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ABSTRACT

Extracting the hidden structure of the external environment is an essential com-
ponent of intelligent agents and human learning. The real-world datasets that we
are interested in are often characterized by the locality: the change in the struc-
tural relationship between the data points depending on location in observation
space. The local learning approach extracts semantic representations for these
datasets by training the embedding model from scratch for each local neighbor-
hood, respectively. However, this approach is only limited to use with a simple
model, since the complex model, including deep neural networks, requires a mas-
sive amount of data and extended training time. In this study, we overcome this
trade-off based on the insight that the real-world dataset often shares some struc-
tural similarity between each neighborhood. We propose to utilize the embedding
model for the other local structure as a weak form of supervision. Our proposed
model, the Local VAE, generalize the Variational Autoencoder to have the dif-
ferent model parameters for each local subset and train these local parameters by
the gradient-based meta-learning. Our experimental results showed that the Local
VAE succeeded in learning the semantic representations for the dataset with local
structure, including the 3D Shapes Dataset, and generated high-quality images.

1 INTRODUCTION

Extracting the hidden structure of the external environment is essential for achieving intelligent
agents and modeling human learning (Kemp & Tenenbaum, 2008; Lake et al., 2015; Higgins et al.,
2017; Achille et al., 2018; Saxe et al., 2019). Human beings and/or animals can effectively learn
internal representations from a few amounts of experiences. Various methods of nonlinear feature
extraction (Maaten & Hinton, 2008; McInnes et al., 2018) are recently proposed to model the com-
plex environment. In addition, thanks to the developments of deep generative models (Kingma &
Welling, 2013; Rezende et al., 2014; Goodfellow et al., 2014; Rezende & Mohamed, 2015), we can
now handle the high-dimensional dataset on many individual problems.

Although recent studies succeeded in modeling the dataset for the specific problems, there are still
challenging properties in real-world. The datasets that we are interested in are often characterized
by the locality: the change in the structural relationship between the data points depending on lo-
cation in observation space. For instance, a sequence of experiences gradually changes according
to multiple aspects, including time, space, and modality; we need to identify each individual during
the development of their faces consistently. Besides, the human-made objects often have multiple
color options for the same shape or size. Many studies have incorporated locality for dimensionality
reduction and representational learning (Kambhatla & Leen, 1997; Roweis & Saul, 2000; Tenen-
baum et al., 2000). For example, combining the local learning approach with classical unsupervised
learning algorithms such as PCA significantly improves their model capacity. These studies aim to
find mappings between the data and the coordinate space under the assumption that the data space
is composed of multiple low-dimensional subspaces (Brand, 2003; Vincent & Bengio, 2003). We
refer this approach to as local learning. They usually use a linear projection for embedding models
and a `2 distance in the input space for a neighborhood construction. In general, we can arbitrarily
choose the distance for the neighbor graph, and it affects the quality of the embeddings.
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Figure 1: Schematic diagrams of localized generations.

Incorporating the local learning approaches into the training of the deep generative models will give
us a new model that has both the capacity for high-dimensional inputs and flexibility for locally
changing environments at the same time. However, the integration of these two paradigms is not
trivial. The conventional local learning approaches train the different embedding model for each
neighborhood from scratch, nevertheless the deep neural networks generally require a large amount
of data and take a long training time (LeCun et al., 2015). In other words, local learning approaches
learn internal representations for each neighborhood by using only relatively simple models, whereas
deep generative models learn one complex representation as a whole with deep neural networks.

To overcome this trade-off, the structural similarity between each neighborhood is the key. In the
case of the human face, although each face varies greatly depending on age, gender, and etc., there
are common facial expressions (Ekman & Keltner, 1997). It is reasonable to expect that each local
subspace of the dataset shares some structure since most dataset tends to be governed by the consis-
tent rules of the physical world (Achille et al., 2018). Under the assumptions about the locality and
structural similarity, a dataset has two scales of structures: the local structure inside some neighbor-
hood and the global relationship between each neighborhood. Figure 1a visualizes these two scales
inside the dataset.

When a dataset has structural similarity, meta-learning is an effective approach. Meta-learning is an
algorithm to learn the rules for each task quickly for a dataset consisting of multiple tasks (Schmid-
huber, 1987; Bengio et al., 1992; Andrychowicz et al., 2016; Ravi & Larochelle, 2017; Finn et al.,
2017). In this study, by considering each local neighborhood as a task for meta-learning, we extract
the transferable knowledge between each local structure. We propose to train the meta embedding
model, which parameters capture the common local structure and quickly adapt to each subspace by
utilizing the structural similarity.

We generalize the typical deep generative model called the Variational Autoencoder (VAE) (Kingma
& Welling, 2013; Rezende et al., 2014) to be applicable to the dataset with local structure. We
extend the graphical model of the VAE to have different model parameters for each local subset of
the dataset (Figure 1b) while keeping to avoid a large amount of computation by using the gradient-
based meta-learning (Finn et al., 2017; Grant et al., 2018). By treating the neighborhood of each
data point as a task to adopt the meta-learning, we make our proposed Local VAE possible to learn
similar structures between neighbors quickly. We evaluate the performance of our proposed model
with the 3D Shapes Dataset (Burgess & Kim, 2018) and the concatenated dataset of the Cars3D
(Reed et al., 2014) and SmallNORB (LeCun et al., 2004). The numerical experiments shows that
the locality enables the model to achieve the disentangled representation for each subspace without
any label information.

2 BACKGROUND

2.1 VARIATIONAL AUTOENCODER

First, we introduce the VAE (Kingma & Welling, 2013; Rezende et al., 2014), which is one of the
deep generative models that have been studied extensively in recent years. The objective function
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of the VAE is defined as the variational lower bound of the log-likelihood (referred as the evidence
lower bound, ELBO) for the dataset. Given dataset D = {x(i)}Ni=1, ELBO is defined as follows for
each x(i);

log pθ(x
(i)) ≥ Eqφ(z|x(i))

[
log pθ(x

(i)|z)
]
−DKL

(
qφ(z|x(i))

∥∥∥∥pθ(z)) = −L(θ,φ;x(i)), (1)

where pθ(x(i)|z) is the conditional likelihood referred to as the decoder, and qφ(z|x(i)) is the
variational posterior distribution referred to as the encoder. The choice of the prior pθ is typically
the standard normal, and the posterior distribution is also variationally approximated by a Gaussian.
This parametric formulation of qφ is called the reparameterization trick and enables the evaluation
of the gradient of the objective function with respect to the network parameters. Overall, we can
train the decoder and the encoder networks by taking the minimum of the negative ELBO using the
gradient descent method.

2.2 MODEL-AGNOSTIC META-LEARNING

Then, to incorporate the local learning approach into the VAE, we utilize the Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017), which is a gradient-based meta-learning algorithm. The goal
of MAML is to find task-independent knowledge from a number of previous related tasks. Once the
meta-learner learns the task-independent knowledge, it can quickly adapt to a new task using only a
few data points and training iterations. For connection to the deep generative models, we introduce
the setting based on the maximum likelihood estimation described in Grant et al. (2018) instead of
the original MAML formulation. In the setting of MAML, each data point is assumed to be sampled
from the task-specific distribution x(i1), . . . ,x(iK) ∼ pTi

(x). The MAML objective function in a
maximum likelihood setting is

L(θ) = 1

N

∑
i

[
1

K

∑
m

− log p
(
x(iK+m) | θ − α∇θ

1

K

∑
n

− log p(x(in)|θ)︸ ︷︷ ︸
θ′
Ti

)]
, (2)

where θ′Ti
is the task-specific parameters after a single batch update by gradient descent from θ.

The meta-learner can achieve the parameter θ, which can quickly adapt to new tasks with a small
amount of data by optimizing Equation 2 using the gradient method. We note that θ can be inter-
preted as the parameters of the prior distribution for the task-specific parameters θTi

. By replac-
ing the expectation w.r.t. the original posterior distribution by the maximum likelihood estimate∫
f(θT )p(θT |θ)dθT ' f(θ′T ), the abovementioned objective function (Equation 2) recovers.

3 LOCAL VARIATIONAL AUTOENCODER

In this section, we will present the Local VAE, a variant of the VAE suitable for representation
learning of a dataset with local structure.

Here, we extend the objective function of the VAE (Equation 1) to have different parameters for each
local subset. We consider the variational lower bound of the log-likelihood for the dataset D, just
as with the Vanilla VAE. However, we define the different model parameters θN(x(i)) and φN(x(i))

for each neighborhood N(x(i)) of the i-th data, respectively. Since these parameters are often high-
dimensional and require a long time and a large amount of data for training, we give meta parameters
θ and φ as prior distributions of these local parameters. The overall model performs the probabilis-
tic inference through the conditional distribution from the meta parameters. The variational lower
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bound for the log-likelihood can be calculated as follows:

log pθ(x
(i)) = log

∫
p(x(i)|z,θN(x(i)))p(z)p(θN(x(i))|θ)dzdθN(x(i)) (3)

≥
∫
q(z|x(i),φN(x(i)))q(φN(x(i))|φ)×

log
p(x(i)|z,θN(x(i)))p(z)p(θN(x(i))|θ)
q(z|x(i),φN(x(i)))q(φN(x(i))|φ)

dzdθN(x(i))dφN(x(i)) (4)

=Eq(z|x(i),φ
N(x(i))

)q(φ
N(x(i))

|φ)

[
log p(x(i)|z,θN(x(i)))p(θN(x(i))|θ)

]
−DKL

(
q(z|x(i),φN(x(i)))q(φN(x(i))|φ)‖p(z)

)
, (5)

where p(θN(x(i))|θ) and q(φN(x(i))|φ) are the conditional distribution of the local parameters. We
note that the integral variables of the expectation and the Kullback-Leibler divergence in Equation 5
are z, θN(x(i)) and φN(x(i)).

As we mentioned above, the integral variables of Equation 5 include θN(x(i)) and φN(x(i)). This
means that Equation 5 needs to take an integral of the model parameters to evaluate the objective
function, while the one of Vanilla VAE only requires the Monte Carlo expectation of z. Such an inte-
gral is unreasonable in deep generative models where model parameters are often high-dimensional.
To overcome this problem, we replace this integral with the maximum likelihood estimator updated
by the one-step gradient method, as we described in Section 2.2. Let L(θ,φ;x(i)) be the negative
of the expression obtained by Equation 5. By replacing the integral of θN(x(i)) and φN(x(i)) with
the maximum likelihood estimator θ′N(x(i)) and φ′

N(x(i)), we obtain

L(θ,φ;x(i)) '− Eq(z|x(i),φ′
N(x(i))

)

[
log p(x(i)|z,θ′N(x(i)))

]
+DKL

(
q(z|x(i),φ′

N(x(i)))

∥∥∥∥pθ(z))
=Lg(θ

′
N(x(i)),φ

′
N(x(i));x

(i)). (6)

We note that the integral variable of Equation 6 is now only z. The maximum likelihood estimator
of the local parameters can be obtained by the following update rule:

θ′N(x(i)) =θ − α∇θ
1

K

∑
x∈N(x(i))

L(θ,φ;x), (7)

φ′
N(x(i)) =φ− α∇φ

1

K

∑
x∈N(x(i))

L(θ,φ;x), (8)

where K is the number of neighborhoods for x(i). L(θ,φ;x) in the above equations is the ELBO
of Vanilla VAE defined in Equation 1. Algorithm 1 shows the overall algorithm.

From the perspective of the graphical model, our proposed Local VAE algorithm corresponds to the
assumption that the dataset approximately lies on multiple subsets and that each subset is generated
from different parameters. Alternatively, from the viewpoint of meta-learning, our objective function
is consistent with the case of training VAE by MAML when task information is given as a neighbor
graph. We can also give the relationship of our model to the conventional local learning approach.
Please see Appendix A for the detail.

3.1 NEIGHBORHOOD CONSTRUCTION

As we mentioned above, local learning approaches have to construct a neighbor graph before training
the model. The conventional approaches often use the k-nearest neighbor graph build on the original
data space. In general, we can make arbitrarily choice how to construct the neighborhood, and it
affects the quality of the embeddings. We evaluated two types of neighborhood in the following
experiments: synthetic neighborhood by sampling and k-nearest neighborhood on latent space.
In the synthetic neighborhood by sampling, we sampled K different examples for each x(i) from
the noise distribution assumed as the observation process of the data and used these examples as
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Algorithm 1 Optimization of Local VAEs

1: while until converge do
2: for x(i) in mini-batch B do
3: Sample K-points from the neighborhood of x(i): x(1), . . . ,x(K) ∼ N(x(i)).
4: Evaluate the local objective L(θ,φ;x) for the K-neighborhood w.r.t. the meta param-

eters based on Equation 1.
5: Update the local parameters:

θN(x(i)) ← θ − α∇θ
1
K

∑
x∈N(x(i)) L(θ,φ;x),

φN(x(i)) ← φ− α∇φ
1
K

∑
x∈N(x(i)) L(θ,φ;x).

6: Evaluate the global objective Lg(θN(x(i)),φN(x(i));x
(i)) for i-th data w.r.t. the local

parameters based on Equation 6.
7: end for
8: Update the meta parameters:

θ ← θ − η∇θ
1
|B|
∑

i∈B Lg(θN(x(i)),φN(x(i));x
(i)),

φ← φ− η∇φ
1
|B|
∑

i∈B Lg(θN(x(i)),φN(x(i));x
(i)).

9: end while

the neighborhood of x(i). We considered that this method is effective when the data is densely
distributed in the observation space and used this method for 3D Shapes Dataset to omitting the
time to construct the neighbor graph for the large dataset. On the other hand, in the k-nearest
neighborhood on latent space, we used the k-nearest neighbor graph builds on the latent space of
the VAE. We can expect that we can obtain a neighborhood that follows our intuition by using the
distance on latent space rather than the input space (Caron et al., 2019). In the experiment on the
CarsNORB Dataset, which we will describe later, we used Faiss (Johnson et al., 2017) for similarity
search and continuously updated the latent code for each iteration during the training phase.

4 RELATED WORKS

In this study, we employed the gradient-based meta-learning method MAML (Finn et al., 2017) and
its probabilistic formulation (Grant et al., 2018) to find local parameters from a few data points.
Recently, several studies (Hsu et al., 2019; Metz et al., 2019) proposed the integration of unsuper-
vised learning and meta-learning from another perspective. Hsu et al. (2019) proposed the algorithm
for generating MAML task information by utilizing embedded similarity information created with
unsupervised learning. In contrast to this case of using unsupervised learning for meta-learning, we
used meta-learning to perform unsupervised learning. In addition, Metz et al. (2019) proposed a
way to seek the objective function itself for representation learning with meta-learning.

The local learning approaches, including LLE (Roweis & Saul, 2000) and Isomap (Tenenbaum et al.,
2000), are deeply related to our work. We discuss the relationship between LLE and our work in
Appendix A in detail. Besides, the extension of generative models to make them applicable for
structured datasets has recently been extensively studied. The generalization of the latent space of
the VAE to a non-Euclidean space such as a spherical surface (Davidson et al., 2018), hyperbolic
space (Ovinnikov, 2019; Nagano et al., 2019; Mathieu et al., 2019), or discrete space (Jang et al.,
2017; Rolfe, 2017) was proposed.

The property of disentanglement has attracted notable attention in structure extraction using VAEs
as described above (Higgins et al., 2017; Burgess et al., 2017; Kim & Mnih, 2018; Chen et al.,
2018; Kumar et al., 2018; Locatello et al., 2019). Most of the proposed models try to realize dis-
entanglement representation by modifying the penalty term of the objective function or network
architectures. On the other hand, our approach focuses on how to learn parameters suitable for dis-
entangled (local) representations so that we can utilize both these aforementioned techniques and
our proposed method at the same time.

From the viewpoint of generating data by a deep generative model with some supervision, condi-
tional generation is commonly practiced (Kingma et al., 2014; Sohn et al., 2015; Mirza & Osindero,
2014). Our method is similar to these approaches in that the density function is conditioned on the
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(a) α = 0 (Vanilla) (b) α = 1e−3 (c) α = 1

Figure 2: Qualitative evaluation of the randomly-selected conditional prior samples.

neighborhood of the specific data point. While conventional conditional generation generates data
by only one model parameter with the known class label as an additional latent code, our proposed
model has different network parameters for each neighborhood. Moreover, our approach is more
applicable than conventional methods since our approach does not need any class label information.

5 NUMERICAL EVALUATIONS

5.1 3D SHAPES DATASET

Here, we numerically evaluate the performance of the Local VAE. We use the 3D Shapes Dataset
(Burgess & Kim, 2018), which has a clear disentangled property. The disentangled property can be
interpreted as the simplest case of the local structure. The disentangled dataset is assumed to be able
to control by a small number of factors. Since these factors alter the observation in data space, and
the scale of them is different one by one, we can interpret the factors which significantly affect the
observation as the global features and other factors as the local features.

We followed all the experimental settings in Locatello et al. (2019), except the batch size and the
number of tasks, to eliminate effects outside the proposed method as much as possible. Please see
Appendix B for the detail. We qualitatively assess the generated images and quantitatively evaluate
the model performance by using the disentanglement metric (DCI scores) proposed by Eastwood &
Williams (2018) and the Fréchet Inception Distance (FID) (Heusel et al., 2017).

Figure 2 shows the conditionally generated images of the trained models. At the inference phase,
the model obtains the local parameters θN(x(i)) by applying one-step gradient descent using the
randomly selected training data and generates images from these local parameters. We trained mul-
tiple models with different values of α, which is the hyperparameter of Local VAEs. Note that the
original objective function of Vanilla VAEs recovers in the case of α = 0 since the local parameters
are strictly consistent with the meta parameters. According to the subjective assessment, the quality
of generated images is better when α is large.

There could be a concern that overfitting caused the result above. If the model obtains local param-
eters that perfectly generate only the training sample to be referenced, the quality of the generated
image will be superficially high. To exclude this possibility, we visualized the reference samples and
their corresponding generated images of the model with α = 1 in Figure 3. The leftmost column
shows the reference training samples used for the conditional localized generations. Each row visu-
alizes the generated images conditioned on the reference sample in the left column. We randomly
picked ten latent codes z1, . . . ,z10 from the prior distribution, and then used these codes for every
conditional generation. In other words, the images shown in the same column share their latent
code. According to the figure, the trained model generated clearly different images in the same row
conditioned on one training sample. This result strongly suggests that the Local VAE model did
not overfit to the specific data. Moreover, the shape, angle, and size of the object were the same,
and only the color was different in each column. These results suggest that the model trained by
the proposed method segregated color information as global features and other information as local
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Figure 3: The reference training samples and their corresponding generated images of the Local
VAE with α =1. The leftmost column shows the reference training samples. Each row visualizes
the generated images conditioned on the reference sample. The images shown in the same column
share their latent code. The trained model extracted the color information as the global features and
other information as the local features.

features, and obtained an internal representation independent of the global features. Note that Local
VAEs only use neighborhood relationships and do not use any label information.

Then, we qualitatively evaluated the latent representations of Local VAEs by using the DCI scores
(Eastwood & Williams, 2018). The DCI scores quantify the learned representations based on three
types of aspects: Disentanglement, Compactness, and Informativeness. All metrics can be computed
from the importance of each dimension of the latent space for predicting a factor of variation. DCI
scores require the label information of the ground truth. Since the Local VAE clearly extracted the
color information as the global feature, we calculated DCI scores for the two types of conditions:
the class labels including all six aspects (w/ Color condition), and the class labels excluding color
information (w/o Color condition).

Table 1 shows the empirical evaluations of the DCI scores. DCI scores with six labels (w/ Color
condition) of the Local VAE were slightly better than the one for the Vanilla VAE. The model with
small α, which is the value closer to the Vanilla VAE, tended to achieve better scores for all DCI
metrics in the Local VAE comparison. This result is attributed to the loss of color information from
the internal representation as α increases. On the other hand, the Local VAEs significantly improved
the DCI scores in the condition without color. All DCI metrics took their maximum value at α = 1.
The performance was slightly degraded at α = 1e1, and the loss diverged during training at α =
1e2. The numerical evaluation suggests that α can control how much of the structure behind the
entire dataset is considered as global variation and from where it is regarded as a local variation.
We also evaluated the performance of the β-VAE (Higgins et al., 2017) as a reference. The β-VAE
modifies the KL term (Equation 1) by multiplying non-zero coefficient β. Although the β-VAE with
β = 8 or β = 16 achieved higher scores than the Local VAE in the condition with color, the Local
VAE with α = 1 significantly outperformed all the β-VAE in the condition without color.

We also evaluated the quality of the generated images with the Fréchet Inception Distance (FID)
(Heusel et al., 2017). FID is a metric that evaluates the similarity of quality between real and
generated images. We used the 50,000 samples of the ground truth dataset and generated images for
FID calculation. According to Table 1, FID tended to be low at the large α and took the minimum
value at α = 1. This result was consistent with the DCI scores of the condition without color. Since
the method to calculate neighborhood is arbitrary, we also compared the synthetic neighborhood
with a widely used approach. Please see Appendix D for the detail.
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Table 1: Quantitative evaluations of the Local VAE on the 3D Shapes dataset. Highlighted cells
indicate the model with the highest performance in the comparison of Local VAEs. Bold numbers
indicate absolute best results.

DCI w/ Color DCI w/o Color
FIDDisent. Compl. Inform. Disent. Compl. Inform.

L
oc

al
VA

E

α = 0 (Vanilla) 0.246 0.204 0.703 0.150 0.096 0.547 134.786
α = 1e−3 0.491 0.407 0.814 0.390 0.305 0.686 107.636
α = 1e−2 0.449 0.385 0.797 0.173 0.132 0.635 123.288
α = 1e−1 0.457 0.432 0.626 0.945 0.796 0.996 49.364
α = 1 0.424 0.406 0.594 0.977 0.800 0.999 43.194
α = 1e1 0.393 0.370 0.587 0.871 0.733 0.998 59.555

β
-V

A
E

β = 2 0.367 0.292 0.776 0.222 0.215 0.630 96.279
β = 4 0.588 0.499 0.906 0.384 0.337 0.817 96.612
β = 8 0.636 0.584 0.967 0.601 0.547 0.936 86.856
β = 16 0.649 0.580 0.941 0.690 0.473 0.883 86.237

5.2 CONCATENATED DATASET OF THE CARS3D AND SMALLNORB

Finally, we evaluated our proposed model on the dataset, which explicitly has the locality. In this
section, we concatenated two datasets: the Cars3D Dataset (Reed et al., 2014) and the SmallNORB
Dataset (LeCun et al., 2004). These datasets are both set of images of 3D objects. Each dataset
has three (elevation, azimuth, and object type) and four (elevation, azimuth, category, and lighting
condition) disentanglement factors, respectively. The elevation and azimuth are the global control
factors common to the entire dataset, and the others are the sub-dataset specific factors. Each image
has no information about which sub-dataset it comes from. We refer to this dataset as the CarsNORB
Dataset in the following. Note that learning this entire dataset is more challenging than learning each
sub-dataset respectively since these two sub-datasets have different structures.

Table 2 shows the empirical evaluation on the CarsNORB Dataset. The hyperparameters follow the
same setting as the experiment on the 3D Shapes Dataset. We calculated the DCI Disentanglement
score for each sub-dataset. According to the table, the Disentanglement score of the Vanilla VAE
was remarkably low for the Cars3D Dataset. We believe this result comes from the difference in
statistics that the Cars3D Dataset (N = 17, 568) has fewer samples than the SmallNORB Dataset
(N = 48, 600) and has a more complicated structure, including colors. The Disentanglement scores
took maximum at α = 1e−2 for both sub-datasets. This result indicates that the locality enables the
model to achieve the disentangled representation for each subspace without any label information.

Table 2: Quantitative evaluations of the Local VAE on the CarsNORB Dataset.

α = 0 (Vanilla) α = 1e−2 α = 1e−1 α = 1

NORB Disentanglement 0.265 0.282 0.264 0.255
Cars Disentanglement 0.079 0.165 0.111 0.080

6 CONCLUSION

In this study, we proposed the Local VAE, a deep generative model suitable for datasets with local
structure. Since conventional local learning approaches learn the embeddings at each neighborhood
from scratch, integrating these approaches with deep neural networks, which require a massive
amount of data and extended training time, was not reasonable. To overcome this trade-off, we
performed gradient-based meta-learning, called MAML, with the supervision of past experiences
outside the neighborhood. We evaluated our proposed model with the 3D Shapes dataset and the
the concatenated dataset of the Cars3D and SmallNORB, which are one of the most straightforward
datasets comprising disentangled local structures. Our experimental results showed that the learned
representations of the Local VAE were more disentangled than that of the Vanilla VAE in terms of
DCI scores. Moreover, the Local VAE improved the quality of the generated images compared with
the Vanilla VAE according to subjective evaluation and FID scores.
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Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017.

Nandakishore Kambhatla and Todd K. Leen. Dimension reduction by local principal component
analysis. Neural Computation, 9(7):1493–1516, 1997. doi: 10.1162/neco.1997.9.7.1493.

Charles Kemp and Joshua B. Tenenbaum. The discovery of structural form. Proceedings of the
National Academy of Sciences, 105(31):10687–10692, 2008. ISSN 0027-8424. doi: 10.1073/
pnas.0802631105.

Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on
Machine Learning, pp. 2654–2663, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings of the 2nd
International Conference on Learning Representations, 2013.

Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Advances in neural information processing systems, pp.
3581–3589, 2014.

Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational inference of disen-
tangled latent concepts from unlabeled observations. In International Conference on Learning
Representations, 2018.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Yann LeCun, Fu Jie Huang, Leon Bottou, et al. Learning methods for generic object recognition
with invariance to pose and lighting. In Computer Vision and Pattern Recognition, 2004, pp.
97–104. Citeseer, 2004.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436, 2015.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging common assumptions in the unsupervised learning
of disentangled representations. In Proceedings of the 36th International Conference on Machine
Learning, volume 97, pp. 4114–4124. PMLR, 2019.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(Nov):2579–2605, 2008.

Emile Mathieu, Charline Le Lan, Chris J. Maddison, Ryota Tomioka, and Yee Whye Teh. Hierar-
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A RELATIONSHIP BETWEEN THE LOCAL VAE AND A CONVENTIONAL
LOCAL LEARNING

In this section, we discuss that the Local VAE can be interpreted as the variant of the conventional
local learning approaches. We introduce Local Linear Embedding (LLE) (Roweis & Saul, 2000) as
a typical local learning algorithm. The LLE extracts low-dimensional neighborhood-preserving em-
beddings based on the precomputed neighbor graph. This method assumes that the dataset consists
of a combination of locally linear spaces, and applies a linear projection to each neighborhood. For
the dataset D = {x(i)}Ni=1, the objective function of LLE is defined as

L(W ) =
∑
i

∥∥∥∥x(i) −
∑
j

Wijx
(j)

∥∥∥∥2, (9)

where parameter W is an N ×N matrix. The element Wij of W is nonzero only when x(j) belongs
to the set of neighbors of x(i), and

∑
j Wij = 0. The neighbor graph of x(i) is built by using the

k-nearest neighbor method. Since Equation 9 is known not to have local minima, we can derive the
solution of Equation 9 by basic matrix calculation. Once the model parameter W is derived, we can
obtain the low-dimensional embeddings z(1), z(2), . . . ,z(N) of each data by minimizing the loss∑

i ‖z(i) −
∑

j Wijz
(j)‖2 with respect to z.

Here, we consider extending the embedding model of LLE from a linear projection to a gen-
eral nonlinear model. The embedding model of x(i) corresponds to

∑
j Wijx

(j) in Equation 9.
In other words, if we denote the index of the x(i)’s neighborhood as j1, . . . , jK , the model pa-
rameters of the neighborhood are [Wij1 ,Wij2 , . . . ,WijK ]. In the following, we generalize these
[Wij1 ,Wij2 , . . . ,WijK ] as parameter θN(x(i)) for the set of neighborhoods N(x(i)). Then, the
aforementioned objective function is given by the following:

L
(
θN(x(1)), . . . ,θN(x(N))

)
=
∑
i

∥∥∥∥x(i) − gθ
N(x(i))

(
N(x(i))

)∥∥∥∥2. (10)

Unlike Equation 9, there are no restrictions on the number of parameters or formulation, so opti-
mization of the above equation is generally challenging. Notably, in the case of gθ

N(x(i))
(·) being

a deep neural network, a massive amount of data and extended training time are required for each
i-th neighborhood N(x(i)).

We can interpret Equation 10 as the general formulation of the Local VAE with the Gaussian De-
coder. Consider taking only x(i) itself instead of a set of neighborhoods N(x(i)) of x(i) as input to
the function gθ

N(x(i))
(·) in Equation 10. If we take the model parameters as θN(x(i)) and φN(x(i))

and use Autoencoder for the model g(·), Equation 10 corresponds to the objective function of the
Local VAE with the Gaussian Decoder.

B EXPERIMENTAL CONDITIONS AND HYPERPARAMETERS

In this section, we show the experimental conditions and hyperparameters which are used for all the
numerical experiments in the main text. Table 3 shows the Encoder and the Decoder architectures
of the VAE. We used the multivariate isotropic Gaussian for the latent variable. The outputs of
the Encoder correspond to µ and logσ of the variational poseterior distribution q(z|x). Table 4
shows the hyperparameters for the model and the training procedure. In addition to the parameters
shown in the table, we used the gradient boosted trees from Scikit-learn with the default setting for
computing the DCI scores. We also used the Inception-v3 network from Keras, which is pre-trained
on the ImageNet dataset to compute the FID.
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Table 3: Network architecture for the numerical experiments.

Encoder Decoder

Input: 64× 64× 3 Input: R10

4× 4 conv, 32 ReLU, stride 2 FC, 256 ReLU
4× 4 conv, 32 ReLU, stride 2 FC, 4× 4× 64 ReLU
4× 4 conv, 64 ReLU, stride 2 4× 4 upconv, 64 ReLU, stride 2
4× 4 conv, 64 ReLU, stride 2 4× 4 upconv, 32 ReLU, stride 2
FC 256, F2 2× 10 4× 4 upconv, 32 ReLU, stride 2

4× 4 upconv, 3, stride 2

Table 4: The hyperparameters which are used for the numerical experiments.

Parameter Value

Batch size (corresponds to the number of tasks) 25
Inner batch size (corresponds to K) 10
Latent space dimension 10
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e−8
Adam: learning rate 1e−4
Decoder type Bernoulli
Training steps 300,000

C LATENT INTERPOLATION

Figure 4: Interpolation of Local VAE’s latent space. Each i-th row corresponds to the reconstructed
image with the latent code zi modified in the range of [−2, 2].

Figure 4 shows the learned latent space of the Local VAE model. We swept each latent dimension
for the specific training sample in the range of [−2, 2]. The model extracted the angle, shape, and
size of the object as the disentangled factors. The color of the reconstructed images was not changed
against the latent space interpolation. We believe that this is because the model extracted the color
information as a global feature.

D COMPARISON OF k-NEIGHBOR CONSTRUCTION METHODS

As mentioned in the main text, we can arbitrarily choose the distance for neighborhood construction
in Local VAE. We evaluated two types of methods: synthetic neighborhood by sampling and k-
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nearest neighborhood on latent space. Among them, although the synthetic neighborhood has the
advantage that it is simple to implement and fast to compute, `2 distance on input space is widely
used in general. In this section, we compare the performance of the synthetic neighborhood to the
`2 distance on input space.

Table 5 shows the comparison of the methods to compute neighborhood. We used the 3D Shapes
Dataset and set the hyperparameter as α = 1. Both methods outperformed Vanilla VAE, and they
achieved comparable scores with each other. We note that the synthetic neighborhood by sampling
achieved slightly better performance than the `2 distance on input space in this experiment. This
result suggests that there is an appropriate distance for each dataset, which is not necessarily the `2
distance on input space. Choosing the appropriate distance will improve the quality of the learned
representations and generated images in practical use.

Table 5: Quantitative comparison of the neighborhood construction on the 3D Shapes dataset.

DCI w/ Color DCI w/o Color
FIDDisent. Compl. Inform. Disent. Compl. Inform.

Sampling 0.424 0.406 0.594 0.977 0.800 0.999 43.194
`2 on input space 0.397 0.342 0.582 0.676 0.520 0.813 49.187

Vanilla VAE 0.246 0.204 0.703 0.150 0.096 0.547 134.786
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