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ABSTRACT

Understanding the inductive bias of neural networks is critical to explaining their
ability to generalise. Here, for one of the simplest neural networks – a single-layer
perceptron with n input neurons, one output neuron, and no threshold bias term –
we prove that upon random initialisation of weights, the a priori probability P (t)
that it represents a Boolean function that classifies t points in {0, 1}n as 1 has a
remarkably simple form: P (t) = 2−n for 0 ≤ t < 2n.
Since a perceptron can express far fewer Boolean functions with small or large
values of t (low “entropy”) than with intermediate values of t (high “entropy”)
there is, on average, a strong intrinsic a-priori bias towards individual functions
with low entropy. Furthermore, within a class of functions with fixed t, we often
observe a further intrinsic bias towards functions of lower complexity. Finally, we
prove that, regardless of the distribution of inputs, the bias towards low entropy
becomes monotonically stronger upon adding ReLU layers, and empirically show
that increasing the variance of the bias term has a similar effect.

1 INTRODUCTION

In order to generalise beyond training data, learning algorithms need some sort of inductive bias.
The particular form of the inductive bias dictates the performance of the algorithm. For one of the
most important machine learning techniques, deep neural networks (DNNs) (LeCun et al., 2015),
sources of inductive bias can include the architecture of the networks, e.g. the number of layers,
how they are connected, say as a fully connected network (FCN) or as a convolutional neural net
(CNN), and the type of optimisation algorithm used, e.g. stochastic gradient descent (SGD) versus
full gradient descent (GD). Many further methods such as dropout (Srivastava et al., 2014), weight
decay (Krogh & Hertz, 1992) and early stopping (Morgan & Bourlard, 1990) have been proposed
as techniques to improve the inductive bias towards desired solutions that generalise well. What is
particularly surprising about DNNs is that they are highly expressive and work well in the heavily
overparameterised regime where traditional learning theory would predict poor generalisation due
to overfitting (Zhang et al., 2016). DNNs must therefore have a strong intrinsic bias that allows for
good generalisation, in spite of being in the overparameterised regime.

Here we study the intrinsic bias of the parameter-function map for neural networks, defined in (Valle-
Pérez et al., 2018) as the map between a set of parameters and the function that the neural net-
work represents. In particular, we define the a-priori probability P (f) of a DNN as the probability
that a particular function f is produced upon random sampling (or initialisation) of the weight and
threshold bias parameters. The prior at initialization, P (f), should inform the inductive bias of
SGD-trained neural networks, as long as SGD approximates Bayesian inference with P (f) as prior
sufficiently well Valle-Pérez et al. (2018). We explain this connection further, and give some ev-
idence supporting this behavior of SGD, in Appendix L. This supports the idea studying neural
networks with random parameters Poole et al. (2016); Lee et al. (2018); Schoenholz et al. (2017);
Garriga-Alonso et al. (2018); Novak et al. (2018) is not just relevant to find good initializations for
optimization, but also to understand their generalization.

A naive null-model for P (f) might suggest that without further information, one should expect that
all functions are equally likely. However, recent very general arguments (Dingle et al., 2018) based
on the coding theorem from Algorithmic Information Theory (AIT) (Li et al., 2008) have instead
suggested that for a wide range of maps M that obey a number of conditions such as being simple
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(they have a low Kolmogorov complexity K(M)) and redundancy (multiple inputs map to the same
output) then if they are sufficiently biased, they will be exponentially biased towards outputs of low
Kolmogorov complexity. The parameter-function map of neural networks satisfies these conditions,
and it was found empirically (Valle-Pérez et al., 2018) that, as predicted in (Dingle et al., 2018), the
probability P (f) of obtaining a function f upon random sampling of parameter weights satisfies the
following simplicity-bias bound

P (f) . 2−(bK̃(f)+a), (1)

where K̃(f) is a computable approximation of the true Kolmogorov complexity K(f), and a and b
are constants that depend on the network, but not on the functions.

It is widely expected that real world data is highly structured, and so has a relatively low Kolmogorov
complexity (Hinton & Van Camp, 1993; Schmidhuber, 1997). The simplicity bias described above
may therefore be an important source of the inductive bias that allows DNNs to generalise so well
(and not overfit) in the highly over-parameterised regime (Valle-Pérez et al., 2018).

Nevertheless, this bound has limitations. Firstly, the only rigorously proven result is for the true Kol-
mogorov complexity version of the bound in the case of large enough K(f). Although it has been
found to work remarkably well for small systems and computable approximations to Kolmogorov
complexity (Valle-Pérez et al., 2018; Dingle et al., 2018), this success is not yet fully understood
theoretically. Secondly, it does not explain why models like DNNs are biased; it only explains that,
if they are biased, they should be biased towards simplicity. Also, the AIT bound is very general
– it predicts a probability P (f) that depends mainly on the function, and only weakly on the net-
work. It may therefore not capture some variations in the bias that are due to details of the network
architecture, and which may be important for practical applications.

For these reasons it is of interest to obtain a finer quantitative understanding of the simplicity bias
of neural networks. Some work has been done in this direction, showing that infinitely wide neural
networks are biased towards functions which are robust to changes in the input (De Palma et al.,
2018), showing that “flatness” is connected to function smoothness (Wu et al., 2016), or arguing
that low Fourier frequencies are learned first by a ReLU neural network (Rahaman et al., 2018;
Yang & Salman, 2019). All of these papers take some notion of “smoothness” as tractable proxy for
the complexity of a function. One generally expects smoother functions to be simpler, although this
is clearly a very rough measure of the Kolmogorov complexity.

2 SUMMARY OF KEY RESULTS

In this paper we study how likely different Boolean functions, defined as f : {0, 1}n → {0, 1},
are obtained upon randomly chosen weights of neural networks. Our key results are aimed at flesh-
ing out with more precision and rigour what the inductive biases of (very) simple neural networks
are, and how they arise For this, we study the prior distribution over functions P (f), upon random
initialization of the parameters, which reflects the inductive bias of training algorithms that approx-
imate Bayesian inference (see Appendix L for a detailed explanation, and data on how well SGD
follows this behaviour). We focus our study on a notion of complexity, namely the “entropy,” H(f),
of a Boolean function f , defined as the binary entropy of the fraction of possible inputs to f that f
maps to 1. This quantity essentially measures the amount of class imbalance of the function, and is
complementary to previous works studying notions of smoothness as a proxy for complexity.

1. In Section 4 we study a simple perceptron with no threshold bias term, and with weights
w sampled from a distribution which is symmetric under reflections along the coordinate
axes. Let the random variable T correspond to the number of points in {0, 1}n which that
fall above the decision boundary of the network (i.e. T=|{x ∈ {0, 1}n : 〈w, x〉 > 0}|)
upon i.i.d. random initialisation of the weights. We prove that T is distributed uniformly,
i.e. P (T = t) = 2−n for 0 ≤ t < 2n. Let Ft be the set of all functions with T = t
that the perceptron can produce and let |Ft| be its size (cf. Definition 3.4). We expect |Ft|
for t ∼ 2n−1 (high entropy) to be (much) larger than |Ft| for extreme values of t (low
entropy). The average probability of obtaining a particular function f which maps t inputs
to 1 is 2−n/|Ft|. The perceptron therefore shows a strong bias towards functions with low
entropy, in the sense that individual functions with low entropy have, on average, higher
probability than individual functions with high entropy.
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2. In Section 4.3, we show that within the sets Ft, there is a further bias, and in some cases this
is clearly towards simple functions which correlates with Lempel-Ziv complexity (Lempel
& Ziv, 1976; Dingle et al., 2018), as predicted in (Valle-Pérez et al., 2018).

3. In Section 4.4, we show that adding a threshold bias term to a perceptron significantly
increases the bias towards low entropy.

4. In Section 5.1, we provide a new expressivity bound for Boolean functions: DNNs with
input size n, l hidden layers each with width n+2n−1−log2 l+1 and a single output neuron
can express all 22n

Boolean functions over n variables.
5. In Section 5.2 we generalise our results to neural networks with multiple layers, proving

(in the infinite-width limit) that the bias towards low entropy increases with the number of
ReLU-activated layers.

In Appendix J, we also show some empirical evidence that the results derived in this paper seem to
generalize beyond the assumptions of our theoretical analysis, to more complicated data distributions
(MNIST, CIFAR) and architectures (CNNs). Finally, in Appendix M, we show preliminary results
on the effect of entropy-like biases in P (f) on learning class-imbalanced data.

3 DEFINITIONS, TERMINOLOGY, AND NOTATION

Definition 3.1 (DNNs). Fully connected feed-forward neural networks with activations σ and a
single output neuron form a parameterised function family f(x) on inputs x ∈ Rn. This can be
defined recursively, for L hidden layers for 1 ≤ l ≤ L, as

f(x) = 1(h(L+1)(x)),

h(l+1)(x) = wlσ(h(l)) + bl,

h(1)(x) = w0x+ b0,

where 1(X) is the Heaviside step function defined as 1 if X > 0 and 0 otherwise, and σ is an
activation function that acts element-wise. The wl ∈ Rnl+l×nl are the weights, and bl ∈ Rnl+1 are
the threshold bias weights at layer l, where nl is the number of hidden neurons in the l-th layer.
nL+1 is the number of outputs (1 in this paper), and n0 is the dimension of the inputs (which we will
also refer to as n).

We will refer to the whole set of parameters (wl and bl, 1 ≤ l ≤ L) as θ. In the case of perceptrons
we use fθ(x) = σ(〈w, x〉 + b) to specify a network. We define the parameter-function map as in
(Valle-Pérez et al., 2018) below.
Definition 3.2 (Parameter-function map). Consider a parameterised supervised model, and let the
input space be X and the output space be Y. The space of functions the model can express is
F ⊂ Y|X|. If the model has p real valued parameters, taking values within a set Θ ⊆ Rp, the
parameter function mapM is defined

M : Θ→ F
θ 7→ fθ

where fθ is the function corresponding to parameters θ.

In this paper we are interested in the Boolean functions that neural networks express. We consider
the 0-1 Boolean hypercube {0, 1}n as the input domain.
Definition 3.3. The function T (f) is defined as the number of points in the hypercube {0, 1}n that
are mapped to 1 by the action of a neural network f .

For example, for a perceptron this function is defined as,

T (f) = T (w, b) =
∑

x∈{0,1}n
1(〈x,w〉+ b). (2)

We will sometimes use T (w, b) if the neural network is a perceptron.
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Definition 3.4 (Ft and P (t)). We define the set Ft to be the set of functions expressible by some
modelM (e.g. a perceptron, a neural network) which all have the same value of T (f),

Ft = {f ∈ FM|T (f) = t}

, where FM is the set of all functions expressible by M. Given a probability measure P on the
weights θ, we define the probability measure

P (T = t) := P (θ : fθ ∈ Ft)

We can also define T (f) and P (T = t) in the natural way for sets of input points other than {0, 1}n,
the context making clear what definition is being used.

Definition 3.5. The entropy H(f) of a Boolean function f : {0, 1}∗ → {0, 1} is defined as H(f) =
−p log2 p − (1 − p) log2 (1− p), where p = Tf/2n. It is the binary entropy of the fraction p of
possible inputs to f that f maps to 1 or equivalently, the binary entropy of the fraction of 1’s in the
right-hand column of the truth table of f .

Definition 3.6. We define the Boolean complexity KBool(f) of a function f as the number of binary
connectives in the shortest Boolean formula that expresses f .

Note that Boolean complexity can be defined in other ways as well. For example, KBool(f) is
sometimes defined as the number of connectives (rather than binary connectives) in the shortest
formula that expresses f , or as the depth of the most shallow formula that expresses f . These
definitions tend to give similar values for the complexity of a given function, and so they are largely
interchangeable in most contexts. We use the definition above because it makes our calculations
easier.

4 INTRINSIC BIAS IN A PERCEPTRON’S PARAMETER-FUNCTION MAP

In this section we study the parameter-function map of the perceptron (Rosenblatt, 1958), in many
ways the simplest neural network. While it famously cannot express many Boolean functions –
including XOR – it remains an important model system. Moreover, many DNN architectures include
layers of perceptrons, so understanding this very basic architecture may provide important insight
into the more complex neural networks used today.

4.1 ENTROPY BIAS IN A SIMPLE PERCEPTRON WITH b = 0 (NO THRESHOLD BIAS TERM)

Here we consider perceptrons fθ(x) = 1(〈w, x〉+ b) without threshold bias terms, i.e. b = 0.

The following theorem shows that under certain conditions on the weight distribution, a perceptron
with no threshold bias has a uniform P (θ : T (fθ) = t). The class of weight distributions includes
the commonly used isotropic multivariate Gaussian with zero mean, a uniform distribution on a
centred cuboid, and many other distributions. The full proof of the theorem is in Appendix A.

Theorem 4.1. For a perceptron fθ with b = 0 and weights w sampled from a distribution which is
symmetric under reflections along the coordinate axes, the probability measure P (θ : T (fθ) = t) is
given by

P (θ : T (fθ) = t) =

{
2−n if 0 ≤ t < 2n

0 otherwise
.

Proof sketch. We consider the sampling of the normal vector w as a two-step process: we first
sample the absolute values of the elements, giving us a vector wpos with positive elements, and then
we sample the signs of the elements. Our assumption on the probability distribution implies that
each of the 2n sign assignments is equally probable, each happening with a probability 2−n. The
key of the proof is to show that for any wpos, each of the sign assignments gives a distinct value of
T (and because there are 2n possible sign assignments, for any value of T , there is exactly one sign
assignment resulting in a normal vector with that value of T ). This implies that, provided all sign
assignments of any wpos are equally likely, the distribution on T is uniform.
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A consequence of Theorem 4.1 is that the average probability of the perceptron producing a partic-
ular function f with T (f) = t is given by

〈P (f)〉t =
2−n

|Ft|
, (3)

where Ft denotes the set of Boolean functions that the perceptron can express which satisfy T (f) =
t, and 〈·〉t denotes the average (under uniform measure) over all functions f ∈ Ft.

We expect |Ft| to be much smaller for more extreme values of t, as there are fewer distinct possible
functions with extreme values of t. This would imply a bias towards low entropy functions. By
way of an example, |F0| = 1 and |F1| = n (since the only Boolean functions f a perceptron can
express which satisfy T (f) = 1 have f(x) = 1 for a single one-hot x ∈ {0, 1}n), implying that
〈P (f)〉0 = 2−n and 〈P (f)〉1 = 2−n/n.

Nevertheless, the probability of functions within a set Ft is unlikely to be uniform. We find that,
in contrast to the overall entropy bias, which is independent of the shape of the distribution (as
long as it satisfies the right symmetry conditions), the probability P (f) of obtaining function f
within a set Ft can depend on distribution shape. Nevertheless, for a given distribution shape, the
probabilities P (f) are independent of scale of the shape, e.g. they are independent of the variance
of the Gaussian, or the width of the uniform distribution. This is because the function is invariant
under scaling all weights by the same factor (true only in the case of no threshold bias). We will
address the probabilities of functions within a given Ft further in Section 4.3.

4.2 SIMPLICITY BIAS OF THE b = 0 PERCEPTRON

The entropy bias of Theorem 4.1 entails an overall bias towards low Boolean complexity. In Theo-
rem B.1 in Appendix B we show that the Boolean complexity of a function f is bounded by1

KBool(f) < 2× n×min(T (f), 2n − T (f)). (4)

Using Theorem 4.1 and Equation (4), we have that the probability that a randomly initialised per-
ceptron expresses a function f of Boolean complexity k or greater is upper bounded by

P (KBool(f) ≥ k) < 1− k × 2−n × 2

2× n
= 1− k

2n × n
. (5)

Uniformly sampling functions would result in P (KBool(f) ≥ k) ≈ 1−2k−2n

which for intermediate
k is much larger than Equation (5). Thus from entropy bias alone, we see that the perceptron is much
more likely to produce simple functions than complex functions: it has an inductive bias towards
simplicity. This derivation is complementary to the AIT arguments from simplicity bias (Dingle
et al., 2018; Valle-Pérez et al., 2018), and has the advantage that it also proves that bias exists,
whereas AIT-based simplicity bias arguments presuppose bias.

To empirically study the inductive bias of the perceptron with b = 0, we sampled over many random
initialisations with weights drawn from Gaussian or uniform distributions and input size n = 7.
As can be seen in Figure 1a and Figure 1b, the probability P (f) that function f obtains varies over
many orders of magnitude. Moreover, there is a clear simplicity bias upper bound on this probability,
which, as predicted by Eq. 1, decreases with increasing Lempel-Ziv complexity (KLZ(f)) (using
a version from (Dingle et al., 2018) applied to the Boolean functions represented as strings of bits,
see Appendix E). Similar behaviour was observed in (Valle-Pérez et al., 2018) for a FCN network.
Moreover it was also shown there that Lempel-Ziv complexity for these Boolean functions correlates
with approximations to the Boolean complexity KBool. A one-layer neural network ( Figure 1c)
shows stronger bias than the perceptron, which may be expected because the former has a much
larger expressivity. A rough estimate of the slope a in Eq. 1 from (Dingle et al., 2018) suggests that
a ∼ log2(NO)/max

f∈O
(K̃(f)) where O is the set of all Boolean functions the model can produce, and

NO is the number of such functions. The maximumK(f) may not differ that much between the one
layer network and the perceptron, but NO will be much larger in former than in the latter.

In Appendix D we also show rank plots for the networks from Figure 1. Interestingly, at larger rank,
they all show a Zipf like power-law decay, which can be used to estimate NO, the total number of

1A tighter bound is given in Theorem B.2, but this bound lacks any obvious closed form expression.
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Boolean functions the network can express. We also note that the rank plots for the perceptron with
b = 0 with Gaussian or uniform distributions of weights are nearly indistinguishable, which may be
because the overall rank plot is being mainly determined by the entropy bias.

(a) Perceptron: Gaussian weights (b) Perceptron: uniform weights. (c) 1 layer NN

Figure 1: Probability P (f) that a function obtains upon random choice of parameters versus Lempel
Ziv complexity KLZ(f) for (a) an n = 7 perceptron with b = 0 and weights sampled from a
Gaussian distributions, (b) an n = 7 perceptron with b = 0 and weights sampled from a uniform
distribution centred at 0 and (c) a 1-hidden layer neural network (with 64 neurons in the hidden
layer). Weights w and the threshold bias terms are sampled fromN (0, 1). For all cases 108 samples
were taken and frequencies less than 2 were eliminated to reduce finite sampling effects. We present
the graphs with the same scale for ease of comparison.

4.3 BIAS WITHIN Ft

In Figure 2 we compare a rank plot for all functions expressed by an n = 7 perceptron with b = 0
to the rank plots for functions with T (f) = 47 and T (f) = 64. To define the rank, we order
the functions by decreasing probability, and then the rank of a function f is the index of f under
this ordering (so the most probable function has rank 1, the second rank 2 and so on). The highest
probability functions in F64 have higher probability than the highest in F47 because the former
allows for simpler functions (such as 0101..), but for both sets, the maximum probability is still
considerably lower than the maximum probability functions overall.

In Appendix E we present further empirical data that suggests that these probabilities are bounded
above by Lempel-Ziv complexity (in agreement with (Valle-Pérez et al., 2018)). However, in con-
trast to Theorem 4.1 which is independent of the parameter distribution (as long as they are symmet-
ric), the distributions within Ft are different for the Gaussian and uniform parameter distributions,
with the latter showing less simplicity bias within a class of fixed t (see Appendix E.1).

(a) All functions (b) T (f) = 47 (c) T (f) = 64

Figure 2: Probability P (f) vs rank for functions for a perceptron with n = 7, σb = 0, and weights
sampled from independent Gaussian distributions. In Figures 2b and 2c the functions are ranked
within their respective Ft. The seven highest probability functions in Figure 2c are f = 0101 . . .
and equivalent functions obtained by permuting the input dimensions – note that these are very
simple functions (simpler than the simplest functions that satisfy T (f) = 47).
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In Appendix F, we give further arguments for simplicity bias, based on the set of constraints that
needs to be satisfied to specify a function. Every function f can be specified by a minimal set of
linear conditions on the weight vector of the perceptron, which correspond to the boundaries of the
cone in weight space producing f . The Kolmogorov complexity of conditions should be close to
that of the functions they produce as they are related to the functions in a one-to-one fashion, via
a simple procedure. In Appendix F, we focus on conditions which involve more than two weights,
and show that within each set Ft there exists one function with as few as 1 such conditions, and that
there exists a function with as many as n− 2 such conditions. We also compute the set of necessary
conditions (up to permutations of the axes) explicitly for functions with small t, and find that the
range in the number and complexity of the conditions appears to grow with t, in agreement, with
what we observe in Figure 2 for the range of complexities. More generally, we find that complex
functions typically need more conditions than simple functions do. Intuitively, the more conditions
needed to specify a function, the smaller the volume of parameters that can generate the function, so
the lower its a-priori probability.

4.4 EFFECT OF b (THE THRESHOLD BIAS TERM) ON P (t)

We next study the behaviour of the perceptron when we include the threshold bias term b, sampled
fromN (0, σb), while still initialising the weights fromN (0, 1), as in Section 4.1. We present results
for n = 7 in Figure 3. Interestingly, for infinitesimal σb, P (T = 0) is less than for b = 0 (See
Appendix C), but then for increasing σb it rapidly grows larger than 1/2n and in the limit of large
σb asymptotes to 1/2 (see Figure 3b). It’s not hard to see where this asymptotic behaviour comes
from, a large positive or negative b means all inputs are mapped to true (1) or false (0) respectively.

(a) P(t) at selected values of σb (b) P(t=0)

Figure 3: Effect of adding a bias term sampled fromN (0, σb) to a perceptron with weights sampled
from N (0, 1). (a) Increasing σb increases the bias against entropy, and with a particular strong bias
towards t = 0 and t = 2n. (b) P (t = 0) increases with σb and asymptotes to 1/2 in the limit
σb →∞.

5 ENTROPY BIAS IN MULTI-LAYER NEURAL NETWORKS

We next extend results from Section 4 to multi-layer neural networks, with the aim to comment on
the behaviour of P (T = t) as we add hidden layers with ReLU activations.

To study the bias in the parameter-function map of neural networks, it is important to first understand
the expressivity of the networks. In Section 5.1, we produce a (loose) upper bound on the minimum
size of a network with ReLU activations and l layers that is maximally expressive over Boolean
functions. We comment on how sufficiently large expressivity implies a larger bias towards low
entropy for models with similarly shaped distribution over T (when compared to the perceptron).

In Section 5.2, we prove, in the limit of infinite width, that adding ReLU activated layers causes the
moments of P (T = t) to increase, . This entails a lower expected entropy for neural networks with
more hidden layers. We empirically observe that the distribution of T becomes convex (with input
{0, 1}n) with the addition of ReLU activated layers for neural networks with finite width.
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5.1 EXPRESSIVITY CONDITIONS FOR DNNS

We provide upper bounds on the minimum size of a DNNs that can model all Boolean functions.
We use the notation 〈n0, n1, . . . , nL, nL+1〉 to denote a neural network with ReLU activations and
of the form given in Definition 3.1.
Lemma 5.1. A neural network with layer sizes 〈n, 2n−1, 1〉, threshold bias terms, and ReLU activa-
tions can express all Boolean functions over n variables (also found in (Raj, 2018)). See Appendix G
for proof.
Lemma 5.2. A neural network with l hidden layers, layer sizes 〈n, (n + 2n−1/l + 1), . . . , (n +
2n−1/l+ 1), 1〉, threshold bias terms, and ReLU activations can express all Boolean functions over
n variables. See Appendix G for proof.

Note that neither of these bounds are (known to be) tight. Lemma 5.1 says that a network with
one hidden layer of size 2n−1 can express all Boolean functions over n variables. We know that a
perceptron with n input neurons (and a threshold bias term) can express at most 2n

2

Boolean func-
tions ((Anthony, 2001), Theorem 4.3), which is significantly less than the total number of Boolean
functions over n variables, which is 22n

. Hence there is a very large number of Boolean functions
that the network with a (sufficiently wide) hidden layer can express, but the perceptron cannot. The
vast majority of these functions have high entropy (as almost all Boolean functions do). Moreover,
we observe that the measure P (T = t) is convex in the case of the more expressive neural net-
works, as discussed in section Section 5.2. This suggests that the networks with hidden layers have
a much stronger relative bias towards low entropy functions than the perceptron does, which is also
consistent with the stronger simplicity bias found in Figure 1.

We further observe from Lemma 5.2 that the number of neurons can be kept constant and spread
over multiple layers without loss of expressivity for a Boolean classifier (provided the neurons are
evenly spread across the layers).

5.2 HOW MULTIPLE LAYERS AFFECT THE BIAS

We next consider the effect of addition of ReLU activated layers on the distribution P (t). Of course
adding even just one layer hugely increases expressivity over a perceptron. Therefore, even if the
distribution of P (t) would not change, the average probability of functions in a given Ft could drop
significantly due to the increase in expressivity.

However, we observe that for inputs {0, 1}n, P (t) becomes more convex when more ReLU-
activated hidden layers are added, see Figure 4. The distribution appears to be monotone on either
side of t = 2n−1 and relatively flat in the middle, even with the addition of 8 intermediate layers2.
In particular, we show in Figure 4 that for large number of layers, or large σb, the probabilities for
P (t = 0) (and by symmetry, in the infinite width limit, also P (t = 2n)) each asymptotically reach
1
2 , and thus take up the vast majority of the probability weight.

We now prove some properties of the distribution P (t) for DNNs with several layers.
Lemma 5.3. The probability distribution on T for inputs in {0, 1}n of a neural network with linear
activations and i.i.d. initialisation of the weights is independent of the number of layers and the
layer widths, and is equal to the distribution of a perceptron. See Appendix H for proof.

While it is trivial that such a linear network has the same expressivity as a perceptron, it may not be
obvious that the entropy bias is identical.
Lemma 5.4. Applying a ReLU function in between each layer produces a lower bound on P (T = 0)
such that P (T = 0) ≥ 2−n. See Appendix H for proof.

This lemma shows that a DNN with ReLU functions is no less biased towards the lowest entropy
function than a perceptron is. We prove a more general result in the following theorem which
concerns the behaviour of the average entropy 〈H(t)〉 (where the average upon random sampling of
parameters) as the number of layers grows. The theorem shows that the bias towards low entropy
becomes stronger as we increase the number of layers, for any distribution of inputs. We rely

2Note that this is when the input is {0, 1}n. This is not true for all input distributions. See, e.g. Figure 4d.
The change in probability for other distributions can be more complex.
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(a) {0, 1}7, σb = 0.0, number of layers varied (b) {0, 1}7, σb = 1.0, number of layers varied

(c) {0, 1}7, 1 layer, σb varied (d) {−1, 1}7, σb = 0.0, number of layers varied

Figure 4: P(T = t) becomes on average more biased towards low entropy for increasing
number of layers or increasing σb. Here we use n = 7 input layers, with input {0, 1}7 (centered
data) or {−1, 1}7 (uncentered data) The hidden layers are of width 2n−1 = 64 to guarantee full
expressivity. σw = 1.0 in all cases. The insets show how P (t = 0) asymptotes to 1

2 with increasing
layers or σb.

on previous work that shows that in the infinite width limit, neural networks approach a Gaussian
process (Lee et al. (2018); Garriga-Alonso et al. (2018); Novak et al. (2018); Matthews et al. (2018);
Yang (2019)), which for the case of fully-connected ReLU networks, has an analytic form (Lee
et al., 2018).
Theorem 5.5. Let S be a set of m = |S| input points in Rn. Consider neural networks with
i.i.d. Gaussian weights with variances σ2

w/
√
n and biases with variance σb, in the limit where the

width of all hidden layers n goes to infinity. Let N1 and N2 be such neural networks with L and
L+ 1 infinitely wide hidden layers, respectively, and no bias. Then, the following holds: 〈H(T )〉 is
smaller than or equal for N2 than for N1. It is strictly smaller if there exist pairs of points in S with
correlations less than 1. If the networks have sufficiently large threshold bias (σb > 1 is a sufficient
condition), the result above also holds. For smaller bias, the result holds only for a sufficiently large
number of layers.

See Appendix H for a proof of Theorem 5.5. Theorem 5.5 is complementary to Theorem 4.1, in that
the former only proves that the bias towards low entropy increases with depth, and the later proves
conditions on the data that guarantee bias toward low entropy on the “base case” of 0 layers. We
show in Figure 4 that when σb = 0, the bias towards low entropy indeed becomes monotonically
stronger as we increase the number of ReLU layers, for both inputs in {0, 1}n as well as for centered
data {−1, 1}n.

For centered inputs {−1, 1}n, the perceptron with b = 0 shows rather unusual behaviour. The dis-
tribution is completely peaked around t = 2n−1 because every input mapping to 1 has the opposite
input mapping to 0. Not surprisingly, its expressivity is much lower than the equivalent perceptron
with {0, 1}n (as can be seen in Figure 6a in Appendix D). Nevertheless, in Figure 4d we see that

9
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as the number of layers increases, the behaviour rapidly resembles that of uncentered data (In Ap-
pendix K we also show that the bias toward low entropy is also recovered as we increase σb). So
far this is the only exception we have found to the general bias to low entropy we observe for all
other systems (see also Appendix J). We therefore argue that this is a singular result brought about
by particular symmetries of the perceptron with zero bias term. The fact that there is an exception
does not negate our general result which we find holds much more generally.

The insets of in Figure 4 show that the two trivial functions asymptotically dominate in the limit of
large numbers of layers. We note that recent work ((Lee et al., 2018; Luther & Seung, 2019)) has
also pointed out that for fully-connected ReLU networks in the infinite-width infinite-depth limit,
all inputs become asymptotically correlated, so that the networks will tend to compute the constant
function. Here we give a quantitative characterisation of this phenomenon for any number of layers.

Some interesting recent work (Yang & Salman, 2019) has shown that certain choices of hyper-
parameters lead to networks which are a priori unbiased, that is the P (f) appears to be uniform.
In Appendix I we show that this result is due to a choice of hyperparameters that lie deep in the
chaotic region defined in (Poole et al., 2016). The effect therefore depends on the choice of activa-
tion function (it can occur for say tanh and erf, but most likely not ReLU), and we are studying it
further.

6 DISCUSSION AND FUTURE WORK

In Section 4 Theorem 4.1, we have proven the existence of an intrinsic bias towards Boolean func-
tions of low entropy in a perceptron with no threshold bias term, such that P (T = t) = 2−n for
0 ≤ t < 2n. This result puts an upper bound on the probability that a perceptron with no threshold
bias term will be initialised to a Boolean function with at least a certain Boolean complexity. Adding
a threshold term in general increases the bias towards low entropy.

We also study how the entropy bias is affected by adding a threshold bias term or ReLU-activated
hidden layers. One of our main results, Theorem 5.5, proves that adding layers to a feed-forward
neural network with ReLU activations makes the bias towards low entropy stronger. We also show
empirically that the bias towards low entropy functions is further increased when a threshold bias
term with high enough variance is added. Recently, (Luther & Seung, 2019) have argued that batch
normalisation (Ioffe & Szegedy, 2015) makes ReLU networks less likely to compute the constant
function (which has also been experimentally shown in (Page, 2019)). If batch norm increases the
probability of high entropy functions, it could help explain why batch norm improves generalisation
for (typically class balanced) datasets. We leave further exploration of the effect of batch normali-
sation on a-priori bias to future work.

Simplicity bias within the set of constant t functions Ft is affected by the choice of initialisation,
even when the entropy bias is unaffected. This indicates that there are further properties of the
parameter-function map that lead to a simplicity bias. In Section 4.3, we suggest that the complexity
of the conditions on w producing a function should correlate with the complexity of the function,
and we conjecture that more complex conditions correlate with a lower probability.

We note that the a priori inductive bias we study here is for a randomly initialised network. If
a network is trained on data, then the optimisation procedure (for example SGD) may introduce
further biases. In Appendix L, we give some evidence that the bias at initialization is the main driver
of the inductive bias on SGD-trained networks. Furthermore, in Appendix M, we show preliminary
results on how bias in P (f) can affect learning in class-imbalanced problems. This suggests that
understanding properties of P (f) (like those we study in this paper), can help design architectures
with desired inductive biases.

Simplicity bias in neural networks (Valle-Pérez et al., 2018) offers an explanation of why DNNs
work in the highly overparameterised regime. DNNs can express an unimaginably large number of
functions that will fit the training data, but almost all of these will give extremely poor generalisation.
Simplicity bias, however, means that a DNN will preferentially choose low complexity functions,
which should give better generalisation. Here we have shown some examples where changing hy-
perparameters can affect the bias further. This raises the possibility of explicitly designing biases to
optimise a DNN for a particular problem.
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A PROOF OF UNIFORMITY

For convenience we repeat some notation we use in this section. Let {0, 1}n be the set of vertices of
the n-dimensional hypercube. We use 〈·, ·〉 to refer to the standard inner product in Rn. Define the
function T : Rn → N as the number of vertices of the hypercube that are above the hyperplane with
normal vector w and that passes through the origin. Formally T (w) = |x ∈ {0, 1}n : 〈w, x〉 > 0|.
We use � for element-wise multiplication of two vectors.

We slightly abuse notation and denote the probability density function corresponding to a probability
measure P , with the same symbol, P . The arguments of the function or context should make clear
which one is meant.

Proof strategy. We consider the sampling of the normal vector w as a two-step process: we first
sample the absolute values of the elements, giving us a vector wpos with positive elements3, and then
we sample the signs of the elements. Our assumption on the probability distribution implies that
each of the 2n sign assignments is equally probable, each happening with a probability 2−n. The
key of the proof is to show that for any wpos, each of the sign assignments gives a distinct value of
T (and because there are 2n possible sign assignments, for any value of T , there is exactly one sign
assignment resulting in a normal vector with that value of T ). This implies that, provided all sign
assignments of any wpos are equally likely, the distribution on T is uniform.

Theorem 4.1 Let P be a probability measure on Rn, which is symmetric under reflections along
the coordinate axes, so that P (x) = P (Rx), where R is a reflection matrix (a diagonal matrix with
elements in {−1, 1}). Let the weights of a perceptron without bias, w, be distributed according to
P . Then P (T = t) is the uniform measure.

Before proving the theorem, we first need a definition and a lemma.

Definition We define the function mapping a vector from {−1, 1}n (which we interpret as the sig-
nature of the weight vector), and a vector of nonnegative reals (which we interpret as the absolute
values of the elements of the weight vector) to the value of t of the corresponding weight vector:

K : {−1, 1}n × Rn≥0 → {0, 1, ..., 2n − 1}
(σ, a) 7→ T (σ � a)

(6)

Lemma A.1. The functionK is bijective with respect to its first argument, for any value of its second
argument except for a set of measure 0.

Proof of Lemma A.1. Because the cardinality of the codomain of K is the same as the domain of its
first argument, it is enough to prove injectivity of K with respect to its first argument.

Fix a ∈ Rn≥0 satisfying that the following set has cardinality 3n:

S̃a = {〈x, a〉 : x ∈ {−1, 0, 1}n}.

Note that the set of a in which some pair of elements in the definition of Sa is equal has measure
zero, because their equality implies that a lies within a hyperplane in Rn. Let us also define the set
of subsums of elements of a:

Sa = {〈x, a〉 : x ∈ {0, 1}n}.
which has cardinality 2n for the a considered.

Now, consider a natural bijection Ja : {−1, 1}n → Sa induced by the bijective mapping of signa-
tures σ ∈ {−1, 1}n to vertices of the hypercube {0, 1}n by mapping −1 to 0 and 1 to 1. To be more
precise, Ja(σ) =

∑n
i=1 ai

(σ(i)+1)
2 .

Then, we claim that
K(σ, a) = |{s ∈ Sa : s < Ja(σ)}| (7)

This implies that for the a we have fixed K is injective, for if two σ mapped to the same value,
their corresponding value of Ja(σ) should be the same, giving a contradiction. So it only remains to
prove equation 7.

3almost surely, assuming 0 has zero probability measure
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Let us also first denote, for x ∈ {0, 1}n and s, s′ ∈ Sa

Σ(x) := 〈x, a〉
s ∩ s′ :=

〈
(Σ−1(s) ∩ Σ−1(s′)), a

〉
s ∪ s′ :=

〈
(Σ−1(s) ∪ Σ−1(s′)), a

〉
s̄ :=

〈
(Σ−1(s)), a

〉
where we interpret elements of {0, 1}n as subsets of {1, ..., n}. The notation above lets us interpret
subsums in Sa as subsets of entries of a. Note that Σ−1 is well defined for the fixed a we are
considering.

Now, let σ ∈ {−1, 1}n, s′ = Ja(σ), and consider an s ∈ Sa such that s < s′. Then s∩ s′+ s∩ s̄′ =
s < s′ so

− s ∩ s′ + s′ − s ∩ s̄′ > 0 (8)

Now, let the operation ∗ (we omit dependence on s′) be defined for any u ∈ Sa as u∗ := u ∩ s̄′ +
(s′ − u ∩ s′) ∈ Sa. Since s′ = Ja(σ) we have〈

(σ � a),Σ−1(s∗)
〉

= −s ∩ s̄′ + (s′ − s ∩ s′).

Using equation 8, 〈
(σ � a),Σ−1(s∗)

〉
> 0 ⇐⇒ s < s′.

Therefore, all the points Σ−1(s∗) for s < s′ are above the hyperplane with normal (σ � a), and
all points Σ−1(s∗) for s ≥ s′ are below or precisely on the hyperplane. All that is left is to show
the converse, all points which are above the hyperplane are Σ−1(s∗) for one and only one s < s′.
It suffices to show that the operation ∗ is injective for all s (as bijectivity follows from the domain
and codomain being the same). By contradiction, let s and u map to the same value under ∗, then
s ∩ s′ − s ∩ s̄′ = u ∩ s′ − u ∩ s̄′, which implies s ∩ s′ = u ∩ s′ and s ∩ s̄′ = u ∩ s̄′, for the a we
are considering, and so s = u. Therefore ∗ is injective, and equation 7 follows.

Proof of Theorem 4.1.

P (T = t′) = P (w : T (w) = t′) =

∫
1T (w)=t′P (w)dnw

Now, we can divide the integral into the quadrants corresponding to different signatures of w, and
we can let P (w) = 1

2n P̃ (|w|), because it is symmetric under reflections of the coordinate axes.

P (w : T (w) = t′) =
∑

σ∈{−1,1}n

∫
Rn
≥0

1

2n
P̃ (a)dna1T (σ�a)=t′

=
1

2n

∫
Rn
≥0

P̃ (a)dna
∑

σ∈{−1,1}n
1T (σ�a)=t′

=
1

2n

∫
Rn
≥0

P̃ (a)dna · 1

=
1

2n
.

The third equality follows from Lemma A.1. Indeed, bijectivity implies that for any a, except for a
set of measure 0, there is one and only one signature which results in t′.

B BOUNDING BOOLEAN FUNCTION COMPLEXITY, KBool, WITH t

Theorem B.1. n×min(t, 2n − t)− 1 is an upper bound on the complexity of Boolean functions f
for which T (f) = t.

14
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Proof. Let f : {0, 1}n → {0, 1} be a function s.t. T (f) = t.

Let x1 . . . xn be propositional variables and let each assignment to x1 . . . xn correspond to a vector
in {0, 1}n in the straightforward way.

Let φ be the Boolean formula
∨
{
∧
{if vi = 1 then xi else ¬xi | vi ∈ v} | v ∈ {0, 1}n, f(v) = 1}.

The formula φ expresses f as a Boolean formula in Disjunctive Normal Form (DNF).

Let ψ be the Boolean formula
∧
{
∨
{if vi = 0 then xi else ¬xi | vi ∈ v} | v ∈ {0, 1}n, f(v) = 0}.

The formula ψ expresses f as a Boolean formula in Conjunctive Normal Form (CNF).

Since f maps t out of the 2n vectors in {0, 1}n to 1 it must be the case that φ has t clauses and ψ has
2n − t clauses. Each clause contains n− 1 binary connectives, and there is one connective between
each clause. Hence φ contains n× t− 1 binary connectives and ψ contains n× (2n − t)− 1 binary
connectives. Therefore f is expressed by some Boolean formula of complexity n×min(t, 2n−t)−1.

Since f was chosen arbitrarily, if a function f : {0, 1}n → {0, 1} maps t inputs to 1 then the
complexity of f is at most n×min(t, 2n − t)− 1.

Theorem B.2. Let C be a defined recursively as follows;
C(n, 0) = 0
C(n, 2n) = 0
C(n, 1) = n− 1
C(n, 2n − 1) = n− 1
C(n, t) = C(n− 1, dt/2e) + C(n− 1, bt/2c) + 2

Then C(n, t) is an upper bound on the complexity of Boolean functions f for which T (f) = t.

Proof. Let P(n) be that C(n, t) is an upper bound on the complexity of Boolean functions f over n
variables s.t. T (f) = t.

Base case P(1): If φ is a Boolean formula defined over 1 variable then φ is equivalent to True, False,
x1, or ¬x1. We can see by exhaustive enumeration that P(1) holds in each of these four cases.

Inductive step P(n) → P(n + 1): Let φ be a Boolean formula defined over n + 1 variables s.t.
T (φ) = t.

Case 1. t = 0: If t = 0 then φ ≡ False, and so the complexity of φ is 0. Hence the inductive step
holds.
Case 2. t = 2n: If t = 2n then φ ≡ True, and so the complexity of φ is 0. Hence the inductive step
holds.
Case 3. t = 1: If t = 1 then φ has just a single satisfying assignment. If this is the case then φ can
be expressed as a formula of length n written in Disjunctive Normal Form, and hence the inductive
step holds.
Case 4. t = 2n − 1: If t = 2n − 1 then φ has just a single non-satisfying assignment. If this is
the case then φ can be expressed as a formula of length n written in Conjunctive Normal Form, and
hence the inductive step holds.
Case 5. 1 < t and t < 2n − 1: If φ is a Boolean formula defined over n + 1 variables then φ is
logically equivalent to a formula (xn+1 ∧ ψ1) ∨ (¬xn+1 ∧ ψ2), where ψ1 and ψ2 are defined over
x1 . . . xn. Let t1 be the number of assignments to x1 . . . xn that are mapped to 1 by ψ1, and let t2
be the corresponding value for ψ2.

By the inductive assumption the complexity of ψ1 and ψ2 is bounded by C(n, t1) and C(n, t2) re-
spectively. Therefore, since φ ≡ (xn+1 ∧ ψ1) ∨ (¬xn+1 ∧ ψ2) it follows that the complexity
of φ is at most C(n, t1) + C(n, t2) + 2. Since t1 + t2 = t, and since C(n, ta) < C(n, tb) if
tb is closer to 2n−1 than ta is (lemma B.3), it follows that the complexity of φ is bounded by
C(n, t) = C(n− 1, dt/2e) + C(n− 1, bt/2c) + 2.

Since Case 1 to 5 are exhaustive the inductive step holds.

Lemma B.3. If t+ 1 ≤ 2n−1 then C(n, t) < C(n, t+ 1).

Proof. Let P(n) be that if t+ 1 ≤ 2n−1 then C(n, t) < C(n, t+ 1).
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Base case P(2): We can see that C(4, 0) = 1, C(4, 1) = 2, C(4, 2) = 4, C(4, 3) = 2 and C(4, 4) =
1. By exhaustive enumeration we can see that P(2) holds.

Inductive step P(n)→ P(n+ 1):

Case 1. t is even:

C(n+ 1, t)− C(n+ 1, t+ 1) = (C(n, t/2) + C(n, t/2) + 2)

− (C(n, t/2) + C(n, t/2 + 1) + 2)

= C(n, t/2)− C(n, t/2 + 1)

If t is even and t+ 1 ≤ 2(n+1)−1 then t/2 + 1 ≤ 2n−1. Hence C(n, t/2)− C(n, t/2 + 1) < 0 by
the inductive assumption, and so C(n+ 1, t)− C(n+ 1, t+ 1) < 0.

Case 2. t is odd:

C(n+ 1, t)− C(n+ 1, t+ 1) = (C(n, (t+ 1)/2) + C(n, (t− 1)/2) + 2)

− (C(n, (t+ 1)/2) + C(n, (t+ 1)/2) + 2)

= C(n, (t− 1)/2)− C(n, (t+ 1)/2)

If t is odd and t+1 ≤ 2(n+1)−1 then (t+1)/2 ≤ 2n−1. HenceC(n, (t−1)/2)−C(n, (t+1)/2) < 0
by the inductive assumption, and so C(n+ 1, t)− C(n+ 1, t+ 1) < 0.

Since Case 1 and 2 are exhaustive the inductive step holds.

C P (t = 0) FOR PERCEPTRON WITH INFINITESIMAL b

If b is sampled uniformly from [−ε, ε], then only if |〈w, x〉| < ε can some x be classified differ-
ently from a perceptron without a threshold bias term. The set of weight vectors which change
the classification of non-zero x becomes vanishingly small as ε goes to 0, but for x = 0, we have
P (1(〈w, 0〉+b) = 0) = P (1(〈w, 0〉+b) = 1) = 1/2. Consider some function f , and define g where
f → g under the addition of an infinitesimal bias. Then with even probability the origin remains
mapped to 0 (meaning T (g) = T (f)), or is mapped to 1 (meaning T (g) = T (f) + 1) as the rest of
f is unchanged, toO(ε). As this is true of all f , P (T = t)b∼(−ε,ε) = 1

2P (T = t) + 1
2P (T = t−1),

leading to:

P (T = t) =

{
2−(n+1) if t = 0 or t = 2n

2−n otherwise
. (9)

For larger σb P (t = 0) or P (t = 2n) increases with increasing σb as can be seen in Figure 3 of the
main text.

D ZIPF’S LAW IN A PERCEPTRON WITH b = 0

In (Valle-Pérez et al., 2018) it was shown empirically that the rank plot for a simple DNN exhibited
a Zipf like power law scaling for larger ranks. Zipf’s law occurs in many branches of science
(and probably for many reasons). In this section we check whether this scaling also occurs for the
Perceptron.

In Figure 5, we compare a rank plot of the probability P (f) for individual functions for the simple
perceptron with b = 0, the perceptron, and for a one layer FCN. While all architectures have n = 7,
the perceptrons can of course express far fewer functions. Nevertheless, both the perceptrons and
the more complex FCN show similar phenomenology, with a Zipf law like tail at larger ranks (i.e. a
power law).
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(a) (b)

(c) (d)

Figure 5: Probability vs rank for functions (ranked by probability) from samples of size 108, with
input size n = 7, and every weight and bias term sampled from N (0, 1) unless otherwise specified,
over initialisations of: (a) a perceptron with b = 0; (b) a perceptron; (c) a one-hidden layer neural
network (with 64 neurons in the hidden layer); (d) a perceptron with b = 0 and weights sampled from
identical centered uniform distributions (note how similar (a) is to (d)!). We cut off frequencies less
than 2 to eliminate finite size effects. In (a) and (b) lines were fitted using least-squares regression;
for (c) the line corresponding to the ansatz in Equation (10) is plotted instead.

While the orginal formulations for Zipf’s law only allows for a powerlaw with exponent 1, in practice
the terminology of Zipf’s law is used for other powers, such that p = b× rank−a for some positive
a, b. If we assume that this scaling persists, then we can relate the total number of functions a
perceptron can express, to the constant b, because the total probability must integrate to 1.

For the simplest case with a = 1, this leads to an equation for the probability as function of rank
given by

P (r) =
1

ln(NO)r
, (10)

where N0 is the total number of functions expressible.

The FCN appears to show such simple scaling. And as the FCN of width 64 is fully expressive
(see Lemma 5.1) , there are NO = 227 ≈ 3 × 1038 possible Boolean functions. We plot the Zipf
law prediction of Equation (10) next to the empirically estimated probabilities in Figure 5c. We
observe that the curve is described well at higher values of the rank Zipf’s law. Note that the mean
probability uniformly sampled over functions for this FCN is 〈P (f)〉 = 1/NO ≈ 3 × 10−39 so
that we only measure a tiny fraction of the functions with extremely high probabilities, compared
to the mean. Also, most functions have probabilities less than the mean, and only order 2−n have
probability larger than the mean. A least-squares linear fit on the log-log graph was consistent within
experimental error for the ansatz.

For the perceptron with a bias term Figure 5b, we observe that the gradient differs substantially from
−1, and a linear fit gives log10(p) = −0.85 log10(rank) − 2.32. Using the same arguments for
calculating NO as made in Equation (10), we obtain a prediction of N0 = 7.63× 109, which is 91%

17



Under review as a conference paper at ICLR 2020

(a) (b)

Figure 6: (a) Probability of functions versus their rank (ranked by probability) for a perceptron
with n = 5, and weights sampled i.i.d. from a Gaussian and no threshold bias term, acting on
either centered {−1, 1}5 or uncentered {0, 1}5 data. (b) Probability of functions versus their LZ
complexity for a perceptron with n = 6, and weights sampled i.i.d. from a Gaussian and no threshold
bias term, acting on the centered Boolean hypercube {−1, 1}5.

of the known value4. A linear fit for the perceptron with no threshold bias term gives log10(p) =
−0.81 log10(rank) − 2.31, leading to a prediction of N0 = 3.97 × 108. which is, as expected,
significantly lower than a perceptron with no threshold bias term. We expect there to be some
discrepancy between the pure Zipf law prediction, and the true NO, because the probability seems
to deviate from the Zipf-like behaviour at the highest rank, which we observe for n = 5 in Figure 6a,
as in this case the number of functions is small enough that it becomes feasible to sample all of them.

It is also worth mentioning that a rank-probability plot for a perceptron with weights sampled from
a uniform distribution (Figure 5d) is almost indistinguishable from the Gaussian case (Figure 5b),
which is interesting, because when plotted against LZ complexity, as in Figure 1 of the main text,
there is a small but discernible difference between the two types of initialisation.

Finally, in Figure 6a we compare the rank plot for centered and uncentered data for a smaller n = 5,
σb = 0 perceptron where we can find all functions. Note that for the centered data, only functions
with t = 16 can be expressed, which is somewhat peculiar, and of course means significantly less
functions. Nevertheless, this systems still has clear bias within this one entropy class, and this bias
correlates with the LZ complexity (Figure 6b) as also observed for the perceptron with centered data.

E FURTHER RESULTS ON THE DISTRIBUTION WITHIN Ft

In this appendix we will denote the output function of the perceptron evaluated on {0, 1}n by way
of a bit string f , whose i’th bit is given by

fi = 1(〈w, bin(i)〉) (11)

where bin(i) takes an integer i and maps it to a point x ∈ {0, 1}n according to its binary represen-
tation (so bin(5) = (1, 0, 1) and bin(1) = (0, 0, 1) when n = 3).

E.1 EMPIRICAL RESULTS

We sample 108 initialisations of the perceptron, divide the list of functions into Ft, and present
probability-complexity plots for several values of t in Figure 7. We use the Lempel-Ziv complexity
(Lempel & Ziv, 1976; Dingle et al., 2018) of the output bit string as the approximation to the Kol-
mogorov complexity of the function (Dingle et al., 2018). As in (Dingle et al., 2018; Valle-Pérez
et al., 2018), this complexity measure is denoted KLZ(f). To avoid finite size effects (as noted in
(Valle-Pérez et al., 2018)), we cut off all frequencies less than or equal to 2.

4https://oeis.org/A000609/list
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(a) T (f) = 9 (b) T (f) = 16

(c) T (f) = 41 (d) T (f) = 64

Figure 7: P (f) vs KLZ(f) at a selection of values of T (f), for a perceptron with input dimension
7, weights sampled fromN (0, 1) and no threshold bias terms. We observe a large range inKLZ(ft)
for ft ∈ Ft which increases as t approaches 64, which is to be expected – for example the function
f = 0101 . . . is very simple and has maximum entropy, and we expect there to exist higher com-
plexity functions at higher entropy. Consistent with the bound in (Valle-Pérez et al., 2018), simpler
functions tend to have higher probabilities than more complex ones. The data-points at especially
high probabilities in Figure 7d correspond to the function f = 0101 . . . and equivalent strings after
permuting dimensions.

As can be seen in Figure 1 the probability-complexity graph satisfies the simplicity bias bound Equa-
tion (1) for all functions. Now, in Figure 7) we observe subsets Ff of the overall set of functions.
Firstly, we observe, as expected, that smaller tmeans a smaller range inKLZ , since high complexity
functions are not possible at low entropy. Conversely, low complexity functions are possible at high
entropy (say for 010101...), and so a larger range of probabilities and complexities is observed for
t = 64. For these larger entropies, an overall simplicity bias within the set of fixed t can be observed.

The larger range observed in t = 64 and t = 16 (compared to t = 41 and t = 9) can be explained
by the presence of highly ordered functions having those t values - for example, in t = 64, there is
f = 0101 . . . and its symmetries; and in t = 16 there are functions such as f = 00010001 . . . and
its symmetries. The other two t values do not divide 27, so there will be no functions with such low
block entropy (implying low KLZ).

We also demonstrate differences in the variation in P (f) vs KLZ(f) when w is sampled from
uniform distributions, in Figure 8, and compare these pots to those in Figure 7. Whilst we know
from Theorem 4.1 that sampling w from a uniform distribution will not affect P (t), it is not hard
to see that there will be some variation in function probability within the classes Ft. We observe
that the simple functions which have high probability for t = 64 when the perceptron is initialised
from a Gaussian (Figure 7d) have lower probabilities in the uniform case (Figure 8d). We comment
further on this behaviour in Appendix E.2. However, we see limited differences in their respective
rank-probability plots ( Figure 5a and Figure 5d).
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(a) T (f) = 9 (b) T (f) = 16

(c) T (f) = 41 (d) T (f) = 64

Figure 8: P (f) vs KLZ(f) at a selection of values of T (f), for a perceptron with input dimension
7, weights sampled from a centered uniform distribution and no threshold bias terms. We compare
to Figure 7, and observe that uniform sampling reduces slightly reduces the simplicity bias within
the sets Ft (see Appendix E.2).

E.2 SUBSTRUCTURE WITHIN {0,1}n

Consider a subset Hm ⊂ {0, 1}n such that 0 ∈ Hm. We have
(
n
m

)
such subsets. Then the marginal

distribution overHm is given by

P

( ∑
x∈Hm

1(〈w, x〉) = t

)
= 2−m (12)

This is again independent of the distribution of w (provided it’s symmetric about coordinate planes).
We give two example applications of Equation (12) in Equation (13). We use ∗ to mean any allowed
value, and sum over all allowed values,∑

∗
P (f = ”0 ∗ 0 ∗ . . . 0 ∗ 0 ∗ ”) = 2−(n−1)

∑
∗
P (f = ”0 ∗ ∗ ∗ . . . 0 ∗ ∗ ∗ ”) = 2−(n−2)

(13)

We can apply the same argument that we applied in Section 4 to any set of bits in f defined by some
Hm, to show that there is an “entropy bias” within each of these substrings. However, these identities
imply a strong bias within each Ft. For the case of full expressivity, assuming each value of t has
probability 2−n, and every string with the same value of t is equally likely, one gets probabilities
very close to those in Equation (13) (although slightly lower). However, the perceptron is not fully
expressive, so it is unclear how much the probabilities on Equation (13) are due purely to the entropy
bias, and how much is due to bias within each Ft.
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It is difficult to calculate the exact probabilities of any function for Gaussian initialisation5. It may
not be possible to fine-grain probabilities analytically further than Equation (12) (although we can
use the techniques in Section 4.3 to come up with analytic expressions for P (f) for all f ).

However, we can calculate some probabilities quite easily when w is sampled from a uniform distri-
bution, w ∼ Un(−1, 1). By way of example, we calculate P (f = f̃) for f̃ = ”0101 . . . 0101”. The
conditions for f̃ are as follows: wn > 0, wi < 0 ∀i 6= n and

∑
j wj > 0, so

P (f = f̃) = 2−n
∫ 1

0

xn−1

(n− 1)!
dx =

2−n

n!
(14)

Using Equation (3), we can calculate how much more likely the function is than expected,

P (f = f̃)

〈P (ft=2n−1)〉
=
|Ft=2n−1|

n!
(15)

For n = 5, we can calculate Equation (15) using6 |Ft=2n−1| = 370 and w ∼ Un(−1, 1) and
obtain P (f = f̃)/〈P (ft=2n−1)〉 = 3.08. This clearly shows that f̃ is significantly more likely than
expected just by using results from Equation (3). Empirical results further suggest that for Gaussian
initialisation of w, P (f = f̃)/〈P (ft=2n−1)〉 ≈ 10. This, plus data in Appendix E.1 suggest that
Gaussian initialisation may lead to more simplicity bias.

F TOWARDS UNDERSTANDING THE SIMPLICITY BIAS OBSERVED WITHIN Ft

Here we offer some intuitive arguments that aim to explain why there should be further bias towards
simpler functions within Ft.

We first need several definitions.

We define a set A ⊂ Rn≥0 such that a ∈ A iff ai < aj ∀ i < j, interpreted as the absolute values of
the weight vector.

We now define four sets, Γ Σ and Υ, which classify the types of linear conditions on the weights of
a perceptron acting on an n-dimensional hypercube:

1. Γ, the set of permutations in {1, . . . , n} (which we can interpret as permutations of the
axes in Rn or as possible orders of the absolute values of the weights if no two of them are
equal).

2. Σ = {−1,+1}n (which is interpreted as the signature of the weight vector)
3. Υ is the set of linear inequality conditions on components of a ∈ A, which include more

than two elements of a (so they exclude the conditions defining A.

A unique weight vector can be specified giving its signature σ ∈ Σ, the order of its absolute values
γ ∈ Γ, and a value of a ∈ A. On the other hand, a unique function can be specified by a set of linear
conditions on the weight vector w. These conditions can be divided into three types: Σ (signs), Γ
(ordering), and Υ (any other condition).

The intuition to understand the variation in complexity and probability over different functions is
the following. Each function corresponds to a unique set of necessary and sufficient conditions on
the weight vector (corresponding to the faces of the cone in weight space producing that function).
We argue that different functions have conditions which vary a lot in complexity, and we conjecture
that this correlates with their probability, as we discuss in Section 4.3 in the main text.

As a first approach in understanding this, we consider the role of symmetries under permutations
of dimensions. Any string that is symmetric under a permutation of k dimensions7, can’t have nec-
essary conditions that represent relative orderings of those k dimensions. Furthermore the set of

5Except for ft<3, because we know all functions within constant t for t < 3 are equivalent under permuta-
tion of the dimensions so all their probabilities are equal to the average probabilities given by Equation (3)

6370 unique functions were obtained by sampling 1010 weight vectors so this is technically a lower bound
7or example, “0101010...” is symmetric under permutation of n− 1 dimensions
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conditions must be invariant under these permutations. This strongly constraints the sets of condi-
tions that highly symmetric strings like “010101...” or “11111...00000...” can have, to be relatively
simple sets.

We now consider the set of necessary conditions in Υ for different functions. We expect that con-
ditions in Υ are more complex than those in Γ and Σ. Furthermore, we find that functions have a
similar number of minimal conditions8, so that more conditions in Υ seems to imply fewer condi-
tions in Γ and Σ, and therefore, a more complex set of conditions overall.

We are going to explicitly study the functions within each set of constant t, for some small values
of t, and find their corresponding conditions in Υ and Σ. We fix Γ to be the identity for simplicity.
The conditions for a particular function should include the conditions we find here plus their corre-
sponding conditions under any permutation of the axes which leaves the function unchanged. This
means that on top of the describing the conditions for a fixed Γ, we would need to describe the set
of axes which can be permuted. This will result in a small change to the Kolmogorov complexity of
the set of conditions, specially small for functions with many symmetries or very few symmetries.

We find that the conditions appear to be arranged in a decision tree (a consequence of Theorem 4.1)
with a particular form. First, we will prove the following simple lemma which bounds the value of
t that is possible for some special cases of σ.
Lemma F.1. We define tmin(σ) to be the minimum possible value of T (σ � a) for fixed σ over all
a. We define tmax similarly. Consider σ = (−1, . . . ,−1︸ ︷︷ ︸

k−1

,+1,−1, . . . ,−1︸ ︷︷ ︸
n−k

). Then:

1. tmax(σ) = 2k−1

2. tmin(σ) = k
3. Changing σi = {+1} for some i < k will lead to an increase in tmin(σ)

Proof. 1. For any a, f(x) = 1 for all (exactly k) points x ∈ {0, 1}n which satisfy

(xk = 1) and (xi = 1 for exactly one i ≤ k) and (xj = 0 if j 6= i, k)

We can set f(x) = 0 for all other x ∈ {0, 1}n by imposing the condition a1 + a2 > ak. Thus
tmin(σ) = k.

2. We can restrict the values of ai for i < k to be arbitrarily smaller than ak provided they satisfy
the ordering condition on a, and thus if we impose the condition

i=k−1∑
i=1

ai < ak

then for any a, f(x) = 1 for all x ∈ {0, 1}n which satisfy

(xk = 1) and (xl = 0 if l > k)

We can see that, for all a, f(x) = 0 for any x which does not satisfy these conditions, because
ak < al for all k < l and σk is the only positive element in σ. Thus tmax = 2k−1

3. On changing σ such that σi = {+1}, all x ∈ {0, 1}n which previously satisfied f(x) = 1 will
remain mapped to 1, plus at least the one-hot vector with ai = 1.

We will now sketch a procedure that allows one to enumerate the conditions in Υ and Σ (corre-
sponding to conditions on a and on σ respectively) such that they satisfy T (σ � a) = t, for any
given t.

1. From Lemma F.1 we see that all σi = −1 for i > t in order for tmin(σ) ≤ t.
2. Iterate through all 2t distinct σ which satisfy 1., and retain only those which also satisfy
tmin(σ) ≤ t. tmin(σ) can be computed by counting the number of inputs x ∈ {0, 1}n such
that for every xi = 1 with σi = −1, there exists a xj with j > i such that σj = 1. These
are all the x such that σ and a imply they are mapped to 1 without further conditions on a.

8In fact we conjecture that the number of conditions is close to n for most functions, although we empirically
find that it can sometimes be larger too
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3. Find conditions on these σ such that T (σ � a) = t. We can find the possible values of
T (σ � a) by first ordering the x in a way that satisfies x < x′ if x has less 1s than x′.
We then traverse the decision tree corresponding to mapping each of the x, in order, to
either 1 or 0. At each step, we propagate the decision by finding all x not yet assigned an
output, which can be constructed as a linear combination of x′s with assignments, where
the coefficients in the combination have opposite signs for x′ mapped to different outputs.
We stop the traversal if at some point more than t points are mapped to 1. Each of the
decisions in the tree, correspond to a new condition on a. We denote these conditions by υ.

For small values of t one can perform this search by hand. For example, we consider t = 4. We find
that all signatures with σi>4 = −1 are the only set that have tmin ≤ 4. As an example we consider
the signature σ = {+1,+1,−1, ...,−1). For this signature to result in T (σ � a) = 4, we need
conditions on x1 = (1, 1, 0, 1 . . . ) and x2 = (1, 1, 1, 0 . . . ) which are (a4 > a1 + a2) and (a3 <
a1 + a2). Figure 9 shows the full sets for t = 4 and t = 5. We observe that each branching
corresponds to complementary conditions - which is to be expected, as there exists a signature
producing t for any a, as per Theorem 4.1.

t = 4

a4 < a1 + a2

−−−+
a4 > a1 + a2

a3 < a1 + a2

+ +−−
a3 > a1 + a2

−−+−
(a) t=4

t = 5

a5 < a1 + a2

−−−−+
a5 > a1 + a2

a4 < a1 + a2

+ +−−−
a4 > a1 + a2

a4 < a1 + a3

−−−+−
a4 > a1 + a3

+−+−−
(b) t=5

Figure 9: We assume that the signs to the right of those shown are all negative. We can list the
various non-equivalent classes of functions and their conditions in a pictorial form. A condition at
any node in the graph is also a condition for any daughter node - by way of example, we would read
the conditions of t = 4 for the sign arrangement ++−− (see Figure 9a) as ((a4 > a1 +a2)∩(a3 <
a1 + a2)).

Each distinct condition on a and σ produces a unique function f , as the constructive procedure
above produces the inequalities on ai by specifying the outputs of each input not already implied by
the set of conditions, thus uniquely specifying the output of every input. We now show that there is
a large range in the number of conditions in Υ required to specify different function. First, as the
analysis in the proof of Lemma F.1 shows, for every t there exists a signature which only requires
one further condition,

σ = (−1, . . . ,−1︸ ︷︷ ︸
t−1

,+1,−1, . . . ,−1︸ ︷︷ ︸
n−t

), υ = at < a1 + a2

Furthermore, we prove in Lemma F.2 that for all n there is at least one function which has n − 2
conditions in Υ (which are neither in Σ or Γ). This implies that there is a large range in the number
of conditions in Υ for large n.

Lemma F.2. There exists a function with n−2 inequalities in Υ, that is not including those induced
by Σ or in Γ.

Proof. We prove this by induction.

Base case n = 2: There exists a function with minimal conditions corresponding to (1, 0) mapping
to 1 and (1, 1) mapping to 0.

Assume that in n dimensions, there exists a function with n minimal conditions corresponding to
points {pi}ni=1 with pi = (1, . . . , 1, 0, . . . , 0) with 1s in the first i positions, and 0 in the last n − i
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positions, being mapped to f(pi) = (1 + (−1)i+1)/2. Now, in n + 1 dimensions, we can extend
each of those n conditions (planes) by adding a 0 to the nth coordinate of each point pi. We now
consider a cone in n dimensions bounded by these planes and bounded by the wn+1 = 0 plane,
with wn+1 > 0 if n is even or wn+1 < 0 if n is odd. If n is even, we can keep increasing wn+1

until we cross the plane pn+1 = 0, with pn+1 = (1, . . . , 1). We do the same, decreasing wn+1

if n is odd. After we crossed the pn+1 = 0 plane, the boundaries of the plane will be {pi}n+1
i=1

with pi = (1, . . . , 1, 0, dots, 0) with 1s in the first i positions, and 0 in the last n + 1 − i positions,
finishing the induction.

We conjecture that more conditions in Υ (i.e. more complex conditions) correlates with lower
probability (if w is sampled from a Gaussian distribution). If this is true for higher t, we should
expect to see high probabilities correlating with lower complexities, which if true would explain the
“simplicity bias” we observe beyond the entropy bias.

G EXPRESSIVITY CONDITIONS

Lemma 5.1. A neural network with layer sizes 〈n, 2n−1, 1〉 can express all Boolean functions over
n variables.

Proof. Let f : {0, 1}n → {0, 1} be any Boolean function over n variables, and let t be the number
of vectors in {0, 1}n that f maps to 1. Let f be the negation of f , that is, f(x) = 1− f(x).

It is possible to express f as a Boolean formula φ in Disjunctive Normal Form (DNF) using t clauses,
and f as a Boolean formula ψ using 2n− t clauses (see Appendix B). Let φ and ψ be specified over
the variables x1 . . . xn.

We can specify a neural networkNφ = 〈Wφ1, bφ1,Wφ2, bφ2〉with layer sizes 〈n, t, 1〉 that expresses
f by mimicking the structure of φ. Let Wφ1[i,j] = 1 if xi is positive in the j’th clause of φ,
Wφ1[i,j] = −1 if xi is negative in the j’th clause of φ, and Wφ1[i,j] = 0 if xi does not occur in the
j’th clause of φ (note that if the construction in Appendix B is followed then every variable occurs
in every clause in φ). Let bφ1[j] = 1− γ, where γ is the number of positive literals in the j’th clause
of φ, let bφ2 = 0, and let Wφ2[j] = 1 for all j. Now Nφ computes f . Intuitively every neuron in the
hidden layer corresponds to a clause in φ, and the output neuron corresponds to an OR-gate.

We can similarly specify a neural networkNψ = 〈Wψ1, bψ1,Wψ2, bψ2〉with layer sizes 〈n, 2n−t, 1〉
that expresses f by mimicking the structure of ψ. Using this network we can specify a third network
Nθ = 〈Wθ1, bθ1,Wθ2, bθ2〉 with the same layer sizes as Nψ that expresses f by letting Wθ1 =
Wψ1, bθ1 = bψ1,Wθ2 = −Wψ2, and bθ2 = −bψ2 + 0.5. Intuitively Nθ simply negates the output
of Nψ .

Therefore, any Boolean function f over n variables is expressed by a neural network Nφ with layer
sizes 〈n, t, 1〉 and by a neural network Nθ with layer sizes 〈n, 2n − t, 1〉. Since either t ≤ 2n−1 or
2n − t ≤ 2n−1 it follows that any Boolean function over n variables can be expressed by a neural
network with layer sizes 〈n, 2n−1, 1〉.

Lemma 5.2. A neural network with l hidden layers and layer sizes 〈n, (n+2n−1−log2 l+1), . . . (n+
2n−1−log2 l + 1), 1〉 can express all Boolean functions over n variables.

Proof. Let f : {0, 1}n → {0, 1} be any Boolean function over n variables, and let t be the number
of vectors in {0, 1}n that f maps to 1. Let f be the negation of f , that is, f(x) = 1− f(x).

It is possible to express f as a Boolean formula φ in Disjunctive Normal Form (DNF) using t clauses,
and f as a Boolean formula ψ using 2n− t clauses (see Appendix B). Let φ and ψ be specified over
the variables x1 . . . xn.

Let Nφ = 〈Wφ1, bφ1, . . .Wφl+2, bφl+2〉 be a neural network with layer sizes 〈n, (n + dt/le +
1), . . . , (n+ dt/le+ 1), 1〉.
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For 2 ≤ k ≤ l:

• Let WφkA be an identity matrix of size n× n, and bφkA a zero vector of length i.

• Let WφkB be a matrix of size n × dt/le such that WφkB[i,j] = 1 if xi is positive in the
((k − 1) × (dt/le) + j)’th clause of φ, −1 if it is negative, and 0 if xi does not occur
in the ((k − 1) × (dt/le) + j)’th clause of φ (note that if the construction in Appendix
B is followed then every variable occurs in every clause in φ). Let bφkB be a vector of
length dt/le such that bφkB[j] = 1 − γ, where γ is the number of positive literals in the
((k − 1)× (dt/le) + j)’th clause of φ.

• Let WφkC be a unit matrix of size (dt/le+ 1)× 1, and let bφkC = [0].

• Let Wφk and bφk be the concatenation of WφkA, WφkB , WφkC and bφkA, bφkB , bφkC
respectively in the following way:

Wφk =

[
[WφkA] [WφkB ] 0(dt/le+1)×1

0n×n 0n×dt/le [WφkC ]

]
, bφk = [[bφkA] [bφkB ] [bφkC ]]

Let Wφ1 and bφ1 be the concatenation of WφkA, WφkB , and bφkA, bφkB respectively, where these
are constructed as above. Let Wφ(l+2) be a unit matrix of size (dt/le+ 1)× 1, and let bφ(l+2) = [0].

Now Nφ computes f . Intuitively each hidden layer is divided into three parts; n neurons that store
the value of the input to the network, dt/le neurons that compute the value of some of the clauses in
φ, and one neuron that keeps track of whether some clause that has been computed so far is satisfied.

We can similarly specify a neural network Nψ = 〈Wψ1, bψ1, . . .Wψl+2, bψl+2〉 with layer sizes
〈n, (n + d(2n − t)/le + 1), . . . , (n + d(2n − t)/le + 1), 1〉 that expresses f . Using this network
we can specify a third network Nθ = 〈Wθ1, bθ1, . . .Wθl+2, bθl+2〉 with the same layer sizes as Nψ
that expresses f by letting Wθk = Wψk, bθk = bψk for k ≤ l and Wθ(l+2) = −Wψ(l+2), and
bθ(l+2) = −bψ(l+2) + 0.5. Intuitively Nθ simply negates the output of Nψ .

Therefore, any Boolean function f over n variables is expressed by a neural network Nφ with layer
sizes 〈n, (n + dt/le + 1), . . . , (n + dt/le + 1), 1〉 and by a neural network Nθ with layer sizes
〈n, (n+d(2n− t)/le+1), . . . , (n+d(2n− t)/le+1), 1〉. Since either t ≤ 2n−1 or 2n− t ≤ 2n−1 it
follows that any Boolean function over n variables can be expressed by a neural network with layer
sizes 〈n, (n+d2n−1/le+1), . . . , (n+d2n−1/le+1), 1〉 = 〈n, (2n−1−log2 l+n+1), . . . (2n−1−log2 l+
n+ 1), 1〉.

H THEOREMS ASSOCIATED WITH ENTROPY INCREASE FOR DNNS

We define the data matrix for a general set of input points below.

Definition H.1 (Data matrix). For a general set of inputs, {x(i)}i=1,...,m, xi ∈ Rn, we define the
data matrix X ∈ Rm×n which has elements Xij = x(i)j , the j-th component of the i-th point.

Lemma 5.3. For any set of inputs S, the probability distribution on T of a fully connected feedforwad
neural network with linear activations, no bias, and i.i.d. initialisation of the weights is equivalent
to an perceptron with no bias and i.i.d. weights.

Proof. Consider a neural network with L layers and weight matrices w0 . . . wL (notation in Sec-
tion 5) acting on the set of points S. The output of the network on an input point x ∈ S equals
w̃x where w̃ = wLwL−1 . . . w1w0. As the weight matrices wi are i.i.d., their distributions are
spherically symmetric P (wi = aR) = P (wi = a) for any rotation matrix R in Rni and matrix
a ∈ Rni+1×ni . This implies that P (w̃ = aR) = P (w̃ = a). Because the value of T is independent
of the magnitude of the weight, |w̃|, this means that P (T = t) is equivalent to that of an perceptron
with i.i.d. (and thus spherically symmetric) weights.

One can make Lemma 5.3 stronger, by only requiring the first layer weights w0 to have a spherically
symmetric distribution, and be independent of the rest of the weights. If the set of inputs is the
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hypercube, S = Hn, one needs even weaker conditions, namely that the distribution of w0 is sym-
metric under reflections along the coordinate axes (as in Theorem 4.1) and has signs independent of
the rest of the layer’s weights. This implies that the condition of Theorem 4.1 is satisfied by w̃.

Lemma 5.4. Applying a ReLU function in between each layer produces a lower bound on P (T = 0)
such that P (T = 0) ≥ 2−n.

Proof. Consider the action of a neural network 〈n, l1, . . . , lp, 1〉 with ReLU activation functions
on {0, 1}n. After passing {0, 1}n through l1 . . . lp and applying the final ReLU function after lp,
all points must lie in Rn≥0 by the definition of the ReLU function. Then, if w is sampled from a
distribution symmetric under reflection in coordinate planes:

2−n = P (w · Rn≥0 ≤ 0) ≤ P (T = 0, ReLU)

This result also follows from Corollary H.7.

We observe P (T = 2n − 1) ≈ P (T = 0) because the two states are symmetric except in cases
where multiple points are mapped to the origin. This happens with zero probability for infinite width
hidden layers.

Theorem 5.5 Let S be a set of m = |S| input points in Rn. Consider neural networks with i.i.d.
Gaussian weights with variances σ2

w/
√
n and biases with variance σb, in the limit where the width

of all hidden layers n goes to infinity. Let N1 and N2 be such a neural networks with L and
L+ 1 infinitely wide hidden layers, respectively, and no bias. Then, the following holds: 〈H(T )〉 is
smaller than or equal for N2 than for N1. It is strictly smaller if there exist pairs of points in S with
correlations less than 1. If the networks has sufficiently large bias (σb > 1 is a sufficient condition),
the result still holds. For smaller bias, the result holds only for sufficiently large number of layers L.

Proof. The covariance matrix of the activations of the last hidden layer of a fully connected neural
network in the limit of infinite width has been calculated and are given by the following recurrence
relation for the covariance of the outputs9 at layer l [[cite]]:

Kl (x, x′) = σ2
b +

σ2
w

2π

√
Kl−1(x, x)Kl−1 (x′, x′)

(
sin θl−1

x,x′ +
(
π − θl−1

x,x′

)
cos θl−1

x,x′

)
(16)

θlx,x′ = cos−1

(
Kl (x, x′)√

Kl(x, x)Kl (x′, x′)

)
(17)

For the variance the equation simplifies to

Kl(x, x) = σ2
b +

σ2
w

2
Kl−1(x, x) (18)

The correlation at layer l is ρl(x, x′) =
Kl(x,x′)√

Kl(x,x)Kl(x′,x′)
, can be obtained using Equation (16)

above recursively as

ρl(x, x′) =
σ2
b +

σ2
w

2

√
Kl−1(x, x)Kl−1 (x′, x′)ρl0(x, x′)√

σ2
b +

σ2
w

2 K
l−1(x, x)

√
σ2
b +

σ2
w

2 K
l−1(x′, x′)

,

9Note that we can speak interchangeably about the correlations at hidden layer l − 1, or the correlations of
the output at layer l, as the two are the same. This is a standard result, which we state, for example, in the proof
of Corollary H.7
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where

ρl0(x, x′) =
1

π

(
sin cos−1

(
ρl−1(x, x′)

)
+
(
π − cos−1

(
ρl−1(x, x′)

))
ρl−1(x, x′)

)
.

For the case when σb = 0, this simply becomes to ρl(x, x′) = ρl0(x, x′).

This function is 1 when ρl−1(x, x′) = 1, and has a positive derivative less than 1 for 0 ≤
ρl−1(x, x′) < 1, which implies that it is greater than ρl−1(x, x′). Therefore the correlation be-
tween any pair of points increases if ρl−1(x, x′) < 1 or stays the same if ρl−1(x, x′) = 1, as you
add one hidden layer. By Lemma H.2, this then implies the theorem, for the case of no bias.

When σb > 0, we can write, after some algebraic manipulation

ρl(x, x′)

ρl−1(x, x′)
=

1 + γ
ρl0(x,x′)

ρl−1
0 (x,x′)√

1 + γ( 1
Kl−1(x,x)

+ 1
Kl−1(x′,x′)

) + γ2
(19)

≥ 1 + γa√
1 + γ 2

σ2
b

+ γ2
(20)

:= φ(γ), (21)

where γ =
σ2
wK

l−1(x,x′)

2σ2
b

> 0 and a =
ρl0(x,x′)

ρl−1
0 (x,x′)

> 1, and the inequality follows from Kl(x, x) ≥
σ2
b for any x, which follows from Equation (16).

We will study the behaviour of φ(γ) as a function of γ for different values of a and σ2
b . For γ = 0,

this function equals 1. If 1
a < σ2

b < a, its derivative is positive, and therefore is greater than 1 for

γ > 0. If a < σ2
b , there is a unique maximum for γ > 0 at γ =

aσ2
b−1

σ2
b−a

. Because the function tends
to a as γ → ∞, if it went below 1, then at some γ > 0 it should cross 1 (by the intermediate value
theorem), and by the mean value theorem, therefore it would have an extremum below one, and thus
a local minimum, giving a contradiction. Thus the function is always greater than 1 when σb > 1

a .

When σb < 1
a , φ(γ) can be less than 1, thus the decreasing the correlations, for some values of γ.

We know that if γ ≥ 2(1−aσ2
b)

(a2−1)σ2
b

the function is greater than or equal to 1. However, because of the
inequality in Equation (19), we can’t say what happens when γ is smaller than this.

From Equation (18), we know that if σ2
w ≥ 2, Kl−1(x, x) and Kl−1(x′, x′) grow unboundedly

as l grows. By the above arguments applied to the expression in Equation (19) before taking the
inequality, this implies that after some sufficiently large l, ρl(x,x′)

ρl−1(x,x′)
will be > 1. If σ2

w < 2,

Kl−1(x, x) and Kl−1(x′, x′) tend to σ2
b

1−σ2
w/2

which also becomes the fixed point of the equation
for Kl(x, x′), Equation (16), implying that ρl(x, x′) → 1 as l → ∞, so that the correlation must
increase with layers after a sufficient number of layers, and thus the moments by Lemma H.2.

Finally, applying Lemma H.8, the theorem follows.

Lemma H.2. Consider two sets of m input points to an n-dimensional perceptron without bias,
U and V with data matrices U and V respectively (see Definition H.1). If for all i, j = 1, ...,m,
(V V T )ij/

√
(V V T )ii(V V T )jj ≥ (UUT )ij/

√
(UUT )ii(UUT )jj , then every moment 〈tq〉 of the

distribution P (T = t) is greater for the set of points V than the set of points U .

Proof of Lemma H.2. We write T as:

Ts =

m∑
i=1

1(〈w, si〉)

Tu =

m∑
i=1

1(〈w, ui〉)
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The moments of the distribution P (Ts = t) can be calculated by the following integral:

〈tq〉S =

∫
S

m∑
i=0

· · ·
m∑
q=0

1(〈w, si〉)× · · · × 1(〈w, sq〉) P (S)dS

Where S = (S1, . . . , Sq). Taking the sum outside the integral,

=
∑
i...q

∫
1(〈w, si〉)× · · · × 1(〈w, sq〉)P (S)dS =

∑
i...q

P (〈w, si〉 > 0, . . . , 〈w, sq〉 > 0)

The distribution for U is of the equivalent form. From corolloray Corollary H.7, we have that
P (〈w, si〉 > 0, . . . , 〈w, sq〉 > 0) ≤ P (〈w, ui〉 > 0, . . . , 〈w, uq〉 > 0). Thus we have Equation (22)
for all q.

〈tq〉S < 〈tq〉U (22)

Lemma H.3. Consider an 2-dimensional Gaussian random variable with mean µ and covariance
Σ. If the correlation Σij/

√
ΣiiΣjj increases, then

P (xi > 0, xj > 0)

increases

Proof. We can write the non-centered orthant probability as a Gaussian integral

P (xi > 0, xj > 0) =

∫
R≥0

e−
1
2 (x−µ)T Σ−1(x−µ)dx

Without loss of generality, we consider Σii = Σjj = 1. Otherwise, we can rescale the variables x
and obtain a new mean vector.

The covariance matrix Σ thus has eigenvalues λ+ = 1 + Σij and λ− = 1−Σij with corresponding
eigenvectors (1, 1) and (1,−1). We can rotate the axis so that (1, 1) becomes (1, 0). We can then
rescale the x axis by 1/

√
λ+ and the y axis by 1/

√
λ−. The positive orthant becomes a cone C

centered around the origin and with opening angle α given by

tanα =

√
λ+

λ−
,

which increases when Σij increases. The integral in polar coordinates becomes∫
C
e−

r2

2 rdθdr.

Therefore, all that’s left to show is that the range of θ for any r increases when α increases. See Fig-
ure 10 for the illustration. Call γ the angle between one boundary of the cone C and the position
vector of the center of the Gaussian in the transformed coordinates. We can find the length of the
chord between the two points of intersection between the circle and the boundary of the cone as the
difference between the distances c−, c+, of the segments OA and OB, respectively. Using the cosine
angle formula, we find c± = d cos γ ±

√
r2 − d2 sin2 γ, and the chord length is

√
r2 − d2 sin2 γ,

which decreases as γ increases. Furthermore, γ increases as α increases. Using the same argument
for the other boundary of the cone, concludes the proof.
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Figure 10: Transformed 2D Gaussian for proof in Lemma H.3.

The following lemma shows that for a vector of n Gaussian random variables, the probability of two
variables being simultaneously greater than 0, given that all other any fixed signs, increases if their
correlation increases.

Lemma H.4. Consider an n-dimensional Gaussian random variable with mean 0 and covariance
Σ, x ∼ N (0,Σ). Consider, for any σ ∈ {−1, 1}n−2, the following probability

P ij00 := P (xi > 0, xj > 0|∀k /∈ {i, j}σkxk > 0)

If Σij/
√

ΣiiΣjj increases, then P ij00 increases.

Proof. We can write P ij00 = E[P (xi > 0, xj > 0|x̂i,j)], where x̂i,j is the vector of x without the ith
and jth elements, and the expectation is over the distribution of x̂i,j conditioned on the condition
∀k /∈ i, jσkxk > 0.

The conditional distribution P (xi, xj |x̂i,j) is also a Gaussian with a, generally non-zero mean µ,
and a covariance matrix given by

Σ̄ =

(
Σii Σji
Σij Σjj

)
− Σ̂,

where Σ̂ is independent of Σij . This means that increasing the Σji (keeping Σii and Σjj fixed) will
increase the correlation in Σ̄. Therefore, by Lemma H.3, P (xi > 0, xj > 0|x̂i,j) increases, and thus
P ij00 increases.

Corollary H.5. An immediate consequence of Lemma H.4 is that P (∀i, xi > 0) = P (xi > 0, xj >

0|∀k /∈ {i, j}xk > 0)P (∀k /∈ {i, j}xk > 0) increases when Σij/
√

ΣiiΣjj increases, as P (∀k /∈
{i, j}xk > 0) stays constant.
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Lemma H.6. In the same setting as Lemma H.4, for covariance matrices Σ and Σ′ of full rank,
the following holds: for every i, j, Σij = Σ′ij implies P ijK,00 = P ijK′.00 and Σij/

√
ΣiiΣjj >

Σ′ij/
√

Σ′iiΣ
′
jj implies P ijK.00 > P ijK′,00, where PK is the probability measure corresponding to

covariance K.

Proof. The set S of all symmetric positive definite matrices is an open convex subset of the set of
all matrices. Therefore, it is path-connected. We can traverse the path between Σ and Σ′ through
a sequence of points such that the distance between point xi and xi+1 is smaller than the radius of
a ball centered around xi and contained in the set S. Within this ball, one can move between xi
and xi+1 in coordinate steps that only change one element of the matrix. Therefore we can apply
Lemma H.4 to each step of this path, which implies the theorem.

Corollary H.7. Consider any set of m points x(i) ∈ Rn with elements x(i)j . Let X be the m × n
data matrix with Xij = x(i)j . For a weight vector w ∈ Rn let y = Xw be the vector of real-
valued outputs of an perceptron, with weights sampled from an isotropic Gaussian N (0, In). If the
correlation between any two inputs increases, then P (T = 0) = P ([

∑
s 1(s)] = 0) increases

Proof. The vector y =
∑
iXi·wi is a sum of Gaussian vectors (with covariances of rank 1), and

therefore is itself Gaussian, with a covariance given by Σ = XXT . If the correlation product
between any two inputs increases, then applying Lemma H.6 and Corollary H.5 at each step, the
theorem follows.

Lemma H.8. If the uncentered moments of the distribution P (T = t) increase, except for its mean
(which is 2n−1), then 〈H(t)〉 increases.

Proof. We consider the definition of the entropy, H , of a string (Definition 3.5). We define the first
and second terms by h1 = (t/tmax) ln(t/tmax) and h2 = (1− t/tmax) ln(1− t/tmax). We taylor
expand h2 about t = 0:

(1− t/tmax) ln(1− t/tmax) = (1− t/tmax)
∑
k

1

k

(
− t

tmax

)k
=
∑
k

(
1

k
+

1

k − 1

)(
t

tmax

)k
By symmetry, we see that h1(t) = h2(tmax− t)), and we can thus Taylor expand h1 around 0 tmax,
to give:

〈H(t)〉 = 〈
∑
k

ak(tk + (tmax − t)k)〉 = 〈
∑
k

2a2kt
2k〉 =

∑
k

2a2k〈t2k〉

Because every a2k = 1
2k(2k−1) is positive, we see that increasing every even moment increases the

average entropy, 〈H(t)〉.

I BIAS DISAPPEARS IN THE CHAOTIC REGIME

In the paper we have analyzed fully connected networks with ReLU activations, and find a general
bias towards low entropy for a wide range of parameters. In a stimulating new study, Yang et al.
((Yang & Salman, 2019)) recently showed an example of a network using an erf activation function
where bias disappeared with increasing number of layers.

Here we argue that the reason for this behaviour lies in the emergence of a chaotic regime, which
does not occur for ReLU activations, but does for some other activation functions. In particular, the
erf activation function is very similar to the tanh activation function used in an important series of
recent papers that studied the propagation of correlations between hidden layer activations through
neural networks, which they call “deep information propagation” ((Poole et al., 2016; Schoenholz
et al., 2017; Lee et al., 2018)). They find that the activation function can have a dramatic impact on
the behaviour of correlations. In particular, these papers show that for FCNs with tanh activation,
there are two distinct parameter regimes in the asymptotic limit of infinite depth: One in which
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inputs approach perfect correlation (the ordered regime), and one in which the inputs approach 0
correlation (the chaotic regime). FCNs with ReLU activation do not appear to exhibit this chaotic
regime, although they nevertheless have different dynamic regimes.

The particular example in (Yang & Salman, 2019) was for σw = 4.0, and σb = 0.0, a choice of
hyperparameters that, for sufficient depth, lies deep in the chaotic regime. In this regime, inputs
with initial correlations> −1 and< 1 will become asymptotically uncorrelated for sufficient depth,
while initial correlations with equal to ±1 stay fixed, as we show below. The network is therefore
equally likely to produce any odd function (on the {−1, 1}n Boolean hypercube).

To confirm our conjecture above, we performed experiments to calculate the bias of tanh networks
in both the chaotic and ordered regime, which we show in Figure 11. We obtain the expected results:
in the chaotic regime, the bias gets weaker with number of layers, while in the ordered regime, just
as was found for the ReLU activation in the main text, the bias remains, and the trivial functions gain
more probability. These experiment illustrate for tanh activation that in either the chaotic or ordered
regime, the a-priori bias of the network becomes asymptotically degenerate with depth, either by
becoming unbiased, or too biased.

(a) Chaotic regime, σw = 4.0, σb = 0.0 (b) Ordered regime, σw = 4.0, σb = 10.0

Figure 11: Probability versus rank (ranked by probability) of different Boolean functions
{−1, 1}7 → {−1, 1} produced by a neural network with 1 hidden layer with tanh activation,
and weights distributed by a Gaussian with different variance hyperparameters chosen to lie in the
chaotic (σb = 0.0) and ordered (σb = 10.0) regimes.

We now explain that a simple extension of the analysis of (Poole et al., 2016) shows that, for the
special case of σb = 0.0 and tanh activation function, initial correlations equal to±1 stay fixed. This
happens because the RHS in Equation 5. describing the propagation of correlation in (Poole et al.,
2016) (which we replicate in Equation (23) below) is odd on the correlation ql−1

12 (which represents
the covariance between a pair of activations for inputs 1 and 2 at layer l − 1) when σb = 0. In
addition to the fixed point they identified for the correlation being +1 there is therefore another
unstable fixed point at −1.

ql12 = C
(
cl−1
12 , ql−1

11 , ql−1
22 |σw, σb

)
≡ σ2

w

∫
Dz1Dz2φ (u1)φ (u2) + σ2

b (23)

u1 =

√
ql−1
11 z1,u2 =

√
ql−1
22

[
cl−1
12 z1 +

√
1−

(
cl−1
12

)2
z2

]
, (24)

where cl12 = ql12(ql11q
l
22)−1, and z1, z2 are independent standard Gaussian variables, and the q11 and

q22 are the variances of the activations for input 1 and input 2, respectively. This fixed point at −1
ensures that points which are parallel but opposite (like opposite corners in the {−1, 1}n hypercube)
will stay perfectly anti-correlated. This agrees with the expectation that the erf/tanh network with
σb = 0 can only produce odd functions, as the activations are odd functions. However, any other
pair of points becomes uncorrelated, and this explains why every (real valued) function, up to the
oddness constraint, is equally likely. This also implies that every odd Boolean function is equally
likely, as the region of function space satisfying the oddness constraint has the same shape within
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every octant corresponding to an odd Boolean function. This is because the region in one octant
is related to that on another octant by simply changing signs of elements of the function vector (a
reflection transformation).

It will be interesting to study the effect of these different dynamic regimes, for different activation
functions, on simplicity bias.

J BIAS TOWARDS LOW ENTROPY IN REALISTIC DATASETS AND
ARCHITECTURES

In the main text we demonstrate bias towards low entropy only for the Perceptron, where we can
prove certain results rigorously, and for a fully connected network (FCN). An obvious question is:
does this bias persist for other architectures or data sets? In this Appendix we show that similar bias
indeed occurs for more realistic datasets and architectures.

We perform experiments whereby we sample the parameters of a convolutional neural network
(CNN) (with a single Boolean output), and evaluate the functions they obtain on subsets of the
standard vision datasets MNIST or CIFAR10. Our results suggest that the bias towards low en-
tropy (high class imbalance) is a generic property of ReLU-activated neural networks. This has in
fact been pointed out previously, either empiricallyPage (2019), or for the limit of infinite depthLee
et al. (2018). Extending our analytic results to these more complicated architectures and datasets
is probably extremely challenging, but perhaps possible for some architectures, by analyzing the
infinite-width Gaussian process (GP) limit.
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(a) MNIST, σb = 0.0 (b) MNIST,σb = 1.0

(c) CIFAR10, uncentered,σb = 0.0 (d) CIFAR10, centered, σb = 0.0

Figure 12: Probability of different values of T for a CNN with 4 layers, no pooling, and ReLU
activations. The parameters were sampled 105 times and the network was evaluated on a fixed
random sample of 100 images from MNIST or CIFAR10. The parameters were sampled i.i.d. from
a Gaussian, with paramaters σw = 1.0, and σb = 0.0, 1.0. The input images from CIFAR10 where
either left uncentered (with values in range [0, 1]) (uncentered), or where centered by substracting
the mean value of every pixel (uncentered).

(a) (b)

Figure 13: Probability of different values of T for the perceptron with n = 7 input neurons and
σb = 0.0. The parameters were sampled 105 times and the perceptron was evaluated on a random
subsample of size 64 of either {0, 1}n ((a)) or {−1, 1}n ((b)). The weights were sampled i.i.d. from
a Gaussian, with paramaters σw = 1.0.
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K EFFECT OF THE BIAS TERM ON THE PERCEPTRON ON CENTERED DATA

Here we show that the bias towards low entropy is recovered for the perceptron on centered
({−1, 1}n) inputs, when the bias term is increased.

Figure 14: σb = 1.0

Figure 15: Probability of different values of T for the perceptron evaluated on {−1, 1}n inputs and
varying σb = 0.0. The parameters were sampled 107 times. The weights were sampled i.i.d. from a
Gaussian, with paramaters σw = 1.0.

L CONNECTION BETWEEN THE BIAS AT INITIALIZATION, INDUCTIVE BIAS
AND GENERALIZATION

In this appendix we describe more formally the connection between the distribution over functions
at initialization and the inductive biases, when training with an optimizer like SGD, and the link to
generalisation.

Following the ideas in (Valle-Pérez et al., 2018), we will first formally introduce an exact Bayesian
classifier for classification.

Let P (θ) be a prior distribution over parameters, which induces a prior distribution over Boolean
functions given by P (f) := P (Θf ), where we define Θf to be the set of parameter values that
produce the function f . We assume a 0-1 likelihood P (D|f) for data D = {(xi, yi)}mi=1, defined as

P (D|f) =

{
1 if ∀if(xi) = yi
0 otherwise

The likelihood on parameter space is defined as P (D|θ) := P (D|fθ), where fθ is the function
produced by parameter θ. The Bayesian posterior on function space is then

P (f |D) =
P (D|f)P (f)

P (D)
,

where P (D) =
∑
f P (D|f)P (f) is the marginal likelihood of the data. In parameter space, the

posterior is just P (θ|D) = P (D|θ)P (θ)
P (D)

For an exact Bayesian algorithm, like the one described above, the inductive bias (the preference of
some functions versus others, for a given dataset), is fully encoded in the prior P (f).

The connection with generalisation for the Bayesian learner described above can be expressed
through the PAC-Bayes theorem (McAllester, 1999; Valle-Pérez et al., 2018) which gives bounds on
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the expected generalization performance that depend on the marginal likelihood, which is just the
probability of the labelling of the data under the prior distribution. In this picture, the distribution
P (f) at initialization determines the full inductive bias, but only to extent to which the training
algorithm approximates the Bayesian posterior, with P (f) as its prior.

In (Valle-Pérez et al., 2018) it was shown that PAC-Bayes bounds work well for an FCN and a CNN
trained on CIFAR, and also for an FCN on Boolean data. The success of these bounds is indirect
evidence that the training algorithm (here different variants of SGD) is indeed behaving somewhat
like a Bayesian sampler.

We are aware that the claim in the paragraph above may be controversial, given that there is also a
literature arguing that SGD itself is an important source of the inductive bias of deep learning. So
it is important to also find direct evidence that that stochastic gradient descent (SGD) approximates
the Bayesian posterior with prior P (f).

In(Valle-Pérez et al., 2018), Fig 4, the probability P (f) was compared to the probability that two
variants of SGD generate functions, for the Boolean system. Good agreement was found, suggesting
that SGD indeed samples functions with a probability close to P (f), at least on the log scale and for
these problems.

Here we provide further evidence for this behaviour in Figure 16, where we compare the probabili-
ties of finding different Boolean functions upon training a fully connected neural network with SGD
to learn a relatively simple Boolean function versus the probabilities of obtaining those functions by
randomly sampling parameters until they fit the data (which we refer to as approximate Bayesian
inference, or ABI). We see that most functions in the sample show very similar probabilities to be
obtained by either SGD or ABI.
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Figure 16: Probabilities of finding functions by SGD versus by randomly sampling parameters
(ABI), conditioned on 100% training accuracy, for a training set of size 32 for learning a Boolean
function on {0, 1}7 with a fully connected neural network with layer widths (7,40,40,1). Both
the parameter sampling and SGD initialization where i.i.d. Gaussians with weight variances of
1/(layer width), and bias variances of 1. SGD used a batch size of 8, and cross-entropy loss, and
was stopped as soon as 100% accuracy was reached. Histogram shows number of functions on each
bin, and is normalized row-wise, so that a value of 1.0 corresponds to the maximum number of
functions in the row, and 0.0 corresponds to 0.0 functions. These are mapped to colors from yellow
(1.0) to purple (0.0) as shown in the colorbar.

Although we don’t yet have a formal theoretical explanation of this correlation, we can make the
following heuristic argument: The parameter-function map (defined in Section 3), is hugely biased,
typically over many orders of magnitude. The basins of attraction of the functions are also likely to
vary over many orders of magnitude in size, so that SGD is much more likely to find functions with
larger P (f), which have larger basins, than functions with smaller P (f) (See also (Wu et al., 2017)).
This argument would be sufficient to show that the bias upon initialisation (or equivalently upon
uniform random sampling of parameters) has an important effect on the functions that SGD finds.
However, empirically we find a stronger result, which is that SGD approximately samples functions
with a probability directly proportional to P (f). This agreement suggests another stronger ansatz:
As long as SGD samples the parameters more or less uniformly (within the region of likelihood 1),
then on function space the functions are samples with probabilities of the same orders of magnitude
as P (f |D).

Finally, preliminary results on MNIST and CIFAR data sets (using the GP approximation) exhibit a
similar scaling to what is observed in Figure 16. We are currently working further on this important
and complex question of how SGD samples functions.
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M EFFECT OF BIAS ON LEARNING

The effect of inductive biases such as the ones we discuss on learning is a vast and open research
project. In particular, we expect that bias towards low entropy should play a bigger role when trying
to learn class-imbalanced data. In class-imbalanced problems, one is often interested in quantities
beyond the raw test accuracy. For example, the sensitivity (the fraction of test-set misclassifications
on the rare class), and the specificity (the fraction of test-set misclassifications on the common class).
Furthermore, the use of tricks, like oversampling the rare class during optimisation, makes the formal
analysis of practical cases even more challenging. In this section, we show preliminary results
illustrating some of the effects that entropy bias in P (f) can have on learning.

In the experiments, we shift the bias term of the output neuron b 7→ b′ = b + shift. This causes the
functions at initialisation to have distributions P (T ) which may be biased towards higher or lower
values of T (mapping most inputs to 0 or 1). We measure the average 〈T 〉 for different choices of
the shift hyperparameter, and train the network, using SGD, on a class-imbalanced dataset. Here we
perform this experiment on a CNN with 4 layers (and no pooling), and a FCN with 1 layer. The
dataset consists of a sample of either MNIST (10 classes) or balanced EMNIST (47 classes), where
a single class is labelled as 0, and the rest are labelled as 1.

We see in Figure 17 that values of the shift hyperparameter producing large values 〈T 〉 give higher
test accuracy. We suggest that this could be because the new parameterisation induced by the shifted
bias term10, causes the inductive bias is more “atuned” to the correct target function (which has a
class imbalanced of 1:10 and 1:47, respectively for MNIST and balanced EMNIST). However, the
detailed shape of the curve seems architecture and data dependent. For instance, for the FCN (with
ReLU or tanh activation) trained on MNIST we find a clear accuracy peak around the true value of
〈T 〉, but not for the others.

We also measured the sensitivity and 99% specificity (found by finding the smallest threshold value
of the sigmoid unit, giving 99% specificity). Sensitivity seems to follow a less clear pattern. For
two of the experiments, it followed the accuracy quite closely, while for FCN trained on MNIST it
peaked around a positive value of the ship hyperparameter.

These results suggest that looking at architectural changes that affect the entropy bias of P (f) can
have a significant effect on learning performance for class-imbalanced tasks. For example, for the
tanh-activated FCN, increasing the shift hyperparameter above 0 improves both the accuracy and
sensitivity significantly. As we mentioned at the beginning, understanding the full effect of entropy
bias, and other biases on P (f), on learning is a large research project. In this paper, we focused
on explaining properties of P (f), while only showing preliminary results on the effect of these
properties on learning.

10Note that the shifted bias reparameterisation is equivalent to a shifted initialization in the original parame-
terisation. For more complex reparameterisation, this may not be the case

37



Under review as a conference paper at ICLR 2020

(a) CNN with ReLU,MNIST (b) FCN with ReLU, MNIST

(c) FCN with ReLU, EMNIST (d) FCN with tanh, MNIST

Figure 17: Test accuracy, sensitivity (at 99% specificity), and 〈T 〉 versus the shift hyperparameter
(shift of the bias term in the last layer), for different architectures and datasets. The networks
were trained with SGD (batch size 32, cross entropy loss), until reaching 100% training accuracy.
Accuracies and sensitivities are averages over 10 SGD runs with random initializations (σb = 0.0,
σw = 1.0). The dataset had size 100 for MNIST, and 500 for EMNIST. Images are centered, so
pixel values have their mean over the whole dataset substracted. The values of 〈T 〉 are estimated
from 100 random parameter samples and evaluating on the same data we train the network on.
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