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Abstract

We study system design problems stated as parameterized stochastic programs with a
chance-constraint set. We adopt a Bayesian approach that requires the computation of
a posterior predictive integral which is usually intractable. In addition, for the problem
to be a well-defined convex program, we must retain the convexity of the feasible set.
Consequently, we propose a variational Bayes-based method to approximately compute
the posterior predictive integral that ensures tractability and retains the convexity of the
feasible set. Under certain regularity conditions, we also show that the solution set obtained
using variational Bayes converges to the true solution set as the number of observations
tends to infinity. We also provide bounds on the probability of qualifying a true infeasible
point (with respect to the true constraints) as feasible under the VB approximation for a
given number of samples.

1. Introduction

A general system design problem can be formally stated as the following constraint opti-
mization problem

minimize f(x, ξ) (TP)

s.t. gi(x, ξ) ≤ 0, i ∈ {1, 2, 3, . . . ,m},

where x ∈ X ⊆ Rp is the input/control vector in a convex set X and ξ ∈ Θ ⊆ Rq is
the system parameter vector. The function f(x, ξ) : X × Θ 7→ R encodes the cost/risk
associated with the given values of parameter and control variable ξ and x respectively.
Similarly, the functions gi(x, ξ) : X × Θ 7→ R define the constraints on ξ and x. Under
certain regularity conditions on the cost and the constraint functions, and for a given value
of the true system parameter ξ0, the problem (TP) at ξ = ξ0 can be solved to obtain the
optimal control vector x∗. In practice, the true system parameters are unknown and these
parameters must be estimated using observed data.

In this paper, we take a Bayesian approach and model the uncertainty over the param-
eters ξ by computing a posterior distribution π(ξ|Xn) for a given prior distribution π(ξ)
and the likelihood Pξ(Xn) of observing data Xn. We approximate the true problem (TP),
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using the posterior distribution, with the following joint chance-constrained problem:

minimize Eπ(ξ|Xn)[f(x, ξ)] (BJCCP)

s.t. π (gi(x, ξ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|Xn) ≥ β,∀x ∈ X ,

where β ∈ (0, 1) is the specified confidence level desired by the decision maker (DM) based
on the requirement, usually β > 1

2 . We provide a supporting example (see Appendix B) to
motivate the chance-constraint formulation as opposed to using expectations, in which case
the constraints are only satisfied on an average. The unconstrained version of the above
problem has been studied as a special case in Jaiswal et al. (2019).

In practice, computing posterior distributions is challenging and mostly intractable,
and is typically approximated using Markov Chain Monte Carlo (MCMC) or Variational
Bayesian(VB) methods. MCMC methods has its own drawbacks like poor mixing, large
variance, and complex diagnostics, which have been the usual motivation for using VB (Blei
et al., 2017). Here, we provide another important motivation for using VB in the chance-
constrained Bayesian inference setting. In particular, we present an example (motivated
from Pena-Ordieres et al. (2019)) where a sampling based approach to approximate the
chance-constraint convex feasibility set (constraint set) in (BJCCP), results in a non-convex
approximation; whereas an appropriate VB approximation retains its convexity. Therefore,
we approximate (BJCCP) using a VB approximate posterior q∗(ξ|Xn) to π(ξ|Xn) as:

minimize Eq∗(ξ|Xn)[f(x, ξ)] (VBJCCP)

s.t. q∗ (gi(x, ξ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|Xn) ≥ β,∀x ∈ X .

Under certain regularity conditions, we also show that the optimizers of (VBJCCP) are
consistent with those of (TP). More precisely, we show that the solution set obtained in
(VBJCCP) converges to the true solution set as the number of observations, n tends to
infinity. We also provide bounds on the probability of qualifying a true infeasible point
(with respect to the true constraints) as feasible under the VB approximation for a given
number of samples. As part of the future work, we want to analyze the risk-sensitive
VB approximation of the (BJCCP), where the risk is quantified as the deviation of the
approximate feasibility set from the true.

2. Variational Bayes for Chance-Constrained System Design

Bayesian statistics delineates natural principles to model uncertainty in parameter estima-
tion, using observed data combined with prior knowledge. Let Xn = {X1, X2, . . . , Xn},
be n independent and identically distributed samples from the F measurable random vec-
tor X(ω) with support Ω ⊂ Rd on probability space (Ω,F , Pξ), with Pξ as the associated
probability measure, with parameter ξ.

Using the posterior distribution π(ξ|Xn), we approximate (TP) as a data-driven joint
chance-constrained problem, stated formally as:

minimize Eπ(ξ|Xn)[f(x, ξ)] (BJCCP)

s.t. π (gi(x, ξ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|Xn) ≥ β,∀x ∈ X .
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and β ∈ (0, 1) is the specified confidence level desired by the decision maker (DM) based
on the requirement. These are the two significant challenges in solving (BJCCP):

1. Computing the posterior distribution: While in some cases conjugate priors can be used,
this is not acceptable in most problems; resulting in an intractable computation. The
posterior intractability is the common motivation for using VB (Blei et al., 2017) and
MCMC techniques for approximate Bayesian inference.

2. Convexity of the feasibility set: Ideally, one should expect (BJCCP) to be a convex pro-
gram to take advantage of the well established convex solvers. But, even if the posterior
distribution is computable, to qualify (BJCCP) as a convex program, the feasibility set,

{x ∈ X : π (gi(x, ξ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|Xn) ≥ β} (1)

must be convex. It might be possible that the above set is not convex even when the
underlying constraint functions gi(x, ξ), i ∈ {1, 2, . . .m} are so (in x) and thus finding a
global optimum becomes challenging (Prékopa, 1995).

Note that, if the constraint function has some specified structural regularity and the
posterior distribution belongs to a certain class of distributions, then it can be shown that
the feasibility set in (1) is convex. For instance, it can be shown that if the constraint
functions gi(x, ξ), i ∈ {1, 2, . . .m} are quasi-convex in (x, ξ) and the distribution is log-
concave then the feasibility set in (BJCCP) is convex ((Shapiro et al., 2009, Chapter 4) and
Prékopa (2003)). Also, Lagoa et al. (2005) showed that if the constraint function gi(x, ξ) is
of the form {aTx ≤ b}, where ξ = (aT , b)T and has a symmetric log-concave density then
with β > 1

2 the feasibility set in (BJCCP) is convex.
To address the posterior intractability, Monte Carlo (MC) methods offer one way to

do approximate Bayesian inference with asymptotic guarantees. However, their asymptotic
guarantees are offset by issues like poor mixing, large variance and complex diagnostics
in practical settings with finite computational budgets. Apart from these common issues,
there is another important reason due to which any sampling-based method can not be used
directly to solve (BJCCP). Using the empirical approximation to the posterior distribu-
tion (constructed using the samples generated from MCMC algorithm) to approximate the
chance-constraint feasibility set in (BJCCP), results in a non-convex feasibility set (Pena-
Ordieres et al., 2019). To illustrate this, consider the following simple example (modified
slightly) of a chance-constraint feasibility set from Pena-Ordieres et al. (2019). We plot in
Figure 1(a) the following chance-constraint feasibility set{

x ∈ R2 : N
(
ξTx− 1 ≤ 0|µ = [0, 0]T ,ΣA = [1,−0.1;−0.1, 1]

)
> β

}
, (2)

and its empirical approximator using 8000 MCMC (Metropolis-Hastings with 3000 burn-in
samples ) samples generated from the underlying correlated multivariate Gaussian distri-
bution. We observe that the resulting MC approximate feasibility set is non-convex.

Therefore, due to the posterior intractability and the non-convexity of the feasible region
when using sampling approaches, as an alternative, we propose to use Variational Bayes
(VB) methods. The idea behind VB is to approximate the intractable posterior π(ξ|Xn)
with an element q∗(ξ|Xn) of a simpler variational family Q. Examples of Q include the

3



Jaiswal Honnappa Rao

family of Gaussian distributions, delta functions, or the family of factorized ‘mean-field’
distributions that discard correlations between components of ξ. The variational solution
q∗ is the element of Q that is ‘closest’ to π(ξ|Xn), where closeness is usually measured in
the Kullback-Leibler (KL) sense. Thus,

q∗(ξ|Xn) := argminq∈QKL(q(θ)‖π(ξ|Xn)). (3)

Using this, we approximate (BJCCP) with,

minimize Eq∗(ξ|Xn)[f(x, ξ)] (VBJCCP)

s.t. q∗ (gi(x, ξ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|Xn) ≥ β,∀x ∈ X ,

where β is the confidence level. Choosing the approximation to the posterior distribution
from a class of ‘simple’ distributions would facilitate in addressing the two critical problems
associated with (BJCCP). Besides the tractability of the posterior distribution, for instance,
using the results in Prékopa (2003) and Lagoa et al. (2005) the choice of a log-concave family
of distributions as the approximating family could retain the convexity of the feasibility set,
if the constraint functions have certain structural regularity.

Next, we show that using the popular mean-field variational family to approximate
the correlated multivariate Gaussian distribution in the same example in (2), we obtain
a smooth and convex approximation to the (BJCCP) feasibility set. First, we compute
mean-field approximation qA(ξ) and qB(ξ) of N

(
ξ|µ = [0, 0]T ,Σ

)
for fours different co-

variance matrices Σ, with fixed variance σ11 = σ22 = 1 but varying covariance σ12 =
{−0.1,−0.025, 0.025, 0.1}. Then, we plot the respective approximate VB chance-constraint
feasibility region in Figure 1. We observe that VB approximation provides a smooth convex
approximation to the true feasibility set, but it could be outside the true feasibility region
if the ξ1 and ξ2 are positively correlated.

(a) σA12 = −0.1 (b) σB12 = −0.025 (c) σC12 = 0.025 (d) σD12 = 0.1

Figure 1: Feasible Region : True Distribution vs Monte Carlo Approximation (5000 samples) vs.
VB (mean field approximation).

2.1. Theoretical properties of (VBJCCP)

In this section, we establish theoretical guarantees on the approximate optimal solution set
S∗V B(Xn) obtained using the VB approximation and show that it converges to the optimal
solution set S∗ of (TP) almost surely in P0. We show similar result for their corresponding
optimal values V ∗V B(Xn) and V ∗. The consistency of the approximate solution follows
using techniques from the variational calculus and the consistency of the VB-approximate
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posterior distribution, which is proved under certain conditions on the prior distribution,
likelihood model, and the variational approximation in Wang and Blei (2018). For brevity,
we state the following results without any assumptions and proofs; it will be stated formally
in Appendix C.

Proposition 1 We show that V ∗V B(Xn) → V ∗ P0 − a.s. and D(S∗V B(Xn),S∗) → 0 P0 −
a.s. as n → ∞, where D(A,B) := supx∈A infy∈B ‖x − y‖, is the distance between two sets
A and B.

In the next result, we show that the solution obtained in (VBJCCP) are feasible with high
probability. Let us define the set where the true constraint i ∈ {1, 2, . . .m} is satisfied
as F i0 := {x ∈ X : {gi(x, ξ0) ≤ 0}, }, and VB-approximate feasibility set is denoted as
F̂V B(Xn) := {x ∈ X : q∗ (gi(x, ξ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|Xn) ≥ β}. We prove the next
result using the convergence rate results for VB approximation in Zhang and Gao (2019).

Proposition 2 We show that if x ∈ X\F i0, then there exists constant Ci > 0 for each
i ∈ {1, 2, . . .m}, such that P0[x ∈ F̂V B(Xn)] ≤ Ci

β (ε2n + η2
n), where ε2n → 0 as n → ∞ and

η2
n := 1

n infq∈Q EP0

[∫
Θ q(ξ) log q(ξ)

π(ξ|Xn)dξdξ
]
.
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András Prékopa. Probabilistic programming. Handbooks in operations research and man-
agement science, 10:267–351, 2003.

Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on stochastic
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Appendix A. A System Design Problem

To illustrate the system design problem in (TP) with an example, we model a queueing
system and show that the optimal staffing problem aptly fits into the above framework.
Consider a staffing problem where the decision maker (DM) has to decide the optimal
number of servers, c, after observing the arrival and service data in an M/M/c queueing
system; a queueing system where the inter-arrival times and service times are exponentially
distributed (Markovian) with c number of servers, is denoted as M/M/c queueing system.
We assume that the rate parameters of the exponentially distributed inter-arrival and service
times distribution are unknown and denoted as λ and µ respectively. Note that λ and µ,
combined together form the system parameter ξ = {λ, µ} and the number of servers c is the
control/input variable. The DM first uses a single server and collects data after the system
reaches its ‘steady state’. Since the DM observed congestion in the queues, he/she decides to
employ more servers. The DM collects n realizations of the random vector V := {T, S,E},
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denoted as Xn := {V1, . . .Vn} where T , S, and E are the random variables denoting the
arrival, service-start, and service-end time of each customer i ∈ {1, 2, . . . n} respectively. We
also assume that there is no time lag between the two successive states for any customer
and the inter-arrival and service times are independent, that is Ti − Ti−1 is independent
of Ei − Si for each i ≥ 1. The joint likelihood of the arrival and departure times for n
customers is

Pξ(Xn) :=

n∏
i=1

λe−λ(Ti−Ti−1)µe−µ(Ei−Si).

Constraint functions: The DM chooses the number of servers c to maintain a constant
measure of congestion. Congestion is usually measured as 1−Wq(c, λ, µ), where Wq(c, λ, µ)
is the probability that the customer did not wait in the queue. The closed-form expression
for 1−Wq(c, λ, µ) is known to be (see Gross et al. (2008))

1−Wq(c, λ, µ) =
rc

c!(1− ρ)

/(
rc

c!(1− ρ)
+

c−1∑
t=0

rt

t!

)
,

where r = λ
µ and ρ = r

c with ρ < 1. ρ is also known as traffic intensity and for a stable
queue ρ < 1. DM fixes α, which is maximum desired fraction of customers delayed in queue
and the smallest c is chosen that satisfies:

(α− {1−Wq(c, λ, µ)}) > 0 and (cµ− λ) > 0.

Referring to the queueing literature, we will use the term the Quality of Service(QoS)
constraint for the first constraint. The corresponding constraint optimization problem is

minimize c (TP-Q)

s.t. (α− {1−Wq(c, ξ)}) > 0 (QoS),

(cµ− λ) > 0.

The above staffing problem and its variations are well studied in the queueing literature;
interested reader may refer to Gans et al. (2003) and Aksin et al. (2009).

Appendix B. Other Data-Driven Approaches to solve (TP)

Since the system parameters are unknown in practice, these are usually estimated using the
observed data Xn. The simplest approach could be to substitute the maximum likelihood
estimates(MLE) ξ̂(Xn) of the parameters ξ in the (TP) and solve the following approximate
problem:

minimize f(x, ξ̂) (TP-MLE)

s.t. gi(x, ξ̂) ≤ 0, i ∈ {1, 2, 3, . . . ,m}.

We solved the queueing staffing problem in Appendix A using the MLE approach on sim-
ulated data (n observations, with n in 50-400 in increments of 50) and computed the ap-
proximate optimal number of servers denoted as CnMLE . We repeated this experiment over
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n 50 100 150 200 250 300 350 400

φ(CnMLE) 0.52 0.56 0.57 0.57 0.61 0.62 0.58 0.56

Table 1: Fraction of times Cn
MLE violates QoS constraint. λ0 = 16, µ0 = 4, α = 0.37.

100 sample paths and computed φ(CnMLE), the fraction of experiments CnMLE violates the
QoS constraint. Table 1 shows that the QoS constraint is violated in over 50% of the
experiments.

It is anticipated that the MLE approach is unable to capture the uncertainty in param-
eter estimation therefore an alternative method is proposed using forecasting techniques.
In this approach first, the uncertainty over the parameter estimation is captured by fore-
casting a probability distribution P (ξ) over the system parameters and then the forecast
distribution is used to solve the (TP) problem using one of the following two formulations:

• Average-Constraint(AC)

minimize EP [f(x, ξ)] (TP-FAC)

s.t. EP [gi(x, ξ)] ≤ 0, i ∈ {1, 2, 3, . . . ,m},

• Chance-Constraint(CC)

minimize EP [f(x, ξ)] (TP-FCC)

s.t. P {gi(x, ξ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}} > β,

where β ∈ (0, 1) is the confidence level.

Now consider a simple example from Hong et al. (2011), where the true problem is to find
c∗ = min{c : ξ−c ≤ 0}. Since, ξ is unknown the DM uses data to forecast that ξ ∼ N (·|0, 1)
is normally distributed. Using the AC formulation, notice that the approximate optimal
solution c∗A = min{c : Eξ[ξ]− c ≤ 0} = 0 and Pξ{ξ ≥ c∗A} = 0.5. The above simple example
shows that AC optimal solution could violate the constraint 50% of the times. On the other
hand, CC formulation enables the DM to ensure that the approximate optimal solution
satisfy the constraints with higher confidence by setting a higher confidence level(β). In
forecasting approach, the DM needs to forecast each time the new data is collected. We
propose a principled data-driven approach using Bayesian methods, wherein we combine
forecasting and optimization. A similar approach has also been discussed in Aktekin and
Ekin (2016) to solve the M/M/c staffing problem with abandonment, but crucially relies
on the availability of conjugate priors.

Appendix C. Proofs

C.1. Proof of Proposition 1

Assumption C.1 We assume that the function f(x, ξ) and gi(x, ξ),∀i ∈ {1, 2, . . .m} are
Carathéodory functions; that is f(x, ·) and gi(x, ·) are measurable for every x ∈ X , and
f(·, ξ) and g(·, ξ) are continuous for almost every ξ ∈ Θ. We also assume that f(·, ξ) is
locally Lipschitz continuous in x for almost every ξ ∈ Θ and f(x, ·) is uniformly integrable
with respect to any q ∈ Q, the variational family.
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Next define an indicator function I(−∞,0](t) := 1 if t ≤ 0 and 0 if t > 0 .

Lemma 3 We show that for each x ∈ X

lim
n→∞

q∗

(
m∏
i=1

I(−∞,0](gi(x, ξ))|Xn

)
=

m∏
i=1

I(−∞,0](gi(x, ξ0)) P0 − a.s.

Proof Recall the result in Wang and Blei (2018) that the VB approximate posterior
q∗(ξ|Xn) is consistent; that is for every η > 0.

lim
n→∞

∫
‖ξ−ξ0‖>η

q∗(ξ|Xn)dξ = 0 P0 − a.s. (4)

Observe that for any x ∈ X and η > 0,

q∗

(
m∏
i=1

I(−∞,0](gi(x, ξ))|Xn

)
=

∫
Θ

m∏
i=1

I(−∞,0](gi(x, ξ))q∗(ξ|Xn)dξ

=

∫
‖ξ−ξ0‖>η

m∏
i=1

I(−∞,0](gi(x, ξ))q∗(ξ|Xn)dξ +

∫
‖ξ−ξ0‖≤η

m∏
i=1

I(−∞,0](gi(x, ξ))q∗(ξ|Xn)dξ.

(5)

Observe that, the result in (4) combined with the fact that the first term in (5) is always
positive and bounded, implies that limn→∞

∫
‖ξ−ξ0‖>η

∏m
i=1 I(−∞,0](gi(x, ξ))q∗(ξ|Xn)dξ =

0 P0 − a.s. Now taking limits on either side of (5), we have

lim
n→∞

q∗

(
m∏
i=1

I(−∞,0](gi(x, ξ))|Xn

)
= lim

n→∞

∫
‖ξ−ξ0‖≤η

m∏
i=1

I(−∞,0](gi(x, ξ))q∗(ξ|Xn)dξ P0 − a.s,

=
m∏
i=1

I(−∞,0](gi(x, ξ0)) P0 − a.s (6)

and the lemma follows.

Next we define hypo-convergence and epi-convergence of a sequence of function {hk(x)}
to h(x).

Definition 4 (Hypo-convergence) A sequence of functions {hk(x)} hypo-converges to
h(x); that is hypo− limn→∞ hk(x) = h(x), if

1. for every xk → x, lim supk→∞ hk(xk) ≤ h(x), and

2. there exists a sequence xk → x, such that lim infk→∞ hk(xk) ≥ h(x).

Definition 5 (Epi-convergence) A sequence of functions {hk(x)} epi-converges to h(x);
that is ep− limn→∞ hk(x) = h(x), if

1. for every xk → x, lim infk→∞ hk(xk) ≥ h(x), and
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2. there exists a sequence xk → x, such that lim supk→∞ hk(xk) ≤ h(x).

Lemma 6 Under Assumption C.1, we show that,

1. for each x ∈ X , limn→∞ Eq∗(ξ|Xn)[f(x, ξ)] = f(x, ξ0) P0 − a.s.

2. and, ep− limn→∞ Eq∗(ξ|Xn)[f(xn, ξ)] = f(x0, ξ0) P0 − a.s.

Proof Due to Assumption C.1, both the results above are a direct consequence of the
result in Dupacova and Wets (1988, Theorem 3.7).

Lemma 7 We show that under Assumption C.1, q∗
(∏m

i=1 I(−∞,0](gi(x, ξ))|Xn

)
hypo-

converges to
∏m
i=1 I(−∞,0](gi(x, ξ0)) P0 − a.s as n→∞; that is

hypo− lim
n→∞

q∗

(
m∏
i=1

I(−∞,0](gi(x, ξ))|Xn

)
=

m∏
i=1

I(−∞,0](gi(x, ξ0)) P0 − a.s. (7)

Proof Since by Assumption C.1 each gi(x, ξ0) is continuous in x, therefore I(−∞,0](gi(x, ξ0))
is upper-semicontinuous(USC) in x because I(−∞,0](·) is USC. Also, since the product of non-
negative USC functions are also USC, it follows that

∏m
i=1 I(−∞,0](gi(x, ξ0)) is USC. Simi-

larly, since by assumption gi(x, ξ) is Carathéodory function, therefore
∏m
i=1 I(−∞,0](gi(x, ξ))

is a random upper-semicontinuous function (Dupacova and Wets, 1988). Now, using the
reverse Fatou’s Lemma, for any xk → x0

lim sup
xk→x0

∫
Θ

m∏
i=1

I(−∞,0](gi(x, ξ))q∗(ξ|Xn)dξ ≤
∫

Θ
lim sup
xk→x0

m∏
i=1

I(−∞,0](gi(x, ξ))q∗(ξ|Xn)dξ

≤
∫

Θ

m∏
i=1

I(−∞,0](gi(x0, ξ))q∗(ξ|Xn)dξ, (8)

therefore
∫

Θ

∏m
i=1 I(−∞,0](gi(x, ξ))q∗(ξ|Xn)dξ is also upper-semicontinuous in x. Also, since

−
∏m
i=1 I(−∞,0](gi(x, ξ)) ∈ {−1, 0} is a bounded random lower-semicontinuous function and

q∗(ξ|Xn)⇒ δξ0 P0−a.s (Wang and Blei, 2018), Theorem 3.7 in Dupacova and Wets (1988)
implies that

hypo− lim
n→∞

q∗

(
m∏
i=1

I(−∞,0](gi(x, ξ))|Xn

)
=

m∏
i=1

I(−∞,0](gi(x, ξ0)) P0 − a.s; (9)

and the result follows.

Proof [Proof of Proposition 1] We will first show that the assertion of the theorem is true
for m = 1. Recall S∗V B(Xn) is the solution of (VBJCCP): and S∗ is the solution of (TP).

Now observe that, since both q∗ (g(x, ξ) ≤ 0|Xn) and I(−∞,0](g(x, ξ0)) are upper- semi-
continuous their corresponding super-level sets are closed; and if X is bounded than the

10
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corresponding feasible sets are also compact. Also, if the the corresponding feasibility sets
are non-empty then the corresponding optimal sets S∗V B(Xn) and S∗ are also non-empty.

Next let us assume that there exists a true solution x∗ of (TP) which lies in the interior
of X , that is for any ε > 0, there is x ∈ X such that ‖x−x∗‖ < ε and g(x, ξ0) ≤ 0. It implies
that there exists a sequence {xk} ⊂ X such that xk → x∗ as k → ∞ and g(xk, ξ0) ≤ 0
for all k ≥ 1. Now fix x ∈ X such that g(x, ξ0) ≤ 0. Since, due to our result in Lemma 3
q∗ (g(x, ξ) ≤ 0|Xn) converges pointwise to I(−∞,0](g(x, ξ0)) P0 − a.s, therefore there exists
an n0 such that for all n ≥ n0, we have q∗ (g(x, ξ) ≤ 0|Xn) ≥ β. Hence for all n ≥ n0, x is a
feasible solution of (VBJCCP) and therefore Eq∗(ξ|Xn)[f(x, ξ)] ≥ V ∗V B(Xn). Taking lim sup
on either sides, we obtain

lim sup
n→∞

V ∗V B(Xn) ≤ lim sup
n→∞

Eq∗(ξ|Xn)[f(x, ξ)] = f(x, ξ0) P0 − a.s,

where the last inequality follows from Lemma 6 (1). Now, since x can be chosen arbitrarily
close to x∗, it follows that

lim sup
n→∞

V ∗V B(Xn) ≤ f(x∗, ξ0) = V ∗ P0 − a.s. (10)

Next, let x̂n ∈ S∗V B; that is x̂n ∈ X , q∗ (g(x̂n, ξ) ≤ 0|Xn) ≥ β and V ∗V B(Xn) = Eq∗(ξ|Xn)[f(x̂n, ξ)].
Since X is compact, we assume that x̂n → x∗ P0−a.s. Due to Lemma 7, q∗ (g(x, ξ) ≤ 0|Xn)
hypo-converges to I(−∞,0](g(x, ξ0)) P0 − a.s as n→∞, therefore we have

lim sup
n→∞

q∗ (g(x̂n, ξ) ≤ 0|Xn) ≤ I(−∞,0](g(x∗, ξ0)). (11)

Now using the fact that q∗ (g(x̂n, ξ) ≤ 0|Xn) ≥ β for every n ≥ 1, it follows from (11)
that x∗ is a feasible point of (TP), since lim supn→∞ q

∗ (g(x̂n, ξ) ≤ 0|Xn) ≥ β implies
I(−∞,0](g(x∗, ξ0)) ≥ β and β ∈ (0, 1). Therefore, it follows that f(x∗, ξ0) ≥ V ∗. Since, due
to Lemma 6 (2), lim infn→∞ Eq∗(ξ|Xn)[f(x̂n, ξ)] ≥ f(x∗, ξ0) P0 − a.s, it follows that

lim inf
n→∞

V ∗V B(Xn) ≥ V ∗ P0 − a.s. (12)

Hence, it follows from (10) and (12) that V ∗V B(Xn)→ V ∗ P0−a.s and it also follows that x∗

is the true solution of (TP), therefore D(S∗V B(Xn),S∗)→ 0 P0− a.s. The above arguments
can be easily generalized for the general case with m number of constraints.

C.2. Proof of Proposition 2

Proof Using Markov’s inequality observe that for any x ∈ X ,

P0[q∗ (gi(x, ξ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|Xn) ≥ β] ≤ 1

β
E0[q∗ (∩mi=1{gi(x, ξ) ≤ 0}|Xn)]

≤ 1

β
E0[q∗ ({gi(x, ξ) ≤ 0}|Xn)] ∀i ∈ {1, . . . ,m}.

(13)

11
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Fix i ∈ {1, 2 . . . ,m}. Since x ∈ X\F i0 implies that x ∈ {gi(x, ξ0) > 0}, it follows that

{gi(x, ξ) ≤ 0} ⊆ {gi(x, ξ) < gi(x, ξ0)}.

Therefore, for all x ∈ X\F i0 and any i ∈ {1, . . . ,m}, it follows from (13) that

P0[q∗ (gi(x, ξ) ≤ 0, i ∈ {1, 2, 3, . . . ,m}|Xn) ≥ β] ≤ 1

β
E0[q∗ (∩mi=1{gi(x, ξ) ≤ 0}|Xn)]

≤ 1

β
E0[q∗ ({gi(x, ξ) < gi(x, ξ0)}|Xn)].

(14)

Now using Theorem 2.1 in Zhang and Gao (2019), it follows that for each i ∈ {1, 2, 3, . . . ,m}
if

Lin(θ, θ0) := n sup
x∈X

I(0,∞)(gi(x, ξ0)− gi(x, ξ))

satisfies assumption (C1), then there exists a constant Ci for each i ∈ {1, 2, 3, . . . ,m} such
that

E0[q∗ ({gi(x, ξ) < gi(x, ξ0)}|Xn)] ≤ Ci(ε2n + η2
n),

where η2
n := 1

n infq∈Q EP0

[∫
Θ q(ξ) log q(ξ)

π(ξ|Xn)dξdξ
]
. Now observe that, using the above re-

sult in (14) directly proves the assertion of the proposition.
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