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ABSTRACT

We consider the problem of domain generalization, namely, how to learn repre-
sentations given data from a set of domains that generalize to data from a previ-
ously unseen domain. We propose the domain invariant VAE (DIVA), a generative
model that tackles this problem by learning three independent latent subspaces,
one for the class, one for the domain and one for the object itself. In addition,
we highlight that due to the generative nature of our model we can also incorpo-
rate unlabeled data from known or previously unseen domains. This property is
highly desirable in fields like medical imaging where labeled data is scarce. We
experimentally evaluate our model on the rotated MNIST benchmark where we
show that (i) the learned subspaces are indeed complementary to each other, (ii)
we improve upon recent works on this task and (iii) incorporating unlabelled data
can boost the performance even further.

1 INTRODUCTION

Deep neural networks (DNNs) led to major breakthroughs in a variety of areas like computer vision
and natural language processing. Despite their big successes recent research shows that DNNs learn
the bias present in the training data. As a result they are not invariant to cues that are irrelevant to
the actual task (Azulay & Weiss, 2018). This leads to a dramatic performance decrease when tested
on data from a different distribution with a different bias (Torralba & Efros, 2011).

In domain generalization the goal is to learn representations from a set of similar distributions, here
called domains, that can be transferred to a previously unseen domain during test time. A common
motivating application, where domain generalization is crucial, is medical imaging (Blanchard et al.,
2011; Muandet et al., 2013). For instance, in digital histopathology a typical task is the classifica-
tion of benign and malignant tissue. However, the preparation of a histopathology image includes
the staining and scanning of tissue which can greatly vary between hospitals. Moreover, a sample
from a patient could be preserved in different conditions. As a result, each patient data could be
treated as a separate domain (Lafarge et al., 2017; Ciompi et al., 2017). Another problem commonly
encountered in medical imaging is class label scarcity. Annotating medical images is an extremely
time consuming task that requires expert knowledge. However, obtaining domain labels is surpris-
ingly cheap, since hospitals generally store information about the patient (e.g., age and sex) and the
medical equipment (e.g., manufacturer and settings). Therefore, we are interested in extending the
domain generalization framework to be able to deal with additional unlabeled data. We hypothesize
that additional unlabeled data can lead to better domain generalization.

In this paper, we propose to tackle domain generalization via a new deep generative model that we
refer to as the domain invariant variational autoencoder (DIVA). We extend the variational autoen-
coder (VAE) framework (Kingma & Welling, 2013) by introducing independent latent representa-
tions for an object (e.g., an image), a class label and a domain label. Such partitioning of the latent
space will encourage and guide the model to disentangle these sources of variation.

Finally, by virtue of having a generative model we can also naturally handle the semi-supervised
scenario, similarly to Kingma et al. (2014). We evaluate our model on a version of the MNIST
dataset where each domain corresponds to a specific rotation angle of the digits.
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Figure 1: Left: Generative model. According to the graphical model we obtain
p(d, x, y, zd, zx, zy) = pθ(x|zd, zx, zy)pθd(zd|d)p(zx)pθy (zy|y)p(d)p(y). Right: Inference model.
We propose to factorize the variational posterior: qφd(zd|x)qφx(zx|x)qφy (zy|x). Dashed arrows
represent auxiliary classifiers.

2 TOWARDS DOMAIN GENERALIZATION WITH GENERATIVE MODELS

2.1 DOMAIN GENERALIZATION

We follow the domain generalization definitions used in (Muandet et al., 2013). A domain is defined
as a joint distribution p(x, y) on X × Y , where X denotes an input space and Y an output space.
Let PX×Y be the set of all domains. We assume that we cannot observe domains directly. Instead,
the training set consists of samples S taken from N domains, S = {S(d=i)}Ni=1. The ith domain
p(d=i)(x, y) is represented by ni samples, S(d=i) = {(x(d=i)k , y

(d=i)
k )}nik=1. Here each of the N

distributions p(d=1)(x, y), . . . , p(d=i)(x, y), . . . , p(d=N)(x, y) is sampled from PX×Y . We further
assume that p(d=i)(x, y) 6= p(d=j)(x, y), therefore, the samples in S are non-i.i.d. During test time
we are presented with samples S(d=N+1) from a previously unseen domain p(d=N+1)(x, y). We
are interested in learning representations that generalize from p(d=1)(x, y), . . . , p(d=N)(x, y) to this
new domain. Training data are given as tuples (d, x, y) in the case of supervised data or as (d, x) in
the case of unsupervised data.

2.2 DIVA: DOMAIN INVARIANT VAE

Assuming a perfectly disentangled latent space (Higgins et al., 2018), we hypothesize that there
exists a latent subspace that is invariant to changes in d, i.e., that is domain invariant. We propose a
generative model with three independent sources of variation; zx, which is object specific, zd, which
is domain specific and finally zy , which is class specific. While zx keeps an independent Gaussian
prior p(zx), zd and zy have conditional priors pθd(zd|d), pθy (zy|y) with learnable parameters θd, θy .
This will encourage information about the domain d and label y to be encoded into zd and zy
respectively. Furthermore, as zd and zy are marginally independent by construction, we argue that
the model will learn representations zy that are invariant with respect to the domain d. All three of
these latent variables are then used by a single decoder pθ(x|zd, zx, zd) for the reconstruction of x.

Since we are interested in using neural networks for pθ(x|zd, zx, zd), exact inference will be in-
tractable. For this reason, we perform amortized variational inference with an inference network
(Kingma & Welling, 2013), i.e., we employ a variational autoencoder (VAE) framework. We intro-
duce three separate encoders qφd(zd|x), qφx(zx|x) and qφy (zy|x) that serve as variational posteriors
over these latent variables. Notice that we do not share their parameters as we empirically found that
sharing parameters leads to a decreased generalization performance. For the prior and variational
posterior distributions over the latent variables zx, zd, zy we assume fully factorized Gaussians with
parameters given as a function of their input. We coin the term domain invariant VAE (DIVA) for
our overall model, which can be seen in Figure 1.
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Given a specific dataset, all of the aforementioned parameters can then be optimized by maximizing
the following variational lower bound:

Ls(d, x, y) = Eqφd (zd|x)qφx (zx|x),qφy (zy|x) [log pθ(x|zd, zx, zy)]
− βKL (qφd(zd|x)||pθd(zd|d))− βKL (qφx(zx|x)||p(zx))
− βKL

(
qφy (zy|x)||pθy (zy|y)

)
. (1)

Notice that we have introduced a weigting term, β. This is motivated by the β-VAE (Higgins et al.,
2017) and serves as a constraint that controls the capacity of the latent spaces of DIVA. Larger
values of β limit the capacity of each z and in the ideal case each dimension of z captures one of
the conditionally independent factors in data. The β-VAE framework offers a trade-off between the
information preservation, i.e., how well one can reconstruct x from the z’s, and the capacity, i.e.,
how well the z’s compress information about x.

In order to further encourage separation of zd and zy into domain and class specific information
respectively, we add two auxiliary objectives. During training zd is used to predict the domain d and
zy is used to predict the class y for a given input x

FDIVA(d, x, y) := Ls(d, x, y) + Eqφd (zd|x)qφy (zy|x)
[
αd log qωd(d|zd) + αy log qωy (y|zy)

]
, (2)

where αd, αy are weighting terms for each of these auxiliary objectives. Since our main goal is a
domain invariant classifier, during test time we are left with the encoder qφy (zy|x) and the auxiliary
classifier qωy (y|zy). For predicting the class y of a new input x we only use the mean of zy .

2.3 GUIDED DISENTANGLEMENT

Locatello et al. (2018) and Dai & Wipf (2019) claim that learning a disentangled representation,
i.e., qφ(z) =

∏
i qφ(zi), in an unsupervised fashion is impossible for arbitrary generative mod-

els. Inductive biases, e.g., some form of supervision or constraints on the latent space, are nec-
essary to find a specific set of solutions that matches the true generative model. Consequently,
DIVA is using domain labels d and class labels y in addition to input data x during training. Fur-
thermore, we enforce the factorization of the marginal distribution of z in the following form:
qφ(z) = qφd(zd)qφx(zx)qφy (zy), which prevents the impossibility described at Locatello et al.
(2018). We argue that the strong inductive biases in DIVA make it possible to learn disentangled
representations that match the ground truth factors of interest, namely, the domain d and class y.

2.4 SEMI-SUPERVISED DIVA

In (Kingma et al., 2014) an extension to the VAE framework was introduced that allows to use
labeled as well as unlabeled data during training. While Kingma et al. (2014) introduced a two step
procedure, Louizos et al. (2015) presented a way of optimizing the decoder of the VAE and the
auxiliary classifier jointly. We use the latter approach to learn from supervised data {(dn, xn, yn)}
as well as from unsupervised data {(dm, xm)}. Analogically to (Louizos et al., 2015), we use
qωy (y|zy) to marginalize out y:

Lu(d, x) = Eqφd (zd|x)qφx (zx|x)qφy (zy|x)[log pθ(x|zd, zx, zy)]
− βKL(qφd(zd|x)||pθd(zd|d))− βKL(qφx(zx|x)||p(zx))
+ βEqφy (zy|x)qωy (y|zy)[log pθy (zy|y)− log qφy (zy|x)]
+ Eqφy (zy|x)qωy (y|zy)[log p(y)− log qωy (y|zy)], (3)

where we use Monte Carlo sampling with the reparametrization trick (Kingma & Welling, 2013)
for the continuous latents zd, zx, zy and explicitly marginalize over the discrete variable y. The
final objective combines the supervised and unsupervised variational lower bound as well as the two
auxiliary objectives. By assumingN labeled andM unlabeled data tuples we arrive at the following
objective

FSS-DIVA =

N∑
n=1

FDIVA(xn, yn, dn) +

M∑
m=1

Lu(xm, dm) + αdEqφd (zd|xm)[log qωd(dm|zd)]. (4)
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3 RELATED WORK

Domain generalization The majority of recently proposed deep learning methods for domain
generalization falls into one of two categories: 1) Learning a single domain invariant representation,
e.g., using adversarial methods (Carlucci et al., 2018; Ghifary et al., 2015; Li et al., 2018; 2017;
Motiian et al., 2017; Shankar et al., 2018; Wang et al., 2019). 2) Ensembling models, each trained
on an individual domain from the training set (Ding & Fu, 2018; Mancini et al., 2018).

Multi-task learning Zamir et al. (2018) show that sharing parameters among multiple tasks can
lead to better performance and can decrease the amount of labeled examples necessary for each task.
Even though we make use of multiple tasks, our goal is the opposite. The three encoders of DIVA
are forced to learn complementary features. For a general introduction to multi-task learning we
refer to Ruder (2017).

Fairness The goal of fair classification is to learn good representation that at the same time cannot
be used to associate a data sample to a certain group (Zemel et al., 2013). The only difference to
domain generalization is the intention behind that goal, e.g., to protect groups of individuals vs.
being robust to technical variations. Consequently, DIVA is closely related to the fair VAE (Louizos
et al., 2015). The major difference lies in the fashion we replace the hierarchical latent space of the
fair VAE with a partitioned latent space.

Latent subspaces A series of very recent papers demonstrate the benefits of having a partitioned
latent space in a VAE. Klys et al. (2018) show that two latent supaces can be better disentangled
using binary labels and adversarial training. In (Bouchacourt et al., 2018) two latent subspaces exist
as well. Here one is used for individual samples and one is shared among samples from the same
group. Last, Hsu & Glass (2018) show that latent subspaces can be used to capture information from
different modalities (e.g., image and audio).

4 EXPERIMENTS

4.1 ROTATED MNIST

The construction of the rotated MNIST dataset follows (Ghifary et al., 2015). We sample 100 images
from each of the 10 classes from the original MNIST training dataset (in contrast to (Ghifary et al.,
2015) we do not resize the images). This set of images is denotedM0◦ . To create five additional
domains the images in M0◦ are rotated by 15, 30, 45, 60 and 75 degrees. In order to evaluate
their domain generalization abilities models are trained on five domains and tested on the remaining
6th domain, e.g., train on M0◦ , M15◦ , M30◦ , M45◦ and M60◦ , test on M75◦ . The evaluation
metric is the classification accuracy on the test domain. All experiments are repeated 10 times with
10 different seeds, resulting in 10 different datasets. Detailed information about hyperparameters,
architecture and training schedule can be found in the Appendix.

4.2 QUALITATIVE DISENTANGLEMENT

First of all, we visualize the three latent spaces zd, zx and zy , to see if DIVA is able to successfully
disentangle them. In addition, we want to see if DIVA utilizes zx in a meaningful way, since it is not
directly connected to any downstream task. For the following visualizations we restrict the size of
each latent space zd, zx and zy to 2 dimensions. Therefore, we can plot the latent supspaces directly
without applying dimensionality reduction. DIVA is trained on 5000 images from five domains
(M0◦ ,M15◦ ,M30◦ ,M45◦ andM60◦ ).

Figure 2 shows 5000 embeddings zy encoded by qφy (zy|x). In Figure 2 (left) the colors indicate
the 10 different classes of the MNIST dataset. We observe 10 well separated clusters, each corre-
sponding to one of the 10 classes. In stark contrast, Figure 2 (right), where the colors indicate the
five different training domains, shows no such clustering. It appears that zy is indeed capturing all
necessary information for predicting the class y while containing very little information about the
domain d.
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Figure 2: Left: 5000 two-dimensional embeddings zy encoded by qφy (zy|x). The color of each
point indicates the associated class. Both dimensions of zy are used to encode the label. Right: Plot
of the same embeddings as seen on the left. This time the color indicates the associated domain. No
apparent clustering is visible.

In Figure 3 we visualize the two-dimensional latent space for zd. Each of the 5000 training images
is encoded by qφd(zd|x). Figure 3 (left) shows very little clustering according to the class label y.
However, Figure 3 (right), where each color represents a different domain, shows strong clustering.
Each cluster corresponds to one of the five domains.

Figure 3: Left: 5000 two-dimensional embeddings zd encoded by qφd(zd|x). The color of each point
indicates the associated class. No apparent clustering is visible. Right: Plot of the same embeddings
as seen on the left. This time the color indicates the associated domain. The plot shows five distinct
clusters, where each cluster corresponds to a single domain.

In contrast to zy and zd, zx is only used for reconstructing x and has an independent Gaussian prior.
In Figure 4 (left) we can see that there is a certain amount of clustering. We find that narrow numbers
with thin lines, e.g., ’1’ and ’7’, cluster in the bottom left half of the plot. Whereas round numbers
with thicker lines, e.g., ’0’ and ’6’ appear to cluster in the top right half. We conclude that zx models
the remaining variations that are not captured by zd and zy . In Figure 4 (right) we do not notice any
apparent clustering.

From these initial qualitative results we conclude that DIVA is disentangling the information con-
tained in x as intended, as zy is only containing information about y and zd only information about
d. In the case of the rotated MNIST dataset zx captures information about line thickness and digit
width, two factors of variation that are not correlated with either the class y or the domain d. We
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Figure 4: Left: 5000 two-dimensional embeddings zx encoded by qφx(zx|x). The color of each
point indicates the associated class. We observe a high correlation between the line thickness of
each MNIST digit and zx[0]. Whereas, zx[1] is highly correlated with the width of each MNIST
image. For that reason we observe a clustering of embeddings with class ’1’ at the lower half of
the plot. Right: Plot of the same embeddings as seen on the left. This time the color indicates the
associated domain. No apparent clustering is visible.

Table 1: We compare DIVA with other state-of-the-art domain generalization methods. Methods in
the first half of the table (until the vertical line) use only labeled data. The second half of the table
shows results of DIVA when trained semi-supervised (+ X times the amount of unlabeled data). We
report the average and standard error of the classification accuracy.

Test DA LG HEX ADV DIVA DIVA(+1) DIVA(+3) DIVA(+5) DIVA(+9)
M0◦ 86.7 89.7 90.1 89.9 93.5 ± 0.1 93.8 ± 0.1 93.9 ± 0.2 93.2 ± 0.2 93.0 ± 0.1
M15◦ 98.0 97.8 98.9 98.6 99.3 ± 0.1 99.4 ± 0.1 99.5 ± 0.1 99.5 ± 0.1 99.6 ± 0.1
M30◦ 97.8 98.0 98.9 98.8 99.1 ± 0.1 99.3 ± 0.1 99.3 ± 0.1 99.3 ± 0.1 99.3 ± 0.1
M45◦ 97.4 97.1 98.8 98.7 99.2 ± 0.1 99.0 ± 0.1 99.2 ± 0.1 99.3 ± 0.1 99.3 ± 0.1
M60◦ 96.9 96.6 98.3 98.6 99.3 ± 0.1 99.4 ± 0.1 99.4 ± 0.1 99.4 ± 0.1 99.2 ± 0.1
M75◦ 89.1 92.1 90.0 90.4 93.0 ± 0.1 93.8 ± 0.1 93.8 ± 0.1 93.5 ± 0.1 93.2 ± 0.1
Avg 94.3 95.3 95.8 95.2 97.2 ± 0.1 97.5 ± 0.1 97.5 ± 0.1 97.4 ± 0.1 97.3 ± 0.1

also can perform conditional reconstructions with DIVA. The results along with more details can be
found in the Appendix.

4.3 COMPARISON TO OTHER METHODS

We compare DIVA against the well known domain adversarial neural networks (DA) (Ganin et al.,
2015) as well as three recently proposed methods: LG (Shankar et al., 2018), HEX (Wang et al.,
2019) and ADV (Wang et al., 2019).

For the first half of Table 1 (until the vertical line) we only use labeled data. The first column
indicates the rotation angle of the test domain. We report test accuracy on y for all methods. For
DIVA we report the mean and standard error for 10 repetitions. DIVA achieves the highest accuracy
across all test domains. In addition we achieve the highest average test accuracy among all proposed
methods.

The second half of Table 1 showcases the ability of DIVA to use unlabeled data. For this experiment
we add: The same amount (+1) of unlabeled data as well as three (+3), five (+5) and nine (+9) times
the amount of unlabeled data to our training set. Here, we first add the unlabeled data toM0◦ and
create the data for the other domains as described in Section 4.1. In Table 1 we can clearly see a
performance increase when unlabeled data is added to the training set. The effect seems to become
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smaller when the amount of unlabeled data is much larger than the amount of labeled data as seen
in the last two columns of Table 1.

4.4 ADDITIONAL UNLABELED DOMAINS

In Section 4.3 we show that the performance of DIVA increases when it is presented with additional
unlabeled data for each domain. As a result each training domain consists of labeled and unlabeled
examples. In this section we investigate a more challenging scenario: We add an additional domain
to our training set that consists of only unlabeled examples. Coming back to our introductory exam-
ple of medical imaging, here we would we add unlabeled data from a new patient or hospital to the
training set. In contrast to the experiment in Section 4.3 where we would add unlabeled data from
each known patient or hospital to the training set.

In the following, we are looking at two different experimental setups: 1) The additional domain
is dissimilar to the test domain, e.g. M30◦ andM75◦ . 2) The additional domain is similar to the
test domain, e.g. M60◦ andM75◦ . In both cases we show that DIVA improves when trained with
unlabeled data from an unseen domain.

4.4.1 DISSIMILAR DOMAIN

For the first experiment we choose the domains M0◦ , M15◦ , M45◦ and M60◦ to be part of the
labeled training set. In addition, unlabeled data fromM30◦ is used. The test domain isM75◦ . In
Table 2 we can see that even in the case where the additional domain is dissimilar to the test domain
DIVA is able to slightly improve.

Table 2: We compare DIVA trained with only labeled data to DIVA trained with additional unlabeled
data fromM30◦ . We report the average and standard error of the classification accuracy onM75◦ .

Test Only labeled data Additional unlabeled
M75◦ 93.1 ± 0.2 93.3 ± 0.1

4.4.2 SIMILAR DOMAIN

For the second experiment we choose the domainsM0◦ ,M15◦ ,M30◦ andM45◦ to be part of the
labeled training set. In addition, unlabeled data from M60◦ is used. The test domain is M75◦ .
When comparing the results in Table 3 to the results in Table 1 and 2 we notice a drop in accuracy
of about 20% for DIVA trained with only labeled data. However, when trained with unlabeled data
fromM60◦ the drop in accuracy is only about 13%.

Table 3: We compare DIVA trained with only labeled data to DIVA trained with additional unlabeled
data fromM60◦ . We report the average and standard error of the classification accuracy onM75◦ .

Test Only labeled data Additional unlabeled
M75◦ 73.8 ± 0.3 80.64 ± 0.4

5 CONCLUSION

We have proposed DIVA as a generative model with three independent sources of variation. We
demonstrate through quantitative and qualitative experiments on rotated MNIST that our model
successfully learns representations zy that are invariant with respect to the domain d. In future
work, we want to evaluate DIVA on a more complex dataset.
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APPENDIX

TRAINING PROCEDURE

All DIVA models are trained for 500 epochs. The training is terminated if the classification loss for
y has not improved for 100 epochs. As proposed in Burgess et al. (2018), we linearly increase β
from 0.0 to 1.0 during the first 100 epochs of training. We set αd = 2000. As seen in (Maale et al.,
2019), we adjust αy according to the ratio of labeled (N) and unlabeled data (M),

αy = γ
M +N

N
, (5)

where we set γ = 3500. Last, zd, zx and zy each have 64 latent dimensions. All hyperparameters
were determined by training DIVA onM0◦ ,M15◦ ,M30◦ ,M45◦ and testing onM60◦ . All models
were trained using ADAM (Kingma & Ba, 2014) (with default settings), a pixel-wise cross entropy
loss and a batch size of 100.

ARCHITECTURE

To enable a fair experiment, the encoder qφy (zy|x) and auxiliary classifier qωy (y|zy) form a DNN
with the same number of layers and weights as described in Wang et al. (2019).

Table 4: Architecture for pθ(x|zd, zx, zy). The parameter for Linear is output features. The param-
eters for ConvTranspose2d are output channels and kernel size. The parameter for Upsample is the
upsampling factor. The parameters for Conv2d are output channels and kernel size.

block details
1 Linear(1024), BatchNorm1d, ReLU
2 Upsample(2)
3 ConvTranspose2d(128, 5), BatchNorm2d, ReLU
4 Upsample(2)
5 ConvTranspose2d(256, 5), BatchNorm2d, ReLU
6 Conv2d(256, 1)

Table 5: Architecture for pθd(zd|d) and pθy (zy|y). Each network has two heads one for the mean
and one for the scale. The parameter for Linear is output features.

block details
1 Linear(64), BatchNorm1d, ReLU

2.1 Linear(64)
2.2 Linear(64), Softplus

Table 6: Architecture for qφd(zd|x), qφx(zx|x) and qφy (zy|x). Each network has two heads one for
the mean one and for the scale. The parameters for Conv2d are output channels and kernel size. The
parameters for MaxPool2d are kernel size and stride. The parameter for Linear is output features.

block details
1 Conv2d(32, 5), BatchNorm2d, ReLU
2 MaxPool2d(2, 2)
3 Conv2d(64, 5), BatchNorm2d, ReLU
4 MaxPool2d(2, 2)

5.1 Linear(64)
5.2 Linear(64), Softplus
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Table 7: Architecture for qωd(d|zd) and qωy (y|zy). The parameter for Linear is output features.

block details
1 ReLU, Linear(5 for qωd(d|zd)/10 for qωy (y|zy)), Softmax

CONDITIONAL GENERATION

Yet another way to gain insight into the disentanglement abilities of DIVA is conditional generation.
We first train DIVA with β = 10 usingM0◦ ,M15◦ ,M30◦ ,M45◦ andM60◦ as training domains.
After training we perform two experiments. In the first one we are fixing the class and varying the
domain. In the second experiment we are fixing the domain and varying the class.

Change of class The first row of Figure 5 (left) shows the input images x for DIVA. First, we
generate embeddings zd, zx and zy for each x using qφd(zd|x), qφx(zx|x) and qφy (zy|x). Second, we
replace zy with a sample z′y from the conditional prior pθy (zy|y). Last, we generate new images from
zd, zx and z′y using the trained encoder pθ(x|zd, zx, zy). In Figure 5 (left) rows 2 to 11 correspond
to the classes ’0’ to ’9’. We observe that the rotation angle (encoded in zd) and the line thickness
(encoded in zx) are well preserved, while the class of the image is changing as intended.

Figure 5: Reconstructions. Left: First row is input, row 2 to 11 correspond to labels ’0’ to ’9’. Right:
First row is input, row 2 to 6 correspond to domains 0, 15, 30, 45, 60.

Change of domain We repeat the experiment from above but this time we keep zx and zy fixed
while changing the domain. After generating embeddings zd, zx and zy for each x in the first row
of Figure 5 (right), we replace zd with a sample z′d from the conditional prior pθd(zd|d). Finally,
we generate new images from z′d, zx and zy using the trained encoder pθ(x|zd, zx, zy). In Figure 5
(right) rows 2 to 6 correspond to the domainsM0◦ toM60◦ . Again, DIVA shows the desired be-
haviour: While the rotation angle is changing the class and style of the original image is maintained.
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QUALITATIVE DISENTANGLEMENT: TEST DOMAIN

In this section, we visualize the zd and zy for data points x from the test domainM75◦ for the model
trained in Section 4.2. Figure 6 shows 1000 embeddings zy encoded by qφy (zy|x). Figure 7 shows
1000 embeddings zd encoded by qφd(zd|x).

Figure 6: 1000 two-dimensional embeddings zy encoded by qφy (zy|x) for x from the test domain
M75◦ . The color of each point indicates the associated class.

Figure 7: 1000 two-dimensional embeddings zd encoded by qφd(zd|x) for x from the test domain
M75◦ . The color of each point indicates the associated class.
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