a strategy that is general enough
to cope with them.
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Figure 1: Navigation task. (left) Example maze from the training distribution together with the
path taken by the agent from spawn (cyan) to goal (magenta). (right) Frames from top left to bottom
right correspond to agent observations as it takes the path from spawn to goal. Note that while
the navigation task may look simple given a top down view, the agent only receives very partial
information about the maze at every step, making navigation a difficult task.

• Robustness For critical systems, one would want to eliminate, or at least greatly reduce,
the probability of extreme failures.

• Limiting exploitability If agents have learned strategies that fail to generalize to particular
environment settings, then an adversary could try and exploit an agent by trying to engineer
such environment settings leading to agent failure.

In this work, we use worst-case analysis to investigate the performance of a state-of-the-art agent in
solving a first-person 3D navigation task; a task on which agents have recently achieved average-case
human-level performance (Wayne et al., 2018). By optimizing mazes to minimize the performance
of agents, we discover the existence of mazes where agents repeatedly fail to find the goal (which
we refer to as a Catastrophic Failure).

Our Contributions To summarize, the key contributions of this paper are as follows:

1. We introduce an effective and intuitive approach for finding simple environment settings
leading to failure (Section 2).

2. We show that state-of-the-art agents carrying out navigation tasks suffer from drastic and
often surprising failure cases (Sections 3.1 and 3.2).

3. We demonstrate that mazes leading to failure transfer across agents with different hyperpa-
rameters and, notably, even different architectures (Section 3.3).

4. We present an initial investigation into how the training distribution can be adapted by
incorporating adversarial and out-of-distribution examples (Section 4).

2 APPROACH

Tasks We consider agents carrying out first-person 3D navigation tasks. Navigation is of cen-
tral importance in RL research as it captures the challenges posed by partially observable Markov
decision processes (POMDPs). The navigation tasks we use are implemented in DeepMind Lab
(DM Lab) (Beattie et al., 2016). 1 Each episode is played on a 15 × 15 maze where each position
in the maze may contain a wall, an agent spawn point, or a goal spawn point. The maze itself is
procedurally generated every episode, along with the goal and agent spawn locations. The goal lo-
cation remains fixed throughout an episode, while the agent spawn location can vary. In training,
the agent respawns at different locations each time they reach the goal, while for our optimization
and analysis we limit the agent to the same spawn location. Agents receive RGB observations of
size 96× 72 pixels, examples of which are provided in Figure 1. Episodes last for 120 seconds and

1A full description and code for the tasks can be found at https://github.com/deepmind/lab/
tree/master/game_scripts/levels/contributed/dmlab30#goal-locations-large.
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are played at a framerate of 15 frames per second. The agent receives a positive reward of 10 every
time it reaches the goal, and 0 otherwise. On this specific navigation task, RL agents have recently
achieved human-level average-case performance (Wayne et al., 2018).

Agents We perform our analysis on Importance Weighted Actor-Learner Architecture agents
trained to achieve human-level average-case performance on navigation tasks. These agents can
be described as async batched-a2c agents with the V-trace algorithm for off policy-correction, and
we henceforth refer to these as A2CV agents (Espeholt et al., 2018). Details of the training procedure
are provided in Appendix A.1.

Search Algorithm If we are interested in worst-case performance of agents, how can we find
environment settings leading to the worst performance? In supervised learning, one typically uses
gradient based methods to find inputs that lead to undesired output (Biggio et al., 2013; Szegedy
et al., 2013; Goodfellow et al., 2014). In contrast, we search for environment settings leading to an
undesired outcome at the end of an episode. This presents a challenge as the environment rendering
and MDP are not differentiable. We are therefore limited to black-box methods where we can only
query agent performance given environment settings.

To search for environment settings which cause catastrophic failures, we propose the local search
procedure described in Algorithm 1 (visualizing the process in Figure 2). Concretely, we generate
a set of initial candidate mazes by sampling mazes from the training distribution. We then use the
Modify function on the maze which yielded the lowest agent score to randomly move two walls to
produce a new set of candidates, rejecting wall moves that lead to unsolvable mazes. Importantly,
this method is able to effectively find catastrophic failure cases (as we demonstrate in Section 3.1),
while also having the advantage of being intuitive to understand and implement.

input : num iterations, num candidates, num evaluations and function Modify
output: An environment setting best

candidates← GenerateCandidates(num candidates);
for i← 1 to num iterations do

best← Evaluate(candidates, num evaluations);
candidates← Modify(best, num candidates);

end
best← Evaluate(candidates, num evaluations);

Algorithm 1: Method for finding environment settings leading to failure cases.

Initial Candidates

Iteration 1

Iteration 20
Best: R5 = 0.09

Best: R2 = 15.3

Best:  R4 = 20.9

...

Figure 2: Example of search procedure. First, we generate a set of 10 initial candidate mazes by
sampling from the training distribution. We then Evaluate each with the agent over 30 episodes,
select the best maze (i.e. lowest agent score), and Modify this maze by randomly moving two walls
to form the next set of candidates (Iteration 1). This process is repeated for 20 iterations, leading
to a maze where the agent score is 0.09 in this example (i.e. the agent finds the goal once in 11
episodes). In Appendix A.2.1 we detail the computational requirements of this search procedure.
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3 EXPERIMENTS

The agents we study achieve impressive average-case performance, but how much does their worst-
case performance differ from their average-case performance? To investigate this, we consider the
worst-case performance over a large set of mazes, including mazes that are not possible under the
training distribution.

A natural question to ask is whether any departure from the wall structure present during training
will lead to agent failure. To test this, we evaluate the agent on samples from a distribution of mazes
containing all mazes agents could be evaluated on during the search. In particular, we randomly se-
lect agent and goal spawn locations in the first step and then randomly move 40 walls, corresponding
to the same actions taken by our optimization procedure, but where the actions are chosen randomly
rather than in order to minimize agent performance. We find that agents do generalize to random
mazes from the set we consider. In fact, we find that the average score obtained by agents on ran-
domly perturbed mazes is slightly higher than on the training distribution, with agents obtaining an
average of 45 goal reaches per two minute episode. The increased performance is likely due to the
agent spawn location being fixed, making it easier for the agent to return to the goal once found.

The considered agents generalize in the sense that agent performance is not reduced on average by
out-of-distribution wall structure. But what about the worst case over all wall structures? Have the
agents learned a general navigation strategy that works for all solvable mazes? Or do there exist
environment settings that lead to catastrophic failures with high probability? In this section, we
investigate these questions. We define a Catastrophic Failure to be an agent failing to find the goal
in a two minute episode (1800 steps). As detailed below, we find that not only do there exist mazes
leading to catastrophic failure, there exist surprisingly simple mazes that lead to catastrophic failure
for agents yet are consistently and often rapidly solved by humans.

3.1 RESULT 1: CATASTROPHIC FAILURES EXIST

Do environment settings leading to catastrophic failure exist for the agents we are considering? By
searching over mazes using the procedure outlined in Algorithm 1, we find mazes where agents fail
to find the goal on many episodes, only finding the goal 10% of the time. In fact, some individual
mazes lead to failure across five different agents we tested, with even the best performing agent only
finding the goal in 20% of the episodes.

(a) Average number of goals reached per episode
over the course of the optimization.

(b) Probability of the agent reaching the goal in
an episode.

Figure 3: The search algorithm is able to rapidly find mazes where agents fail to find the
goal. (a) The objective used for the optimizer is average agent score. The dashed line corresponds
to average goals reached on randomly perturbed mazes. (b) Minimizing score also leads to a low
probability of at least one goal retrieval in an episode. The dashed line corresponds to average prob-
ability of reaching a goal on randomly perturbed mazes. The blue lines are computed by averaging
across 50 optimization runs.

Optimization curves for our search procedure are given in Figure 3. Note that while we define
catastrophic failure as failure to find the goal, the actual objective used for the optimization was
average number of goal reaches during an episode. Using average number of goals gives a stronger
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signal at the start of the optimization process. Finding mazes leading to lower average number of
captures is easier than finding mazes where the agent rarely finds the goal even once. As can be seen,
despite finding the goal on average 45 times per episode on randomly perturbed mazes, on mazes
optimized to reduce score, agents find the goal on average only 0.33 times per episode, more than a
100× decrease in performance. In terms of probability of catastrophic failure, we note that despite
agents finding the goal in approximately 98% of episodes on randomly perturbed mazes, using our
method, on average we find mazes where agents only finds the goal in 30% of the episodes.

Example trajectories agents take during failures are visualized in Figure 4. The trajectories often
seem to demonstrate a failure to use memory to efficiently explore the maze with the agent repeatedly
visiting the same locations multiple times.

The mazes presented in Figure 4 appear to be of higher complexity than mazes seen during training.
This suggests that to obtain agents that truly master navigation, more complex mazes should be
included in the training distribution. However, we can ask whether it is only more complex mazes
that lead to catastrophic failure or whether there are also simple mazes leading to catastrophic failure.
This is a question we explore in the next subsection.

(a) Randomly
Perturbed.

(b) Adversarially
Optimized.

(c) Adversarially
Simplified.

(d) Human
Trajectory.

Figure 4: Example mazes leading to low scores and example trajectories on these mazes. (a)
Maze with randomly perturbed walls. Despite being out of distribution, agents find the goal in 98%
of episodes on such mazes and are able to get the goal on average 45 times per episode. (b) Maze
obtained after 20 iterations, moving two walls at each iteration to minimize reward. All agents find
the goal on such mazes in less than 20% of episodes. (c) Maze obtained through additional iterations
of removing walls. All agents find the goal on such mazes in less than 40% of episodes. (d) Human
trajectory on the same maze as in (c). Humans are able to consistently find the goal on such mazes.

3.2 RESULT 2: SIMPLE CATASTROPHIC FAILURES EXIST

While the existence of catastrophic failures may be intriguing and perhaps troubling, one might
suspect that the failures are caused by the increased complexity of the mazes leading to failure
relative to the mazes the agent is exposed to during training, e.g., the mazes leading to failure contain
more dead ends and sometimes have lower visibility. Further, understanding the cause of failure in
such mazes seems challenging due to the large number of wall structures that may be causing the
agent to fail. In this section, we explore whether there exist simple mazes which lead to catastrophic
failures. As our measure of complexity, we use the total number of walls in the maze. We also
evaluate humans on such mazes to get a quantitative measure of maze complexity.

To find simple mazes which lead to failure, we first follow the same procedure as in the previous
section, producing a set of mazes which all lead to catastrophic failures (i.e. a low agent scores).
Next, we use this set of mazes as the initial set of candidates in our search algorithm, however we
now use a Modify function that removes a single randomly chosen wall each iteration. This process
is repeated for 70 iterations, searching for a maze with few walls while maintaining low agent score.

In Figure 4, we present the resulting simple mazes and the corresponding agent trajectories from our
optimization procedure. Interestingly, we find that one can remove a majority of the walls in a maze
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and still maintain the catastrophic failure (i.e. very low agent score). Of note is that a number of
these mazes are strikingly simple, suggesting that there exists structure in the environment that the
agent has not generalized to. For example, we can see that placing the goal in a small room in an
otherwise open maze can significantly reduce the agent’s ability to find the goal.

Human baselines While these simple maps may lead to catastrophic failure, it is unclear whether
this is because of the agent or whether the maze is difficult in a way that is not obvious. To investigate
this, we perform human experiments by tasking humans to play on a set of 10 simplified mazes.

Notably, we find that human players are able to always locate the goal in every maze and typically
within one third of the full episode length. This demonstrates that the mazes are comfortably solv-
able within the course of an episode by players with a general navigation strategy. We provide a
detailed comparison of agent and human performance in Appendix A.3.

Analysis One question that may arise is the extent to which these mazes are isolated points in the
space of mazes. That is, if the maze was changed slightly, would it no longer lead to catastrophic
failure? To test this, we investigate how sensitive our discovered failure mazes are with respect to
the agent and goal spawn locations on simplified adversarial mazes. As can be seen in Figure 5, we
find that for a large range of spawn locations, the mazes still lead to failure. This indicates that there
is specific local maze structure which causes agents to fail.

(a) Agent locations, with goal (magenta) fixed. (b) Goal locations, with agent (cyan) fixed.

Figure 5: Adversarial mazes are robust to change of spawn positions. The probability of goal
retrieval (shown with the color bar) remains low across large portions of the simplified maze as the
(a) agent spawn locations and (b) goal locations are moved for each episode..

Procedures for finding such simple mazes may prove useful as a tool for debugging agents and
understanding the ways in which training has led them to develop narrow strategies that are good
enough for achieving high average-case performance.

3.3 RESULT 3: FAILURE MAZES TRANSFER ACROSS AGENTS

We have found failure cases for individual agents, but to what extent do these failure cases highlight
a specific peculiarity of the individual agent versus a more general failure of a certain class of agents,
or even a shortcoming of the distribution used for training? In this section, we investigate whether
mazes which cause one trained agent to fail also cause other agents to fail.

We consider two types of transfer: (1) between different hyperparameters of the same model archi-
tecture, and (2) between different model architectures. To test transfer between agents of the same
architecture, we train a set of five A2CV agents with different entropy costs and learning rates. To
test transfer between agents with significantly different architectures, we train a set of five MERLIN-
based agents (Wayne et al., 2018). These agents have a number of differences to the A2CV agents,
most notably they contain a sophisticated memory structure based on a DNC (but with a fixed write
location per timestep) (Graves et al., 2016). Both agents are trained on the same distribution and
achieve human-level averages scores on the navigation task (with MERLIN scoring 10% higher than
A2CV on average). Further details of agent training can be found in Appendix A.1.

To quantify the level of transfer between (sets of) agents, we follow the procedure for finding ad-
versarial mazes outlined in Section 3.1 to produce a collection of 50 unique failure mazes for each
agent (i.e. 10 collections of 50 mazes each). We then evaluate every agent 100 times on each maze
in each collection, reporting their average performance on each collection. Complete quantitative
transfer results can be found in Appendix A.4.
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Failure cases transfer somewhat across all agents First, we find that across all agents, some
level of transfer exists. In particular, as can be seen in Figure 6, the probability of one agent finding
the goal on mazes generated to reduce the score another agent is significantly below 1. This suggests
a common cause of failure that is some combination of the distribution of environment settings used
during training and the set of methods that are currently used to train such agents. A possible
way to address this could be enriching the training distribution so that it contains fewer biases and
encourages more general solutions.

Transfer within agent type is stronger than between agent type Comparing the performance
of each agent type on mazes from the same agent type to mazes from another agent type, we see
that transfer within agent type is stronger. As shown in Figure 6b, performance increases as we go
from ‘MERLIN to MERLIN’ to ‘A2CV to MERLIN’ (0.42 to 0.58) and also if we go from ‘A2CV
to A2CV’ to ‘MERLIN to A2CV’ (0.63 to 0.70). This suggests that there are some common biases
in agents that are due to their architecture type. Analyzing structural differences between mazes
that lead to one agent type to fail but not another could give interesting insight into behavioural
differences between agents beyond just average performance.

A2CV agents are less susceptible to transfer Despite similar probabilities of failure when eval-
uating on mazes optimized for the same agent, A2CV agents seem to suffer less on mazes optimized
using other A2CV or MERLIN agents. This indicates that A2CV agents may have learned a more
diverse set of strategies.

(a) Across hyperparameters, same architecture. (b) Across architectures.

Figure 6: Mazes that lead to failures in one agent lead to failure in other agents as well. This
is the case for agents of the same architecture with different hyperparameters, and is also the case
for transfer across agents of different architecture. We note, however, that transfer across agents
with different architectures is weaker than among agents with the same architecture, and that the
performance of agents with the same architecture but with different hyperparameters is slightly
higher than for the agents used to originally find the mazes.

4 ADAPTING THE TRAINING DISTRIBUTION

From our experiments so far, we have discovered that there exist many mazes which lead to catas-
trophic failure. In this section, we investigate whether agent performance can be improved by adapt-
ing the training distribution, for example by incorporating adversarial mazes into training and mod-
ifying the original mazes used in training.

4.1 MOTIVATION

To better understand what may be causing catastrophic failures, with the aim of fixing them, we
compare the set of adversarial mazes with the original set of mazes used in training. From this
comparison, we find that there are two notable differences.
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The probability of a catastrophic failure correlates with the distance between the spawn loca-
tions and how hidden the goal is First, we find that a number of features are more common in
adversarial mazes than non-adversarial mazes. In particular, adversarial mazes are more likely to
have the goal hidden in an enclosed space (such as a small room), and on average the path length
from the player’s starting location to the goal is significantly longer (31.1 ± 8.4 compared to 11.6
± 6.3). Notably, while the training distribution also contains hidden goals which are far from the
agent’s starting location, they are much rarer.

Adversarial mazes are typically far from the training distribution Second, we find that adver-
sarial mazes tend to not only be out-of-distribution, but also far from the training distribution due
to the Modify function used in our adversarial search procedure (for example, see Figure 2). This
contrasts with the adversarial images literature where attacks are usually constrained to be small
or imperceptible. It may therefore not be surprising that the agent is unable to generalize to all
out-of-distribution mazes which could also explain the significant reduction in their performance.

Given these two observations, it is natural to ask whether the training distribution can be adapted to
improve the agent’s performance. In the following sections we investigate this question and discuss
our findings, focusing on incorporating adversarial mazes into training and modifying the original
mazes used in training.

4.2 APPROACH

We consider two distinct approaches for incorporating adversarial and out-of-distribution mazes into
the training distribution.

Adversarial training To add adversarial mazes into the training distribution, we first create a
dataset of 6000 unique adversarial mazes from separate runs of our search procedure using the
previously trained A2CV agents. Notably, this set also includes the 250 mazes used in our transfer
experiments (Section 3.3). Next, we train a new set of A2CV agents using both this adversarial
set of mazes and the standard distribution of mazes, sampling randomly every episode (i.e. 50% of
training episodes are on an adversarial maze).

Randomly perturbed training To ensure our adversarial search procedure produces in-
distribution adversarial mazes, we alter the default maze generator used in training so that any ad-
versarial maze can be generated. We accomplish this by randomly perturbing the original mazes,
repeatedly using the same Modify function used by our adversarial search procedure, but selecting
candidates randomly rather than by worst agent performance.

4.3 RESULTS

In this section, we report our findings on the robustness of agents trained using the approaches above.

Catastrophic failures still exist Our main finding is that while agents learn to perform well on
the richer distributions of mazes described above, this does not lead to robust agents. In particular,
agents trained on a distribution of mazes enriched with 6000 adversarial mazes were able to find the
goal on average 89.8% of the time on the adversarial mazes they were trained on. Similarly, agents
trained on randomly perturbed mazes were able to find the goal close to 100% of the time on the
distribution they were trained on. However, despite the agents being trained on these richer training
distributions, the same search method is still able to find mazes leading to extreme failure as can be
seen in Figure 7.

One possible explanation for this result is that the 6000 adversarial mazes used for training were
insufficient to get good coverage of the space of mazes, and that further enlarging this set could
yield qualitatively different results. Indeed, for agents trained using randomly perturbed mazes, the
search procedure took 50 iterations to obtain the same level of failure as it did after 20 iterations
when applied to agents trained on the standard training distribution. This suggests that perhaps
enriching the training distribution with a very large set of adversarial mazes may lead to more general
and robust agents. However, there are a number of challenges that need to be addressed before this
approach can be tested which we will describe in the next section.
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(a) Average number of goals reached. (b) Probability of finding the goal in a single episode.

Figure 7: Richer training distributions did not lead to robust agents. Adversarial optimization
for agents trained with adversarial mazes (red) and for agents trained with randomly perturbed mazes
(yellow). Compared against the Standard training method from Figure 3 for 50 iterations (blue).

4.4 DISCUSSION

Our results suggest that if a richer training distribution is to yield more robust agents, we may need
to use a very large set of environment settings leading to failure. This is similar to how adversarial
training in supervised learning is performed where more adversarial examples are used than the
original training examples. We describe below what we see as two significant challenges that need
to be overcome before such an approach can be thoroughly evaluated in the RL setting.

Expensive generation The cost of generating a single adversarial setting is on the order of 1000’s
episodes using the method in this work. This implies that generating a set of adversarial settings
which is similar in size to the set trained on would require orders of magnitude more computational
than training itself. This could be addressed with faster methods for generating adversarial settings.

Expensive training Since agents receive very little reward in adversarial settings, the training
signal is incredibly sparse. Therefore, it is possible that many more training iterations are necessary
for agents to learn to perform well in each adversarial setting. A possible solution to this challenge is
to design a curriculum over adversity, whereby easier variants of the adversarial settings are injected
into the training distribution. For example, for the navigation tasks considered here, one could
include training settings with challenging mazes where the goal is in any position on the shortest
path between the starting location of the agent and the challenging goal.

We hope that these challenges can be overcome so that, in the context of RL, the utility of adversarial
retraining can be established – an approach which has proved useful in supervised learning tasks.
However, since significant challenges remain, we suspect that much effort and many pieces of work
will be required before a conclusive answer is achieved.

5 RELATED WORK

Navigation Recently, there has been significant focus in the RL community on agent navigation
in simulated 3D environments, including a community-wide challenge for agents in such environ-
ments called VizDoom (Kempka et al., 2016). Such 3D first-person navigation tasks are particularly
interesting because they capture challenges such as partial observability, and require the agent to
“effectively perceive, interpret, and learn the 3D world in order to make tactical and strategic deci-
sions where to go and how to act.” (Kempka et al., 2016). Recent advances have led to impressive
human-level performance on navigation tasks in large procedurally generated environments (Beattie
et al., 2016; Wayne et al., 2018).

Adversarial examples in supervised learning Our work can be seen as an RL navigation
analogue of work on adversarial attacks on supervised learning systems for image classification
(Szegedy et al., 2013). For adversarial attacks on image classifiers, one considers a set of inputs that
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is larger than the original distribution, but where one would hope that systems perform just as well
on L∞ balls around inputs from the distribution. In particular, the adversarial examples lie outside
the training distribution. Analogously, we consider a set of mazes which is larger than the original
set of mazes used during training, but where we would hope our system will work just as well.

Notably, while similar on a conceptual level, our setting has two key differences from this previous
line of work: (1) The attack vector consists of changing latent semantic features of the environment
(i.e. the wall structure of a maze), rather than changing individual pixels in an input image in
an unconstrained manner. (2) The failure is realized over multiple steps of agent and environment
interacting with each other, rather than simply being errant output from a single forward pass through
a neural net.

More recently, in the context of supervised learning for image classification, there has been work
to find constrained adversarial attacks which is closer to what we consider in this work (Athalye &
Sutskever, 2017; Fawzi & Frossard, 2015; Eykholt et al., 2018; Sharif et al., 2016).

In the context of interpretable adversarial examples in image classification, similar approaches to
our simplification approach have been explored where one searches for adversarial perturbations
with group-sparse structure or other minimal structure (Xu et al., 2018; Brendel et al., 2018). Ad-
ditionally, our findings regarding transfer are consistent with findings on adversarial examples for
computer vision networks where it has been found that perturbations that are adversarial for one
network often transfer across other networks (Szegedy et al., 2013; Tramèr et al., 2017)

Input attacks on RL systems There have been a number of previous works which have extended
adversarial attacks to RL settings, however they have achieved this by manipulating inputs directly,
which effectively amounts to changing the environment renderer (Huang et al., 2017; Lin et al.,
2017a;b). While these are interesting from a security perspective, it is less clear what they tell us
about the generality of the strategy learned by the agent.

Generalization in RL systems Recently, it has been shown that simple agents trained on restricted
datasets fail to learn sufficiently general navigation strategies to improve goal retrieval times on held
out mazes (Dhiman et al., 2018). In comparison, our method is both automatic and able to find more
spectacular failures. Further, our findings highlight failures in exploration during navigation. This
is in contrast to this previous work which studied failures to exploit knowledge from previous goal
retrievals in the same episode.

In the context of testing generalization in RL, previous work has looked at statistical generalization
in RL (Zhang et al., 2018). Here we consider agents that already generalize in the statistical sense
and try to better characterize the ways in which they generalize beyond the average-case.

6 CONCLUSIONS AND FUTURE WORK

In this work, we have shown that despite the strong average-case performance often reported of RL
agents, worst-case analysis can uncover environment settings which agents have failed to generalize
to. Notably, we have found that not only do catastrophic failures exist, but also that simple catas-
trophic failures exist which we would hope agents would have generalized to, and that failures also
transfer between agents and architectures.

As agents are trained to perform increasingly complicated tasks in more sophisticated environments,
for example AirSim (Shah et al., 2017) and CARLA (Dosovitskiy et al., 2017), it is of interest
to understand their worst-case performance and modes of generalization. Further, in real world
applications such as self-driving cars, industrial control, and robotics, searching over environment
settings to investigate and address such behaviours is likely to be critical on the path to robust and
generalizable agents.

To conclude, while this work has focused mostly on evaluation and understanding, it is only a first
step towards the true goal of building more robust, general agents. Initial results we report indicate
that enriching the training distribution with settings leading to failure may need to be done at a large
scale if it is to work, which introduces significant challenges. While training robust agents is likely
an endeavour requiring significant effort, we believe it is important if agents are to carry out critical
tasks and on the path to finding more generally intelligent agents.
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APPENDIX A

A.1 AGENT TRAINING

In this section we describe how the agents used in this work were trained.

A.1.1 A2CV

The A2CV agents in this paper are trained as in (Espeholt et al., 2018), but with a few modifications.
We note that performance of the agents presented here is higher than that published in Espeholt et al.
(2018). The differences in our training procedure were as follows:

• We train the agents for 10 billion steps as opposed to 333 million steps as in Espeholt et al.
(2018).

• We use a simplified action set as in Hessel et al. (2018).

• We clip rewards to [−1, 1].

The main cause of higher performance seems to be the approximately 30x increase in the number
of training steps. Indeed, at 333 million steps, the agents trained here obtain a similar score to the
agents in Espeholt et al. (2018). After training, the agents all achieved average rewards between 310
and 320 corresponding to finding the goal on average between 31 and 32 times per episode.

A.1.2 MERLIN

The agent model was a simplified variant of the model presented in Wayne et al. (2018), origi-
nally built to reduce training time in multi-task training scenarios. Specifically, the stochastic latent
variable model was removed. This involved removing the prior network and directly producing a
deterministic state representation using the same multi-layer perceptron as the posterior network
in Wayne et al. (2018); however, instead of producing a Gaussian distribution and sampling, the
state representation was a deterministic transformation zt = f(et, ht−1,mt−1) as a function of the
recurrent controller state and the read vectors retrieved at the previous time step from the external
memory system. Additionally, the policy network was a purely feedforward multi-layer perceptron
with one hidden layer of 200 units and a tanh nonlinearity computing the multinomial action distri-
bution, also conditioned on the state representation zt, recurrent state ht, and memory reads mt at
the current time step: π(at|zt, ht,mt). The policy loss was the same as for the A2CV agent. After
training, the agents all achieved average rewards between 340 and 360 corresponding to finding the
goal on average between 34 and 36 times per episode.

A.2 ADVERSARIAL SEARCH PROCEDURE

A.2.1 COMPUTATIONAL REQUIREMENTS

As described in Figure 2, our search algorithm is ran using 10 candidate mazes per iteration, each
evaluated 30 times, across 20 iterations. This is a total of 6000 episodes for the entire search pro-
cedure, and all episodes within one iteration can be evaluated in parallel (i.e. 20 batches of 300
episodes). In our experiments with 30 evaluations per maze, the entire search procedure took 30
minutes to complete, and only 9 minutes on average to find an adversarial maze where the probabil-
ity of the agent finding the goal was below 50%. We also found reducing the number of evaluations
per maze from 30 to 10 produced similar results and led to a 3x reduction in resources.

Our search procedure took around 30 minutes using 200 parallel workers each requiring approxi-
mately 2 CPUs . In contrast, agents were trained using 150 parallel workers each also requiring
approximately 2 CPUs and taking 4 days.

A.2.2 ROBUSTNESS

In Figure 3 (Section 3.1), we report the average performance of 50 independent optimization runs
(i.e. 50 different initializations of our search algorithm). In 44/50 (88%) of these runs, our search
algorithm was able to find at least one adversarial maze where the agent’s probability of finding the
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goal was <50% (compared to 98% on the average maze). Furthermore, the 25th, 50th, and 75th
percentiles were as follows:

• p(reaching the goal): 0.031, 0.136, 0.279
• number of goals reached: 0.042, 0.136, 0.368

A.3 HUMAN EXPERIMENTS

To upper bound the intrinsic difficulty of the mazes found to be adversarial to agents, we conducted
experiments where three humans played on the same mazes. Each human played a single episode
on each of ten mazes. The humans played at the same resolution as agents, 96x72 pixels, to rule
out visual acuity as a confounding factor. On all mazes, all humans successfully found the goal in
the course of the episode. In fact, in most episodes, humans were able to find the goal in less than a
third of the episode.

Figure 8: Mazes used for human experiments. For each maze, the agent that performed best found
the goal less than 50% of the time. In contrast, humans always found the goal, usually within less
than a third of the episode. Note that humans played at the same resolution as agents, 96x72 pixels.

Figure 9: Trajectories taken by Human 3 on mazes leading to agent failure.
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Table 1: Human seconds-to-first-goal on agent failure mazes

Maze 1 2 3 4 5 6 7 8 9 10
Human 1 l3 14 27 15 18 47 41 37 24 16
Human 2 25 22 25 16 24 53 86 33 25 22
Human 3 64 14 16 18 17 52 17 33 22 42

A.4 TRANSFER

In this section we provide detailed results for our transfer experiments. In particular, we detail
transfer between all pairs among the 10 agents, five A2CV agents and five MERLIN agents trained
with different entropy costs and learning rates.

Figure 10: Pairwise transfer scores. Lower number indicates more transfer. ‘A’ corresponds to our
A2CV agent, and ‘M’ corresponds to MERLIN.
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