Under review as a conference paper at ICLR 2019

SEARCH-GUIDED, LIGHTLY-SUPERVISED TRAINING
OF STRUCTURED PREDICTION ENERGY NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In structured output prediction tasks, labeling ground-truth training output is of-
ten expensive. However, for many tasks, even when the true output is unknown,
we can evaluate predictions using a scalar reward function, which may be easily
assembled from human knowledge or non-differentiable pipelines. But search-
ing through the entire output space to find the best output with respect to this
reward function is typically intractable. In this paper, we instead use efficient
truncated randomized search in this reward function to train structured predic-
tion energy networks (SPENs), which provide efficient test-time inference using
gradient-based search on a smooth, learned representation of the score landscape,
and have previously yielded state-of-the-art results in structured prediction. In par-
ticular, this truncated randomized search in the reward function yields previously
unknown local improvements, providing effective supervision to SPENS, avoiding
their traditional need for labeled training data.

1 INTRODUCTION

Structured output prediction tasks are common in computer vision, natural language processing,
robotics, and computational biology. The goal is to find a function from an input vector x to multiple
coordinated output variables y. For example, such coordination can represent constrained structures,
such as natural language parse trees, foreground-background pixel maps in images, or intertwined
binary labels in multi-label classification.

Structured prediction energy networks (SPENs) (Belanger & McCallum,|2016) are a type of energy-
based model (LeCun et al.| 2006) in which inference is done by gradient descent. SPENs learn an
energy landscape F(x,y) on pairs of input x and structured outputs y. In a successfully trained
SPEN, an input x yields an energy landscape over structured outputs such that the lowest energy
occurs at the target structured output y*. Therefore, we can infer the target output by finding the
minimum of energy function £ conditioned on input x: y* = arg min,, Ex,y).

In SPENs we parameterize E'(x,y) with a deep neural network—providing not only great represen-
tational power over complex structures but also machinery for conveniently obtaining gradients of
the energy. Crucially, this then enables inference over y to be performed by gradient descent on the
energy function. Although this energy function is non-convex, gradient-descent inference has been
shown to work well in practice, with successful applications of gradient-based inference to semantic
image segmentation (Gygli et al., [2017), semantic role labeling (Belanger et al.,|2017), and neural
machine translation (Hoang et al.l 2017)) (paralleling successful training of deep neural networks
with non-convex objectives).

Traditional supervised training of SPENs requires knowledge of the target structured output in or-
der to learn the energy landscape, however such labeled examples are expensive to collect in many
tasks, which suggests the use of other cheaply acquirable supervision. For example, Mann and Mc-
Callum (2010) use labeled features instead of labeled output, or/Ganchev et al.[(2010) use constraints
on posterior distributions of output variables, however both directly add constraints as features, re-
quiring the constraints to be decomposable and also be compatible with the underlying model’s
factorization to avoid intractable inference.

Alternatively, scalar reward functions are another widely used source of supervision, mostly in re-
inforcement learning (RL), where the environment evaluates a sequence of actions with a scalar
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reward value. RL has been used for direct-loss minimization in sequence labeling, where the reward
function is the task-loss between a predicted output and target output (Bahdanau et al., 2017; [Maes
et al., 2009), or where it is the result of evaluating a non-differentiable pipeline over the predicted
output (Sharma et al.,[2018)). In these settings, the reward function is often non-differentiable or has
low-quality continuous relaxation (or surrogate) making end-to-end training inaccurate with respect
to the task-loss.

Interestingly, we can also rely on easily accessible human domain-knowledge to develop such reward
functions, as one can easily express output constraints to evaluate structured outputs (e.g., predicted
outputs get penalized if they violate the constraints). For example, in dependency parsing each
sentence should have a verb, and thus parse outputs without a verb can be assigned a low score.

More recently, Rooshenas et al. (2018) introduce a method to use such reward functions to supervise
the training of SPENs by leveraging rank-based training and SampleRank (Rohanimanesh et al.,
2011). Rank-based training shapes the energy landscape such that the energy ranking of alternative
y pairs are consistent with their score ranking from the reward function. The key question is how to
sample the pairs of ys for ranking. We don’t want to train on all pairs, because we will waste energy
network representational capacity on ranking many unimportant pairs irrelevant to inference; (nor
could we tractably train on all pairs if we wanted to). We do, however, want to train on pairs that
are in regions of output space that are misleading for gradient-based inference when it traverses the
energy landscape to return the target. Previous methods have sampled pairs guided by the thus-far-
learned energy function, but the flawed, preliminarily-trained energy function is a weak guide on its
own. Moreover, reward functions often include many wide plateaus containing most of the sample
pairs, especially at early stages of training, thus not providing any supervision signal.

In this paper we present a new method providing efficient, light-supervision of SPENs with margin-
based training. We describe a new method of obtaining training pairs using a combination of the
model’s energy function and the reward function. In particular, at training time we run the test-time
energy-gradient inference procedure to obtain the first element of the pair; then we obtain the second
element using randomized search driven by the reward function to find a local true improvement
over the first. Previous research efforts have used search for inference in model and reward function
during training (Peng et al., [2017; Tyyer et al} 2017)), none in the context of SPENs . We argue
that local, incremental search for improvement is especially well suited to SPENs, in which local
gradient steps form the essence of the inference procedure.

Using this search-guided approach we have successfully performed lightly-supervised training of
SPENSs with reward functions and improved accuracy over previous state-of-art baselines.

2 STRUCTURED PREDICTION ENERGY NETWORKS

Learning to predict in structured prediction requires capturing the correlation between input and out-
put variables as well as the correlation among output variables. Traditionally, factor graphs (Kschis-
chang et al.l 2001 have been used to express such dependencies. Factor graphs describe a specific
factorization of energy functions. Unfortunately, learning the structure of factor graphs themselves is
intractable, in general, and therefore factor graphs with a predefined structure (typically with limited
representational power, such as chains) are often used in practice.

A SPEN parametrizes the energy function F\y (y,x) using deep neural networks over input x and
output variables y, where w denotes the parameters of deep neural networks. SPENs rely on param-
eter learning for finding the correlation among variables, which is significantly more efficient than
learning the structure of factor graphs. One can still add task-specific bias to the learned structure by
designing the general shape of the energy function. For example, Belanger and McCallum (2016)
separate the energy function into global and local terms. The role of the local terms is to capture
the dependency among input x and each individual output variable y;, while the global term aims to
capture long-range dependencies among output variables. Gygli et al. (2017) define a convolutional
neural network over joint input and output.

Inference in SPENS is defined as finding arg miny ., Fw (y,x) for given input x. Structured outputs
are represented using discrete variables, however, which makes inference an NP-hard combinatorial
optimization problem. SPENSs achieve efficient approximate inference by relaxing each discrete
variable to a probability simplex over the possible outcome of that variable. In this relaxation the
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vertices of a simplex represent the exact values. The simplex relaxation reduces the combinato-
rial optimization to a continuous constrained optimization that can be optimized numerically using
either projected gradient-descent or exponentiated gradient-descent, both of which return a valid
probability distribution for each variable after every update iteration.

Practically, we found that exponentiated gradient-descent, with updates of the form

1 oF
1
y = Z_tyf exp(fna—yg (1)

(where Z! is the partition function of the unnormalized distribution over the values of variable i at
iteration t) improves the performance of inference regarding convergence and finds better outputs.
This is in agreement with similar results reported by |Belanger et al.|(2017) and [Hoang et al.|(2017).

Different algorithms have been introduced for training SPENS, including structural SVM (Belanger
& McCallum, [2016)), value-matching (Gygli et al. |2017), end-to-end training (Belanger, 2017,
and rank-based training (Rooshenas et al., [2018). Given an input, structural SVM training re-
quires the energy of the target structured output to be lower than the energy of the loss-augmented
predicted output. Value-matching (Gygli et all [2017), on the other hand, matches the value of
energy for adversarially selected structured outputs and annotated target structured outputs (thus
strongly-supervised, not lightly-supervised) with their task-loss values. Therefore, given a suc-
cessfully trained energy function, inference would return the structured output that minimizes the
task-loss. End-to-end training (Belanger et al., 2017)) directly minimizes a differentiable surrogate
task-loss between predicted and target structured outputs. Finally, rank-based training shapes the
energy landscape such that the structured outputs have the same ranking in the energy function and
a given reward function.

While structural SVM, value-matching, and end-to-end training require annotated target structured
outputs, rank-based training can be used in domains where we have only light supervision in the
form of reward function R(x,y) (which evaluates input x and predicted structured output y to a
scalar reward value). Rank-based training collects training pairs from a gradient-descent trajectory
on energy function. However, these training trajectories may not lead to relevant pairwise rank vio-
lations (informative constraints) if the current model does not navigate to regions with high reward.
This problem is more prevalent if the reward function has plateaus over a considerable number of
possible outputs—for example, when the violation of strong constraints results in constant values
that conceal partial rewards. These plateaus happen in domains where the structured output is a set
of instructions such as a SQL query, and the reward function evaluates the structured outputs based
on their execution results.

This paper introduces a new search-guided training method for SPENs that addresses the above
problem, while preserving the ability to learn from light supervision. As described in detail below,
in our method the gathering of informative training pairs is guided not only by gradient descent
on the thus-far-learned energy function, but augmented by truncated randomized search informed
by the reward function, discovering places where reward training signal disagrees with the learned
energy function.

3 SEARCH-GUIDED TRAINING

Search-guided training of SPENS relies on a randomized search procedure S(x, ys) which takes the
input x and starting point y and returns a successor point y,, such that R(x,y,) > R(x,ys) + 9,
where ¢ > 0 is the search margin. The choice of search margin ¢ is based on features of the reward
function (range, plateaus, jumps) and indicates the minimum local improvement over the starting
point y. This also impacts the complexity of search, as smaller improvements are more accessible
than larger improvements.

We truncate the randomized search by bounding the number of times that it can query the reward
function to evaluate structured outputs for each input x at every training step. As a result, the search
procedure may not be able to find a local improvement, in which case we simply ignore that training
example in the current training iteration. However, the next time that we visit an ignored example,
the inference procedure may provide better starting points or truncated randomized search may find
a local improvement. In practice we observe that, as training continues, the truncated randomized
search finds local improvements for every training point.
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Figure 1: Search-guided training: the solid and dashed lines show a schematic landscape of energy
and reward functions, respectively. The blue circles indexed by y; represent the gradient-descent in-
ference trajectory with five iterations over the energy function. Dashed arrows represent the mapping
between the energy and reward functions, while the solid arrows show the direction of updates.

Intuitively, we expect that gradient-descent inference returns some ¥ as an approximate solution of
argmin, Fy (x,y). Via the search procedure, however, we find some S(x,¥) which is a better
solution than ¥ with respect to the reward function. Therefore, we have to train the SPEN model
such that, conditioning on x, gradient-descent inference returns S(x,y), thus guiding the model
toward predicting a better output at each step. Figure[T]depicts an example of such a scenario.

For the gradient-descent inference to find y,, = S(x,y), the energy of (x,¥,) must be lower than
the energy of (x,y) by margin M. We define the margin using scaled difference of their rewards:

M(Xay7yn)) = a(R(Xayn) - R(X,y)), (2)
where « is a task-dependent scalar.
Now, we define at most one constraint for each training example x:
gw(x) = M(X,}A’,}A’n)) _Ew(x7y)+Ew(X7yn) <0 3)
As a result, our objective is to minimize the magnitude of violations regularized by Lo norm:
min Y max(éw(x),0) + ¢f|wl|?, “
v xeD
where c is the regularization hyper-parameter. Algorithm[I|shows the search-guided training.

We use exponentiated gradient-descent inference (eq. [I), and we add zero-mean Gaussian noise to
the gradient. The standard deviation of noise is proportional to the magnitude of gradients. We
found that adding noise helps SPENSs to better generalize to unseen data.

Algorithm 1 Search-guided training of SPENs

D < unlabeled mini-batch of training data
R(.,.) + reward function
Ew(.,.) < input SPEN
repeat
L+ 0.
for each x in D do
¥ < argmin, Ew(y,x) //using gradient-descent inference.
¥Yn < S(x,y) //search in reward function R starting from y.
£W(X) A M(X, y7 yn)) - EW (X, y) + EW(X7 yn)
L+ L+ max({w(x),0)
end for
L L+ cl|w|?.
w < W — AV L  //\is learning rate.
until convergence
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Figure 2: The parameterization of energy function using for citation-field extraction.

4 EXPERIMENTS

We have conducted training of SPENs in three settings with different reward functions: 1) Multi-
label classification with the reward function defined as F} score between predicted labels and target
labels. 2) Citation-field extraction with a human-written reward function. 3) Shape parsing with a
task-specific reward function.

4.1 MULTI-LABEL CLASSIFICATION

We first evaluate the ability of search-guided training of SPENs, SG-SPEN, to learn from light-
supervision provided by truncated randomized search. We consider the task of multi-label classifi-
cation on Bibtex dataset with 159 labels and 1839 input variables. We define the reward function as
the F} distance between the true label set and the predicted set at training time, however SG-SPEN
does not have access to the true label directly. We set the search margin to 0.1 and use the same
neural network architecture as|Gygli et al.| (2017).

SG-SPEN achieves an F score of 44.0, which is essentially close to the state-of-the-art result of 44.7
achieved by deep value networks (Gygli et al., |2017) and better than 42.2 reported by |Belanger &
McCallum| (2016) for structural SVM trianing. Moreover, we find that deep value networks cannot
be trained without direct access to the true labels, which are required for matching the energy of true
labels with the task-loss at true labels (zero). R-SPEN attains F; score of 40.1 on this task with the
same reward function used by SG-SPEN. We observe that R-SPEN has difficulty finding violations
(optimization constraints) as training progresses. This is attributable to the fact that R-SPEN only
explores the regions of the reward function based on the samples from the gradient-descent trajectory
on the energy function, so if the gradient-descent inference is confined within local regions, R-SPEN
cannot generate informative constraints.

4.2  CITATION FIELD EXTRACTION

Citation field extraction is a structured prediction task, in which the structured output is a sequence
of tags such as Author, Editor, Title, and Date that distinguishes the segments of a citation text.
We used the Cora citation dataset (Seymore et al., |[1999) including 100 labeled examples as the
validation set and another 100 labeled examples for the test set. We used 1000 unlabeled citation
text acquired across the web for training.

The citation text, including the validation set, test set, and unlabeled data, have the maximum length
of 118 tokens, which can be labeled with one of 13 possible tags. We fixed the length input data
by padding all citation text to the maximum citation length in the dataset. We report token-level
accuracy measured on non-pad tokens.

Our knowledge-based reward function is equivalent to |Rooshenas et al.[(2018), which takes input
citation text and predicated tags and evaluates the consistency of the prediction with about 50 given
rules describing the human domain-knowledge about citation text.
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Table 1: Token-level accuracy for citation-field extraction.

Method Accuracy | Average Inference
reward | Time (seconds)
GE 37.3% N/A -
Iterative Beam Search
(Restart=10)
K=1 30.5% -6.545 159
K=2 35.7% -4.899 850
K=5 39.3% -4.626 2,892
K=10 39.0% -4.091 6,654
PG
+EMA baseline 41.8% | -13.111 <1
+parametric baseline 42.0% -9.232 <1
R-SPEN 48.3% -9.402 <1
SG-SPEN 50.3% | -10.101 <1

4.2.1 METHODS

We compare SG-SPEN with R-SPEN (Rooshenas et al.l [2018)), iterative beam search with ran-
dom initialization, policy gradient methods (PG) (Williams, [1992), and generalized expectation
(GE) (Mann & McCalluml 2010).

SG-SPEN For SG-SPEN, we define the energy network using convolution neural networks over
both word representation of input tokens and output tag distributions as shown in Figure [2 We
used pretrained Glove vector representation with dimension of 50 for all the baselines, however, we
update word representations during the training.

R-SPEN For R-SPEN, we used exactly the same energy function as SG-SPEN. The main difference
between R-SPEN and SG-SPEN is their training algorithm.

GE GE uses human-written soft-constraints as labeled features to constrain the model’s prediction
with respect to unlabeled data. For GE, we include the results from Mann & McCallum| (2010) for
the same setting, for which they have used the same test set and 1000 unlabeled training data.

Iterative Beam Search For iterative beam search, we start from a random tag sequence, and then
iteratively run beam search with beam size of K until the top K sequences remains the same within
ten iteration. We re-run this iterative beam search with ten random restarts and reports the accuracy
of the sequence with the highest score.

PG We also trained a recurrent neural network (RNN) using policy gradient methods. For each
word in the input sequence, the model will predict the output tag given the last hidden states of
RNN:Gs, last predicted tag and current input. The rewards are the value of our human-knowledge
score function over the input token sequence and predicted output of RNNs. To reduce the variance
of gradients, we used two different baseline models: exponential moving average (EMA) baseline
and parametric baseline. EMA defines the baseline as weighted average over history rewards and
the current reward: By = B <+ aB + (1 — ~)r, where r is the average reward of the current
batch, and ~ in the decaying rate. For the parametric baseline, we use the current token z;, and
previous hidden state h;_; and output y; 1 from RNN to predict the baseline using linear regression:
Bi(z, he—1,yt—1) = Wlhi—1;2¢;yt—1] + b, where W and b are the parameters of the baseline
learned by minimizing the mean square distance between the baseline and reward. During training,
we found that the probability distribution produced by policy function 7y tends to polarize before
the model becomes optimal. To maintain the exploration ability of the model, we add entropy
regularization in our object function. In our experiments, we also attempted to re-normalize the
probability of sampled sequences, but since it did not show better performances in this dataset, we
excluded it in our final PG models.

4.2.2 RESULTS AND DISCUSSION

We reported the token-level accuracy of SG-SPEN and the other baselines in Table [T, SG-SPEN
achieve highest performance in this task with 50.3% token-level accuracy. As we expect, R-SPEN
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Figure 3: The input image (left) and the parse that generate the input input (right). The first two
parameters of each shape shows its center location and the third parameter is its scale. A valid
program sequence can be generated by post order traversal of the binary shape parse.

accuracy is less than SG-SPEN as it introduce many irrelevant constraints into the optimization.
Our policy gradient method with parametric baseline gets 42.0% accuracy. Iterative beam search
with beam size of ten gets about 39.0% accuracy, however, the inference time takes more than a
minute per test example on a 10-core CPU. We notice that using exhaustive search through a noisy
and incomplete reward function may not improve the accuracy despite finding structured outputs
with higher scores. As Table 1 indicates, the reward values for the iterative beam search is better
than the reward values of both R-SPEN and SG-SPEN training methods, showing that R-SPEN and
SG-SPEN training help SPENSs to generalize the reward function using the unlabeled data. When
the reward function is not accurate, using unlabeled data facilitates training models such as SPENs
that generalize the reward function, while providing efficient test-time inference.

4.3 SHAPE PARSING

Shape parsing from computer graphics literature aims at parsing the input shape (2D image or 3D
shape) into its structured elements. Recent work on neural shape parsing (Sharma et al., 2018),
generates programs for input shape based on constructive solid geometry (CSG), which is a gen-
erative modeling technique that defines complex shapes by recursively applying binary operators
on elementary shapes. Sequential instructions in the form of binary operations applied on basic
shape primitives, is treated as a program that follows CSG grammar. However, for an input shape,
predicting the program that can generate the input shape, is a challenging task because of the com-
binatorially large output program space. To tackle these problems, |Sharma et al.| (2018) introduces
a top-down neural shape parser to induce programs. The parser is a combination of encoder-CNN
that takes input shape and returns a fixed sized feature vector, and a decoder-RNN that sequentially
decodes the features into a valid program by predicting one program instruction at a time. The train-
ing is done by a combination of supervised-learning when ground truth image-program pairs are
available and using policy gradient method when ground truth programs are unavailable.

We apply our proposed SG-SPEN algorithm to the neural shape parsing task to show its superior
performance in inducing programs for input shape, without explicit supervision. Here we only
considers the programs of length five, which includes two operations and three primitive shape
objects: circle, triangle, and rectangle parameterized by their center and scale, which describes total
396 different shapes. Therefore, every program forms a sequence of five tags that each tag can take
399 possible values, including three operations and 396 shapes. The execution of a valid program
results in 64x64 binary image. Figure [3|shows an image and its shape parse.

For the shape parser task, we construct the reward function as the intersection over union (IOU)
between the input image and constructed image from the predicted output program. This reward
function is not differentiable as it requires executing the predicted program to generate the final
image. This is a difficult problem, first, the output space is very large, and second, many programs
in the output space are invalid thus the reward function produces zero reward for them.
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Figure 4: The parameterization of energy function for shape parsing. The network has two parts:
first takes the probability distribution over the output program and outputs a fixed dimension embed-
ding, and the second part takes the binary images as input, which is convolved to give fixed length
embedding. The two embeddings are concatenated and passed through an MLP to output energy
function.

We generated 1000 different image-program pairs using CSG grammar including 700 training pair,
150 pairs for validation set, and 150 pairs for the test set. We dismiss the programs for the training
data.

4.3.1 METHODS

We compare SG-SPEN with R-SPEN, iterative beam search with beam size five, ten, and twenty.
We also apply neural shape parser proposed by Sharma et al.| (2018)) for learning from unlabeled
data. We used the code published by the authors.

For SG-SPEN and R-SPEN, we parameterize the energy function with separate convolutional neural
networks over image and program and combine their output layer and feed it to a 2-layer multi-layer
perceptron. Figure d]demonstrates our energy network.

4.3.2 RESULTS AND DISCUSSION

R-SPEN is not able to learn in this scenario because the samples from energy functions are often
invalid programs and R-SPEN is incapable of producing informative optimization constraints. In
other words, most of the pairs are invalid programs and have the same ranking with respect to the
reward function, so they are not useful for updating the energy landscape to guide gradient-descent
inference toward finding better predictions. Neural shape parser performs better than R-SPEN but
worse than SG-SPEN; there are several reasons: first the network is trained from scratch without
any explicit supervision which makes it difficult to find valid structure of program because of the
large program space. Second, rewards are only provided at the end and there is no provision for
intermediate rewards. In contrast, SG-SPEN makes use of the intermediate reward by searching for
better program instructions that can increase IOU score. SG-SPEN can quickly pickup informative
constraints. To show this behavior, we gather the number of informative constrains (pairs with a
different reward rankings) of randomly selected batch of data at the first 50 training steps (Figure[5).
SG-SPEN can quickly pick up informative constraints even for this difficult task where the reward
value of a notable portion of the search space is zero. We also observe that even at early stages of
training the gradient-descent inference returns programs with positive rewards acknowledging that
the SPEN rapidly learns to produce programs with valid structure.

SG-SPEN achieves higher performance comparing to iterative beam search and neural shape parser
(Tabel @ Although in this scenario with an exact reward function, iterative beam search with higher
beam sizes would gain better IOU, albeit with significantly longer inference time.
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Figure 5: The number of informative constraints (pairs with different reward rankings) that search-
guided training found for batches of 50 randomly selected training points in the first 50 training
steps. SG-SPEN generates at-most one informative constraint for each example.

Table 2: Intersection over union accuracy for shape parsing on the test set.

Method 10U Inference
Time (seconds)

Iterative Beam Search
(Restart=10)

K=5 24.6% 3,882
K=10 30.0% 15,537
K=20 43.1% 38,977
Neural shape parser 32.4% <1
SG-SPEN 56.3% <1

5 RELATED WORK

Peng et al. (2017) introduce maximum margin rewards networks (MMRNs) which also use the
indirect supervision from reward functions for margin-based training. Our work has two main ad-
vantages over MMRNSs: first, MMRNs use search-based inference, while SPENs provide efficient
gradient-descent inference. Search-based inference, such as beam-search, is more likely to find poor
local optima structured output rather than the most likely one, especially when output space is very
large. Second, SG-SPENSs gradually train the energy function for outputting better prediction by
contrasting the predicted output with a local improvement of the output found using search, while
MMRNSs use search-based inference twice: once for finding the global optimum, which may not be
accessible, and next, for loss-augmented inference, so their method heavily depends on finding the
best points using search, while SG-SPEN only requires search to find local improvements which are
more accessible.

For some tasks, it is possible to define differentiable reward functions or high-quality differentiable
surrogate of the true reward functions. In these settings, we can directly train the prediction model
using end-to-end training. For example, [Stewart & Ermon| (2017)) train a neural network using a
reward function that guides the training based on physics of moving objects with a differentiable
reward function. However, differentiable reward functions are rare, limiting their applicability in
practice.

Generalized Expectation (GE)/Mann & McCallum/(2010), Posterior Regularization (Ganchev et al.,
2010) and Constraint Driven Learning (Chang et al.| [2007), learning from measurements (Liang
et al., 2009), have been introduce to learn from a set of constraints and label featured. Recently,
Hu et al.| (2016) use posterior regularization to distill the human domain-knowledge described as
first-order logic into neural networks. However, these methods cannot learn from the common case
of black box reward functions, such as the ones that we used in our experiments with citation field
extraction and shape parsing.
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Another paradigm for using human domain-knowledge as supervision is data programming (Ratner
et al., 2016; 2017), in which different labeling functions are written by domain experts, expecting
the noisy labeling functions not making similar mistakes. The training process involves construct-
ing a generative model to represent the conditional distribution of true labels given the noisy labels
and minimize the expected loss with respect to this conditional distribution to train a discriminative
model for output predictions. This method assumes the labeling function provides supervision for
individual output variables. [Wang & Poon| (2018)) introduce deep probabilistic logic (DPL) to gen-
eralize this framework in order to incorporate domain-knowledge provided as probabilistic logic.
DPL defines constraints over joint distribution of output variables, and similar to GE and posterior
regularization, DPL requires the domain-knowledge to be decomposable as features, which is not
applicable in every setting like ours.

Chang et al| (2010) define a companion problem for a structured prediction problem (e.g., if the
part-of-speech tags are legitimate for the given input sentence or not) supposing the acquisition of
annotated data for the companion problem is cheap. Jointly optimizing the original problem and the
companion problem reduces the required number of annotated data for the original problem since
the companion problem would restrict the feasible output space of the structured outputs.

6 CONCLUSION

We introduce SG-SPEN to enable training of SPENSs using supervision provided by reward func-
tions, including human-written functions or complex non-differentiable pipelines. The key ingredi-
ent of our training algorithm is sampling from reward function through truncated randomized search,
which is used to generate informative optimization constraints. These constraints gradually guide
gradient-descent inference toward finding better prediction according to reward function. We show
that SG-SPEN trains models that achieve better performance compared to previous methods, such
as learning from a reward function using policy gradient. Our method also enjoys a simpler training
algorithm and rich representation over output variables.

In addition, SG-SPEN facilitates using task-specific domain knowledge to reduce the search output
space, which is critical for complex tasks with enormous output space. In future work we will ex-
plore the use of easily-expressed domain knowledge for further guiding search in lightly supervised
learning.
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