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Abstract

Recent studies have revealed that ConvNets are sensitive to small perturbations in1

the input. This can cause fatal consequences in smart cars because of instability of2

the road understanding module. In this paper, we propose an objective function3

regularized by the local Lipschitz constant and train a layer for restoring images.4

Our experiments on the GTSRB and the Caltech-Pedestrian datasets show that our5

modular approach not only increases the accuracy of the classification ConvNets on6

the clean datasets but it also increases the stability of the ConvNets against noise.7

Comparing our method with similar approaches shows that it produces more stable8

ConvNets while it is computationally similar or more efficient than these methods.9

1 Introduction10

Understanding road is crucial for autonomous cars. Lane segmentation, pedestrian detection, traffic11

sign recognition and car detection are some of the well known problems in this field. Convolutional12

Neural Networks (ConvNets) have been successfully applied on these problems. Cireşan et al. (2012)13

and Sermanet and Lecun (2011) proposed ConvNets that beat a human driver in classification of14

traffic signs. Aghdam et al. (2015) also proposed a more accurate ConvNet with fewer parameters.15

Similarly, Angelova et al. (2015) detected pedestrians using a cascade of ConvNets. Besides, Levi16

et al. (2015) and Bittel et al. (2015) have proposed ConvNets for segmenting lanes in an image.17

In real world applications, road understanding faces some practical challenges. For examples, if18

the weather is rainy or foggy, the camera mounted on the car may not acquire clean images. This19

may cause some artifacts on the image. In addition, based on the shutter speed, the image might be20

degraded by a motion if the car is being driven on an uneven route.21

Despite the impressive results obtained by ConvNets, Szegedy et al. (2014) showed that small22

perturbation of input images can alter their classification score. They study the reason by computing23

the upper bound of the Lipschitz constant for each layer. The results suggest that instability of24

ConvNets might be due to the fact that they are highly non-linear functions. Hence, a small change25

in the input may considerably change the output. Aghdam et al. (2016) empirically studied various26

ConvNets trained on different datasets. In this work, they generated 1200 noisy images for each27

sample in the test sets. The results showed that all the ConvNets in their experiments were unstable28

to image degradation even when the samples were degraded using the Gaussian noise with σ = 1.29

Similarly, Papernot et al. (2015) produced adversarial samples which were incorrectly classified by30

the ConvNet. They produced these samples by modifying 4.02% of the input features. Goodfellow31

et al. (2015) argued that the instability of ConvNets to adversarial examples is due to linear nature of32

ConvNets. Based on this idea, they proposed a method for quickly generating adversarial examples.33

They used these examples to reduce the test error.34

Gu and Rigazio (2014) stacked a denoising autoencoder (DAE) to their ConvNet and preprocessed35

the adversarial examples using the DAE before feeding them to the ConvNet. However, the resulting36
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network can be still attacked by new adversarial examples. Inspired by contractive autoencoders, they37

added a smoothness penalty to the objective function and trained a more stable network.38

Contribution: In this paper, we train channel-wise filters for restoring images. Our objective function39

tries to locally reduce the nonlinearity of the restoration module. To be more specific, we train a40

convolution layer with 3 filters to restore an image as accurate as possible but also it generates41

nearly identical outputs for all perturbations in small neighborhood of an image. Our experiments on42

pedestrian detection and traffic sign classification datasets show that this lightweight restoration layer43

is able to effectively tackle with noisy images in real-time compared with other methods.44

2 Proposed Method45

Denoting the softmax layer of a ConvNet (i.e. the last layer in a classification ConvNet) by Lθ(x),46

the general idea is to find a parameter vector θ such that:47

∀‖ν‖≤ε Lθ(x+ ν) = Lθ(x) (1)

where ν is a noise vector whose magnitude is less than T . Solving the instability of ConvNets against48

noise using the above formulation may require to add new terms to the loss function or generate49

thousands of noisy samples. Instead, we propose a modular approach consisting of two ConvNets.50

The first ConvNet is a denoising layer that we are going to mention in this section. The second51

ConvNet is the one that is originally trained on training samples. In our approach, we connect the52

denoising network to the classification network and feed the images to the denoising network. Our53

aim is to train a denoising ConvNet that is able to restore the original image as accurate as possible54

and it produces identical results for all the samples located within radius r from the current sample.55

Mathematically, we are looking for two sets of parameters θ1 and θ2 such that:56

∀‖ν‖≤T Lθ1(Fθ2(x+ ν)) = Lθ1(Fθ2(x)). (2)
where θ1 indicates the parameters of the classification ConvNet and θ2 denotes the parameters of the57

denoising ConvNet. The parameters θ1 is already available by training the classification ConvNet on58

the training samples. Then, our goal is to find a function F : Rn → Rn that is able to map all points59

around x ∈ Rn to the same point. If we can find such a function, the sample x and all its adversarial60

examples will be mapped to the same point. Then, the classification ConvNet will be able to produce61

the same output for all adversarial examples.62

In contrast to Jain and Seung (2009), we do not restrict F to the Gaussian noise. Furthermore,63

contrary to Burger et al. (2012) and Hradi (2015) that model F using 16M and 4.5Mparameters,64

our approaches requires determining only 75 parameters. From one perspective, F can be seen as65

an associative memory that is able to memorize patterns X = {x1 . . . xi . . .M}, xi ∈ RN in our66

dataset and map every sample {xi + ν|‖ν‖ ≤ ε} to xi. Here, xi is an image patch and X is the set of67

all possible image patches collected from all classes of objects in our dataset. Figure 1 illustrates68

our approach. Our approach can be considered as a layer which is later connected to the input of a69

classification layer and its aim is to reduce the effect of noise.70

The two layers shown in this figure have identical architectures and they share all their parameters.71

Furthermore, we need the two layers during the training phase and we will only use one of them in72

the test phase. The layer consists of 3 convolution filters of size 5× 5 which are separately applied73

on the red, green and blue channels of the noisy image. Also, the result of convolutions are passed74

through a ReLU activation function and they are concatenated in order to create the final image.75

It should be noted that the noise generation module in Figure 1 is only used during the training phase.76

In the test phase, the noise generation module is omitted. In this paper, we have only concentrated on77

additive noise. The noise generation module creates noisy patterns with various probability density78

functions. Five examples of the probability density functions have been shown in Figure 1.79

Given a set of clean image patches Xclean = {x1clean, . . . , xNclean} and their noisy versions Xnoisy =80

{x1noisy, . . . , xNnoisy}, restoration ConvNets are usually trained by minimizing the Euclidean loss81

function(Dong et al., 2014; Svoboda et al., 2016; Hradi, 2015; Burger et al., 2012):82

E =
1

N

N∑
i=1

‖xiclean −Fθ(xinoisy)‖2 + λ‖θ‖2 (3)

where θ is the set of network weights and biases and λ is the regularization coefficient. The objective83

of this function is to train a restoration ConvNet which is able to restore clean images from noisy84
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Figure 1: The proposed layer for modelling F in (2). C(s, k) shows a ReLU layer containing s filters
of size k × k. Probability density functions used for generating noise are shown in the left.

inputs as accurate as possible. However, we argue that training a ConvNet using the above loss85

function could be accurate if Xclean is clean in practice. But, this is not usually the case in datasets86

collected for road understanding problems.87

Figure 2: Unclean training samples with contradic-
tory patches (best viewed in color).

This is illustrated in Figure 2 on the samples88

from GTSRB (Stallkamp et al., 2012) dataset.89

The green rectangles show contradictory patches90

in each column. For example, the green patches91

related to the speed limit sign are pointing to92

the same pattern. However, one of these patches93

are degraded due to camera motion. In the sec-94

ond and third columns, shadow and excessive95

ambient light on the patches has caused the con-96

tradiction. In the last two columns, there are97

some irregularities due to camera noise. Xnoisy98

is usually generated from Xclean. However, because of the above reasons, it might not be practical to99

train the ConvNet using (3) due to contradictions in the database.100

To tackle with this problem, we propose to add a new term to the objective function encouraging the101

layer to learn a mapping in which ‖F(xclean) − F(xnoisy)‖ is less than ‖xclean − xnoisy‖. This102

is analogous to locally reducing the Lipschitz constant of the layer. Our final objective function is103

defined as follows:104

E =
1

N

N∑
i=1

[
w1‖xiclean −Fθ(xinoisy)‖2 + w2

‖F(xiclean)−F(xinoisy)‖
‖xclean − xnoisy‖

]
(4)

where N is the total number of the images. Also, F(xiclean) and F(xinoisy) are computed at the105

same time using the top and bottom layers in Figure 1, respectively. Moreover, the noisy patterns are106

generated on the fly. That said, the degradation module accepts a mini-batch of clean images and107

outputs their degraded version along with identity mapping data. This helps the network not only108

learn to restore noisy patches but also apply identity mapping on clean patches.109

One the one hand, our layer learns to restore images where intensity values is in interval [0, 1]. On110

the other, we initialize our filters close to averaging filters. Therefore, the output never becomes a111

negative number. Since our approach is only one layer consisting of convolution operators and ReLU112

functions, it is a linear operator which is applied on the input image. Formally, conditions f(kx) =113

kf(x) and f(x + y) = f(x) + f(y) hold in our approach. Taking into account one convolution114

kernel, F(xiclean) − F(xinoisy) can be simplified as Wxiclean −Wxinoisy = W (xiclean − xinoisy).115

Consequently, the second term in (4) is minimized by reducing ‖W‖. This is similar to regularizing116

the objective function with an adaptive weight analogous to the difference between clean and noisy117

samples. For this reason, we do not add other regularization terms to our objective function. In118

terms of Lipschitz constant, the second term reduces the slope of the hyperplane represented by each119

convolution kernel. Moreover, it helps to reduce the effect of contradictory patches.120
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3 Experiments121

We carry out our experiments on German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp122

et al., 2012) and Caltech-Pedestrian(Dollár et al., 2009) datasets. These datasets have some important123

characteristics. First, they have been collected considering real scenarios (e.g. shadow, lightening,124

occlusion, camera motion) and they contain many degraded images. Second, the imaging device125

are noisy and they produce artifacts on the acquired images. Third, the resolution of images are low.126

Therefore, a slight change in the image may affect the classification score.127

Note that we do not apply zero-padding in the training phase to avoid the impact of border effect on128

the loss function. Besides, the input is normalized to [0, 1]. All the weights in our layer are initialized129

using the normal distribution with mean value set to 1 and standard deviation set to 0.2. Taking into130

account the fact that each activation of the layer must be in interval [0, 1], the initial weights are131

divided by 25 in order to make the results of convolution kernels close to this interval. After we have132

the layer trained, zero-padding is applied on the input (the size of padding is 2 for each side).133

Exploratory analysis: To evaluate the restoration accuracy of our method, we generate 150 noisy134

images for each sample in the test set. Generating a noisy pattern is done in several steps. First,135

we randomly select the uniform or the normal distribution with probability 0.5. Then, a noisy136

pattern is generated with µ = 0 and σ = U(0.5, 15) if the normal random number generator137

is selected. In the case of uniform random number generator, the noisy pattern is generated in138

interval [−3U(0.5, 15), 3U(0.5, 15)]. Next, the noisy pattern is sparsified with probability 0.25. The139

sparsification is done by generating a binary mask using the binomial distribution with n = 1 and140

p = U(0.5, 1.0). It is worth mentioning that we set the seed of random number generators to an141

identical value for all methods. The noisy samples are fed into the layer and the peak signal to noise142

ratio of the restored image is computed using the following equation:143

psnr = 10 log10

(
2552

1
HW

∑H
m=i

∑W
n=j (x− x′)

2

)
. (5)

In the above equation, x is the clean image and x′ is the noisy/restored image (after re-scaling to144

[0, 255]). In addition, we also study how the Lipschitz constant of our layer changes locally. This is145

done by computing ‖F(xiclean)−F(xinoisy)‖ and ν = ‖xclean − xnoisy‖. To compare our results146

with other similar methods, we also restored the images using the bilateral(d=5 and σ1 = σ2 = 9),147

the median(5× 5) and Gaussian(5× 5) filtering approaches. Figure 3 illustrates the scatter plot of the148

PSNR study (left) and the Lipschitz study (right) superimposed with a polynomial fitted on the data.149

According to the results, both Gaussian and median filtering approaches are not able to restore image150

accurately. This is due to the fact that objects in the GTSRB and the Caltech-Pedestrian datasets are151

represented using low resolution images. On the one hand, details of objects are mainly determined152

using high frequency pixels. On the other hand, these pixels are close in the case of these low153

resolution images. As the result, Gaussian and median filtering approaches oversmooth the images154

which degrades the edges of objects. For this reason, PSNR of the filtered image is much lower than155

the PSNR of the noisy image. In contrast, bilateral filtering preserves the edges and this is the main156

reason that it has a higher PSNR compared with these two methods. Moreover, bilateral filtering157

restores image with higher PSNR when the PSNR of the noisy image is less than 35.158

The Lipschitz study shows that Gaussian and median filtering approaches produce close results159

regardless of the magnitude of noise. In contrary, images restored by bilateral filtering are scattered at160

a distance which is approximately similar to the distance of the noisy image from the clean image. We161

are looking for a filtering approach which is able to accurately restore images with smaller Lipschitz162

constant. Consequently, none of the three approaches are appropriate for our purpose.163

However, the filter learned by our approach has a trade off between accuracy and the Lipschitz164

constant. Looking at the PSNR values, we observe that, on average, it is more accurate than these165

three methods. Besides, its Lipschitz constant is approximately linear. More importantly, the Lipschitz166

constant of our filter is less than 1 which means that restored images become closer after being filtered167

by our layer. Finally, we observe that the Lipschitz constant is very stable with very low variation168

in our approach. This means that, the filter learned by our objective function is not sensitive to the169

variations of input image.170

We further analyze our filters in the frequency domain using the Fourier transform. Figure 4 illustrates171

the frequency response of our filters along with the Gaussian filter. First, our filters have higher172
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Figure 3: PSNR (left) and Lipschitz analysis (right) of the the Gaussian, median, bilateral and our
approaches (best viewed in color and electronically).

response to low frequencies than the Gaussian filter. For this reason, it passes some of the details in173

the image more than Gaussian filter. Second, they also have higher responses in very high frequencies.174

This helps our filters to preserve edges more than the Gaussian filter.

Figure 4: Comparing our filter with Gaussian filter in the frequency domain.
175

Quantitative analysis: We pick the ConvNet in Angelova et al. (2015) for detecting pedestrians176

and the ConvNet in Aghdam et al. (2015) for classification of traffic signs. We connect our learned177

restoration filters to these ConvNets and fine-tune them on the original dataset (we do not augment178

the dataset with noisy images). Then, the ConvNets are tested using noisy test sets. We repeat this179

procedure (fine tuning the ConvNets) on Gaussian, median and bilateral filtering as well.180

The noisy test sets are created by generating 1050 Guassian noise patterns with σ ∈181

{0.3, 1, 2, 3, 4, 8, 10} for each sample (150 images per each value of σ). Then, these noisy samples182

are fed to the above ConvNets (after connecting our layer to these ConvNets). To generate the same183

noisy samples for all methods in our experiment, we always seed the random number generator with a184

fixed value. Table 1 and Table 2 show the results on the GTSRB and the Caltech-Pedestrian datasets.185

We observe that adding a Guassian or median3x3 layer to the GTSRB ConvNet increases the186

classification accuracy of on clean images. This is due to the fact that some of the test samples might187

be noisy for the reasons we discussed in Section 2. The Gaussian layer reduces the effect of noise188
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accuracy (%) for different values of σ
network clean 0.3 1 2 3 4 8 10 overall
original 99.06 98.56 98.56 98.55 98.52 98.48 98.20 97.93 98.48
gaussian3x3 99.22 98.72 98.72 98.71 98.68 98.64 98.36 98.13 98.65
gaussian5x5 99.22 98.71 98.71 98.70 98.68 98.65 98.42 98.23 98.66
median3x3 99.15 98.66 98.66 98.65 98.63 98.60 98.38 98.19 98.62
median5x5 98.94 98.42 98.42 98.39 98.36 98.32 98.04 97.83 98.34
bilateral1 98.99 98.49 98.49 98.48 98.46 98.45 98.27 98.13 98.47
bilateral2 96.94 96.49 96.48 96.48 96.44 96.42 96.28 96.17 96.46
our filter 99.31 99.31 99.31 99.30 99.28 99.26 99.03 98.84 99.21

Table 1: Accuracy of the GTSRB ConvNet obtained by degrading the test images in the original
dataset using a Gaussian noise with various values of σ.

accuracy (%) for different values of σ
network clean 0.3 1 2 3 4 8 10 overall
original 92.39 91.97 91.97 91.97 91.95 91.92 91.67 91.49 91.92
gaussian3x3 92.36 91.89 91.89 91.87 91.85 91.80 91.61 91.48 91.84
gaussian5x5 92.01 91.52 91.52 91.49 91.46 91.43 91.23 91.12 91.47
median3x3 92.61 92.16 92.16 92.16 92.17 92.16 92.07 92.02 92.19
median5x5 92.18 91.67 91.67 91.66 91.64 91.61 91.46 91.34 91.65
bilateral1 92.74 92.27 92.26 92.25 92.25 92.22 92.13 92.03 92.27
bilateral2 92.27 91.82 91.82 91.83 91.82 91.81 91.83 91.84 91.88
our filter 92.86 92.84 92.83 92.81 92.78 92.76 92.56 92.46 92.74

Table 2: Accuracy of the Caltech-Pedestrian ConvNet obtained by degrading the test images in the
original dataset using a Gaussian noise with various values of σ.

and it increases the accuracy of the ConvNet. Similarly, median3x3 and bilateral1 filtering increases189

the accuracy of the Caltech-Pedestrian ConvNet on clean samples. However, while Gaussian filtering190

works well on the GTSRB dataset it does not increase the accuracy on the Caltech-Pedestrian dataset.191

Likewise, bilateral filtering improves the accuracy on the Caltech-Pedestrian dataset but they do not192

increase the accuracy on the GTSRB dataset. Notwithstanding, the filters learned by our method193

produce the most accurate results on both datasets. In addition, our layer produces a ConvNet with194

highest stability against noise compared with approaches with similar computational complexity.195

In fact, the computational complexity of our layer is identical to the Gaussian 5x5 and its less than196

bilateral and median filtering approaches.197

Analyzing results: Figure 5 illustrates some of the samples that are classified incorrectly by the198

original ConvNet but they are classified correctly after being smoothed by our method. The original199

image inside the green rectangle is degraded by shadow. Our layer filters the edges of the object and200

reduces the effect of shadow on the edges. The background of the image inside the red rectangle is201

smoothed by the layer. Edges in the original image inside the yellow rectangle has Bayer like pattern202

because of excessive lightening in the background. This effect is reduced by our filter. Finally, a203

general filtering is applied on the image inside the blue rectangle and makes it smoother. In sum, our204

method increases the accuracy by improving degraded edges and smoothing background noise.

Figure 5: Images that are correctly classified after being filtered by our layer. Left to right: Original
image, difference with restored, restored image and normalized difference.

205

4 Conclusion206

In this paper, we proposed a lightweight approach for increasing stability of ConvNets. Our method207

trains a ReLU layer containing 3 channel-wise filters. We proposed a new objective function208

consisting of the sum of square error penalized by the local Lipschitz constant of the filters. We209

showed that the Lipschitiz constant in this particular configuration act as an adaptive L2 regularizer.210

Our experiments on the GTSRB and the Caltech-Pedestrian datasets showed that this approach211

increases the accuracy of the original ConvNets on the clean test sets. In addition, the stability of212

ConvNets increased against noise. Besides, since it is a modular approach, we do not need to train213

a large ConvNet using thousands of noisy samples to increase the stability. Rather, we train the214

classification ConvNet on the clean dataset. Then, we train our restoration layer on the noisy training215

set. Finally, the classification ConvNet is fine-tune for one epoch using the clean training set.216
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