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ABSTRACT

Energy-based models (EBMs), a.k.a. un-normalized models, have had recent
successes in continuous spaces. However, they have not been successfully applied
to model text sequences. While decreasing the energy at training samples is
straightforward, mining (negative) samples where the energy should be increased
is difficult. In part, this is because standard gradient-based methods are not readily
applicable when the input is high-dimensional and discrete. Here, we side-step this
issue by generating negatives using pre-trained auto-regressive language models.
The EBM then works in the residual of the language model; and is trained to
discriminate real text from text generated by the auto-regressive models.
We investigate the generalization ability of residual EBMs, a pre-requisite for using
them in other applications. We extensively analyze generalization for the task of
classifying whether an input is machine or human generated, a natural task given
the training loss and how we mine negatives. Overall, we observe that EBMs
can generalize remarkably well to changes in the architecture of the generators
producing negatives. However, EBMs exhibit more sensitivity to the training set
used by such generators.

1 INTRODUCTION

Energy-based models (EBMs) have a long history in machine learning (Hopfield, 1982; Hinton,
2002; LeCun et al., 2006). Their appeal stems from the minimal assumptions they make about
the generative process of the data. Unlike directed or auto-regressive models which are defined
in terms of a sequence of conditional distributions, EBMs are defined in terms of a single scalar
energy function, representing the joint compatibility between all input variables. EBMs are a strict
generalization of probability models, as the energy function need not be normalized or even have
convergent integral.

Training an EBM consists of decreasing the energy function at the observed training data points
(a.k.a. positives), while increasing it at other data points (a.k.a. negatives) (LeCun et al., 2006).
Different learning strategies mainly differ in how negatives are mined (Ranzato et al., 2007). Some
find negatives by gradient descent, or using Monte Carlo methods like Gibbs sampling (Welling et al.,
2005) and hybrid Monte Carlo (Teh et al., 2003), which enable the loss to approximate maximum
likelihood training (Hinton, 2002). Other approaches instead use implicit negatives, by enforcing
global constraints on the energy function, like sparsity of the internal representation (Ranzato et al.,
2007), for instance. GANs (Goodfellow et al., 2014) can be interpreted as a particular form of EBM
where the negatives are generated by a learned model.

While there are works exploring the use of EBMs for modeling images (Teh et al., 2003; Ranzato
et al., 2013; Du & Mordatch, 2019), they have not been successfully applied to text. One reason is that
text consists of sequences of discrete variables, which makes the energy function not differentiable
with respect to its inputs. Therefore, it is not possible to mine negatives using gradient-based methods.
Other approaches to mine negatives are also not immediately applicable or may be too inefficient to
work at scale.

In this work, we start from the observation that current large auto-regressive locally-normalized
language models are already strong (Radford et al., 2019), and therefore, it may be beneficial to
use them to constrain the search space of negatives. We propose to learn in the residual space of a
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pre-trained language model (LM), which we accomplish by using such LM to generate negatives for
the EBM. Given a dataset of positives and pre-generated negatives, the EBM can be trained using
either a binary cross-entropy loss or a ranking loss, to teach the model to assign a lower energy to
true human generated text than to the text generated by the pre-trained LM.

The question we ask in this work is whether such an EBM can generalize well. Understanding
this is important for two reason. First, this generalization is a prerequisite for using residual EBMs
for modeling text. Second, in our setting, this generalization question is equivalent to the question
of whether it is possible for a learned model (the energy function) to discriminate real text from
text generated by an auto-regressive model. Discriminating real vs. machine-generated text is an
important task on its own that has recently gained a lot of attention (Gehrmann et al., 2019; Radford
et al., 2019; Zellers et al., 2019).

Our contribution is an extensive study of the generalization ability of such residual EBMs, or in other
words, the generalization ability of models trained to detect real text from machine generated text.
In particular, we assess how well the energy function is robust to changes in the architecture of the
generator and to changes in the data used to train the generator. The overall finding is that the energy
function is remarkably robust, and the bigger the model and the longer the generation the better
its performance. Moreover, the energy function is robust to changes in the architecture of the LM
producing negatives at test time. However, it is sensitive to the training dataset of the test generator.

2 RELATED WORK

Our work can be interpreted as a particular instance of EBMs (LeCun et al., 2006) where negatives
are produced by a pre-trained language model as opposed to the energy function itself. Learning a
generator and a discriminator relates also to Generative Adversarial Networks (Goodfellow et al.,
2014), except that in our case the generator is trained beforehand.

Since the discriminator is learned after the generator has been trained, it learns from the residual
error of the generator, and therefore, our training procedure is a particular instance of a “cascade”
model (Viola & Jones, 2001) and “boosting” (Freund & Schapire, 1997).

Using a separately trained scoring function to evaluate and rank candidate outputs has a long history
which dates back to work on parsing and machine translation (Shen et al., 2004). In that work
however, the goal was to improve a weak generator by employing a linear reranker taking as input
relatively few hand-design features. The approach has been recently re-discovered in the context of
dialogue modeling by Kulikov et al. (2018), but here negatives are randomly chosen next utterances
from the training dataset.

Several recent works have studied whether machine generations can be detected automatically, but
they do not study how these findings generalize to settings where generator architectures and corpora
are different between training and test time. For example, Zellers et al. (2019) (GROVER) assume
that the generator is known and apply only slight fine-tuning in order to train the energy function.
Similarly, Gehrmann et al. (2019) (GLTR) assume knowledge of the generator; these Authors say
“We further hypothesize that these methods generalize to black-box scenarios, as long as the fake
text follows a similar sampling assumption and is generated by a large language model”; our work
answers precisely this question, provides a rigorous experimental protocol and quantitative results.

Finally, there has been a release of a training dataset of the GPT-2 language model generations (Rad-
ford & Wu, 2019) for the purpose of training discriminators capable of detecting machine generated
text. While we share the same motivation, our work is a much broader investigation on the topic.
We assess generalization of several discriminator architectures to not just one but several kinds of
generators and corpora used for training (including GPT-2).

3 ENERGY-BASED MODELS FOR TEXT

In this section, we describe how we train the energy based model and how we mine negatives.
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3.1 LEARNING

Our goal is to learn an energy function E(w1, . . . , wn|c; θ) ∈ R that scores the joint compatibility
of an input sequence of tokens (w1, . . . , wn) given some context c and a set of parameters θ. The
context depends on the application, it could be the preceding text, some keywords, a bag of words, a
title, etc. In this work for simplicity, c is an affix from which we condition the generation.

The goal of training is to assign to golden sequences, i.e. sequences taken from a dataset of human
generated text, lower energy than other sequences. We parameterize the energy function as a neural
network, using the architectures described in §4.3.

At training time, the energy function can be trained using a variety of different losses. In this work,
we consider two choices: the binary cross-entropy loss and the ranking loss (Collobert et al., 2011).
As the findings are similar, unless otherwise specified we will refer to the binary cross-entropy loss,
and report results with the ranking loss in Appendix C.

Let x+ be a positive sample taken from the training set, and consisting of a sequence of n tokens
given some context c. Let (x−1 , ..., x

−
k ) be a set of k negative samples each derived from the same

context c as above, all containing at least some machine generated tokens. We train our energy
function using the (per-sample) binary cross-entropy loss:

LBCE = − log(σ(−E(x+|c; θ))) + log(σ(−E(x̂−|c; θ))) (1)

where x̂− is the most offending negative (LeCun et al., 2006), i.e. its index is the solution of
argminki=1E(x̂−i |c; θ), and σ is the sigmoid function: σ(u) = 1

1+exp(u) .

3.2 GENERATING NEGATIVES

The most critical component of training an energy based model is the method used to generate
negatives, i.e. inputs where the energy should score high (unlikely inputs). In settings with continuous
variables, researchers have suggested MCMC (Teh et al., 2003) or Langevin dynamics (Du &
Mordatch, 2019). In this work instead, we use the fact that modern auto-regressive models for text
are already quite good, and we use them for negative sampling.

We train two auto-regressive language models, a left-to-right one which will be used to produce
suffixes assuming the prefix is the context, and a right-to-left one which will be used to generate
prefixes assuming the suffix is the context. The negatives are generated by top-k sampling (Fan et al.,
2018) setting k equal to 10. Given a trained language model (for instance, a left-to-right autoregressive
model) and given a positive example x+ = (wi+1, . . . , wi+n), for a given context: c = (w1, . . . , wi),
a negative can be written as: x− = (ŵi+1, . . . , ŵi+n), where wj for j ∈ [1, i+ n] are ground truth
words, the first i of them belonging to the common context, and ŵj for j ∈ [i+ 1, i+ n] are words
generated by the language model conditioned on c. In the same way, we can sample a negative with a
right-to-left model yielding x− = (ŵ1, . . . , ŵn), for a given context c = (wn+1, . . . , wn+i).

4 EXPERIMENTAL SETUP

In this section we first describe the datasets and preprocessing used, provide architecture details for
both generators and scoring functions, and finally introduce the evaluation settings.

4.1 CORPORA

We train models on three corpora coming from different domains. We report more detailed statistics
about the sizes of these corpora in Appendix Table 8:
Books: The Toronto books corpus described in Zhu et al. (2015); Kiros et al. (2015), which consists
of fiction books in 16 different genres, totaling about half a billion words.
CCNews: We collect a de-duplicated subset of the English portion of the CommonCrawl news
dataset (Nagel, 2016), which totals around 16 Billion words.
Wikitext: The wikitext103 dataset from Merity et al. (2016), which consists of 103 million words
from English Wikipedia articles.
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While Wikitext and CCNews are factual, Books is fiction and comprises a wide variety of writing
styles. The CCNews corpus has the narrowest domain and it is two orders of magnitude larger than
Wikipedia. Overall, these datasets are interesting because they enable us to assess the ability of the
energy function to fit and generalize across various axes, from the amount of data available at training
time to the richness of style and relatedness among the different data sources.

On Wikitext and Books, we extract positive sequences from windows of text that are 160 tokens long
with a stride of 40. On the larger CCNews we do the same except that we stride by 160 tokens. This
protocol to mine positives is used both at training and test time, although at test time we limit the
evaluation to 60,000 randomly chosen positive samples.

We use a Byte Pair Encoding (Sennrich et al., 2015) in order to represent all the dataset with a
common vocabulary. In particular, our vocabulary contains 50k tokens that was constructed from a
byte level UTF-8 encoding of the CC-News corpus following Radford et al. (2019).

4.2 GENERATOR ARCHITECTURES

We mainly use a transformer based network (Vaswani et al., 2017) to generate negatives. We have a
medium, large and huge transformer model based on the architecture used in Baevski & Auli (2019),
yielding three language models in total: TransfSmall, TransfBig and TransfHuge; see details also in
Appendix B.

The small sized models use 6 blocks each containing a multi-head attention module with 8 heads. The
large models use 12 blocks each containing a multi-head attention module with 16 heads. The huge
models use 48 blocks each containing a multi-head attention module with 25 heads. Transformer
models are also implemented in Ott et al. (2019) as "transformer_lm", "transformer_lm_big", and
"transformer_lm_gpt2_big". The TransfHuge has 10x the number of parameters than TransfBig and
it is trained on CCNews only. For each architecture except for TransfHuge we train two models on
each each dataset: left to right and right to left.

In addition to the transformer generator, we also consider a 12-layer convolutional architecture
(Conv) (Dauphin et al., 2017), and we also use a the third-party trained GPT2 models (Radford et al.,
2019) as described in §5.3.

As described in §3.2, we use these language models to generate either a prefix or a suffix. Unless
otherwise specified, the context is long either 120 or 140 tokens (with equal probability). Positive and
negative examples have 40 or 20 tokens depending on the context size, for an overall length of 160
tokens in all cases. In preliminary experiments, we found that increasing the size of the generations
and reducing the size of the context makes the learning task significantly easier. We analyze the effect
of the context size in §5.5.

4.3 EBM ARCHITECTURES

We consider three architectures for the energy function:
Linear which computes an energy value via a bag of tokens: f(w1, ..., wn) = (

∑n
i=1 uwi

), where
ui is a learnt scalar parameter corresponding to the i-th token in the vocabulary.
BiLSTM (Schuster & Kuldip, 1997; Graves & Schmidhuber, 2005) which computes an energy value
through L bidirectional layers using LSTM recurrent units (Hochreiter & Schmidhuber, 1997), as in
Linear(AvgPool(hL,1, . . . , hL,n)), where hL,i is the hidden state at position i and layer L which is
the concatenation of the forward and backward hidden states, AvgPool averages hidden states over
positions and Linear is a vector of parameters projecting the hidden state down to a scalar value. We
consider two versions, referred to as “BiLSTMsmall” and “BiLSTMbig”. Both have 4 layers, but
BiLSTMsmall has 512 units in both the embedding layer and the hidden layers, while BiLSTMbig
has 758 units in the embedding layer and 2014 units in the hidden states.
Transformer (Vaswani et al., 2017; Devlin et al., 2018) which computes an energy value similarly to
the BiLSTM’s, except that each bi-LSTM layer is replaced by a either a bidirectional Transformer
layer (BiTransf), or a Transformer with causal self-attention (UniTransf). For unidirectional models
we use the same averaging technique as with BiLSTM models. For bidirectional models the energy
is computed via: f(w1, ..., wn) = u>hL,1 + b, where hL,1 is the top layer hidden state at the first
position (as common practice also in prior work (Devlin et al., 2018)). BiTransf uses the BERT-Large
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CORPUS: GENERATOR ARCHITECTURE:
Ctrain = Ctest Atrain = Atest

in-domain 3 3
cross-architecture 3 7
cross-corpus 7 3
unseen 7 7

Table 1: Four evaluation settings considered in this work, described in §4.4.

architecture (Devlin et al., 2018) initialized from Liu et al. (2019). It uses 24 self-attention layers
with 1024 units and 16-head attention each. UniTransf has instead 12 layers with 1024 units and
16 attention heads per layer and it is initialized from a language modeling task as in Radford et al.
(2019).

For all models, we use Adam (Kingma & Ba, 2014) optimizer with warmup. Training is stopped
after processing 2.5M samples without any improvement on the validation set. We use data-parallel
synchronous multi-GPU training with up to 8 nodes, each with 8 Nvidia V100 GPUs. To improve
training speed, we use mixed precision training1. Following common practice we clip the norm of
the gradient vector (Pascanu et al., 2013). More details about hyper-parameter setting can be found in
Appendix Table 11, while Table 10 in Appendix reports the number of parameters of each energy
function.

4.4 EVALUATION

We evaluate the generalization of a residual EBM in four settings: in-domain, cross-architecture,
cross-corpus, and unseen.

These settings are determined by the corpora Ctrain used to train the training generator Gtrain with
architecture Atrain and the corpora Ctest used to train the testing generator Gtest with architecture Atest.
Note that Gtrain 6= Gtest even if Atest = Atrain as we use different training seeds. In all cases, Ctrain is
used for fitting the Gtrain and also for the positives for the EBM.

In the in-domain setting, Ctest is Ctrain (but any affixes used as conditioning during testing are from
the test-set of the corpus), and Atest = Atrain. In the cross-architecture setting, again Ctest is Ctrain,
but Atest is different from Atrain. In the cross-corpus setting, Atest = Atrain but Ctest is different than
Ctrain, and Gtest is trained on the training split of Ctest, while Gtrain trained on the train split of Ctrain.
In the unseen setting, both Ctest is different than Ctrain and Atest is different from Atrain.

In all settings, we report performance in terms of average classification accuracy balancing the
positive and negative classes.

5 RESULTS

We now present the main results of this work and extensively investigate the generalization ability of
the energy functions we have considered.

5.1 IN-DOMAIN GENERALIZATION

In Table 2 we report the results of the in-domain generalization experiment using our large language
model, TransfBig. We observe that when the EBMs have similar representational power compared
with the generator (UniTransf, see Table 10), they are able to distinguish real from fake completions
fairly accurately, reaching an accuracy of more than 90% on the Books dataset (which is easier since
it exhibits the larger variety of style and topics), and attaining above 88% on the more challenging
CCNews dataset (for which generation is easier and hence discrimination harder). The Wikipedia
dataset has lower accuracy because the EBM overfits to this smaller dataset.

1https://github.com/NVIDIA/apex
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Books CCNews Wiki

Linear 59.8 58.6 56.3
BiLSTMsmall 84.7 77.6 71.0
BiLSTMbig 86.7 80.1 72.8
UniTransf 91.7 88.4 76.4

TransfBig (log-likelihood) 57.1 50.8 50.5

Table 2: “In domain” generalization accuracy of EBMs (each row) on various text corpora. A column
corresponds to the corpus used to get positives and to fit the train and test language models, which are TransfBig
(§4.2) with different initial seeds. The last row is the accuracy when using as energy the log-probability of the
training language model over the whole sequence.

Conv TransfSmall

Conv 92.9 81.2
TransfSmall 86.5 87.9

Table 3: Cross-architecture generalization accuracy using the Wikitext dataset for both training and testing
(Ctrain = Ctest). Each row is a model architecture used for generating the training negatives (Atrain), and each
column is a model architecture for generating the testing negatives (Atest). The energy function is UniTransf.

Weaker energy models are able to do comparably or better at discriminating real from fake than the
training generator used as a discriminator by taking the log probability of the sequence as energy.

5.2 CROSS-ARCHITECTURE GENERALIZATION

In Table 3, we assess how well the UniTransf energy function generalizes to different generator
architectures at test time, namely Conv and TransfSmall. As a reference on the Wikitext dataset,
the test perplexity of Conv and TransfSmall are 35.4 and 33.5, respectively. Therefore, these two
generators attain roughly the same perplexity, despite Conv having about 4 times more parameters,
see Table 9.

Surprisingly, UniTransf has significantly harder time discriminating TransfSmall negatives with an
in-domain rate of 87.9%, compared to 92.9% of Conv. Also, UniTransf trained with TransfSmall
negatives is more robust to the (weaker) Conv generations, than vice versa, with a mild 1.4% accuracy
drop. However, if we average values across rows, we see that UniTransf tested with mixed negatives
is just slightly more accurate when training with the harder negatives produced by TransfSmall.

5.3 CROSS-CORPUS GENERALIZATION

In Table 4 we show the results of generalizing across corpora using UniTransf as an energy function
and TransfBig as generator both at training and test time. We observe that models generalize less well
across corpora; for instance, when testing on Wikitext an energy function trained with either Books
or CCNews, the accuracy is 59.1% and 65.5%, respectively. However, training on the union of two of
the corpora gives a large benefit over training on just one or the other when testing on the third.

Finally, training on the union of all the three corpora (last two rows) yields an energy function that is
very robust to the testing conditions, with an accuracy which is on par if not better than training on
in-domain data, even for the largest CC-News dataset (second column).

We also tested the bidirectional transformer energy function BiTransf with 355M parameters (almost
twice as UniTransf), and found that on CC-News it improves accuracy by more than 5% when it
is trained on the union of all corpora, confirming the finding that bigger models trained on more
data can achieve substantially better discrimination. As BiTransf was pre-trained using the whole
Wikipedia rather than the training part of Wikitext103, we do not report its accuracy on Wiki test set.
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TRAIN CORPORA
TEST CORPORA

Books CCNews Wiki

Wiki 70.9 73.6 76.4
Books 91.7 63.5 59.1
Books + Wiki 91.5 73.6 78.3
CCNews 60.6 88.4 65.5
Books + CCNews 90.4 88.5 68.3
CCNews + Wiki 73.5 88.3 81.0
ALL (UniTransf) 90.0 87.9 80.5
ALL (BiTransf) 91.6 93.0 -

Table 4: Cross-corpora generalization accuracy using TransfBig generator and UniTransf energy function
(except for the last row which used a bidirectional transformer). Each row specifies the corpora used at training
time, Ctrain. Each column shows the corpus used at test time, Ctest.

Energy function → UniTransf trained on ALL BiTransf trained on ALL
Test domain → Books CCNews Wiki Books CCNews

Generator model ↓ M params ↓
GPT2 small (WebText) 137 90.9 80.4 82.6 92.0 87.6
GPT2 medium (WebText) 380 88.1 73.2 78.8 89.6 78.4

TransfHuge (CC-News) 1427 81.8 66.1 75.1 82.3 66.9

Table 5: Generalization of BiTransf and UniTransf energy function to state of the art generators. The energy
functions (discriminators) are trained on the concatenation of all three corpora (same as in table 4 ALL rows).
Test time negatives are generated by models specified in the rows, with their training set in parenthesis and
model size in millions of parameters. Note that both the training corpus and GPT2 generator are “unseen” by the
energy function during training.

5.4 GENERALIZATION IN THE WILD

In Table 5 we test the generalization of the energy functions to GPT-2 generators (Radford et al.,
2019)2 that were trained on a completely different dataset, namely WebText (Radford et al., 2019)
a dataset of 8 million web pages. This is an instance of unseen generalization since Ctrain 6= Ctest,
and Atrain 6= Atest. We also consider generations from TransfHuge (last row) whose configuration
is similar to the unreleased biggest GPT2 model with 1.4 billion parameters, 7 times bigger than
TransfBig, the generator used at training time.

Expectedly as the generator gets bigger the discrimination tasks gets harder. When the energy
function is confronted with generations from the GPT2 small model, which is smaller than the
training generator, the accuracy is close to the in-domain setting, however. For instance the BiTransf
accuracy increases by 0.4% on the Book corpus and decreases by 5.4% on the CCNews corpus
compared to the fully in-domain results of Table 4. That suggests that for a known domain, a big
enough energy model trained with a single big generator can efficiently discriminate a block-box
generator. Of course, accuracy decreases as the black-box generator is made bigger (GPT-2 medium).

Finally, we investigate generalization of the energy function to a new domain, such as samples from
the dataset of GPT-2 generations (Radford & Wu, 2019). For each model the dataset has a 250k
generated texts with either top-k sampling or random sampling. Also, the dataset provides samples
from the WebText corpus that was used to train the generator models, and that we use to discriminate
against.

To adapt our models to this task we split the text segments into sets of intersecting blocks of 160
tokens. During training we treat all blocks in a set as either positives or negatives. During evaluation
we take the mean prediction over all blocks in a segment as a prediction for the whole segment.

2We use pytorch versions of officially released checkpoints for small (137M params) and medium
(380M params) architectures from HuggingFace repository at https://github.com/huggingface/
pytorch-transformers.

7

https://github.com/huggingface/pytorch-transformers
https://github.com/huggingface/pytorch-transformers


Under review as a conference paper at ICLR 2020

Energy Function→ TF-IDF∗ BiTransf
Test setting→ in-domain in-domain generalization

Small (137) top-k 96.79 99.09 -
Small (137) random 88.29 99.80 -
Med (380) top-k 95.22 98.07 97.37
Med (380) random 88.94 99.43 97.35
Big (762) top-k 94.43 96.50 93.58
Big (762) random 77.16 99.42 95.96
Huge (1542) top-k 94.43 95.01 90.17
Huge (1542) random 77.31 99.00 91.76

Table 6: Generalization of the energy function to unconditional generation from various GPT2 models (model
size in parantheses, followed by sampling method used). Each row contains the accuracy on the corresponding
test set. TF-IDF results are taken from Radford & Wu (2019).
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Figure 1: Discrimination accuracy as a function of the
ratio between the prefix length and the total length of
the sequence on the Wikitext dataset.

Accuracy

1 random negative 82.9
3 random negatives 84.2
worst negative out of 3 84.6

Table 7: Effect of different strategies to mine
negatives using TransfBig generator and BiL-
STMSmall energy function on Book Corpus.

In Table 6 we report results of the BiTransf energy function compared to the TF-IDF baseline provided
with the dataset. We consider two cases. In the in-domain setting, we finetune the energy function
on the train set of each of the datasets, following the same protocol used by the provided TF-IDF
baseline. In generalization mode, we finetune only on the generations from the small GPT2 model
(both top-k and random sampling), and apply the model to the other datasets.

Unsurprisingly, in-domain BiTransf beats TF-IDF baseline getting almost 100% across the board.
However in generalization mode, we can outperform the TF-IDF baseline only when the generator is
less than three times bigger than what was used at training time.

Interestingly, our energy function was trained using a fixed length input with a prefix. These
generalization results are significantly higher than the in-domain experiment of Table 2 because the
unconditional task is significantly easier, a topic further discussed next.

5.5 ABLATION STUDY

First, we investigate the dependency between performance of the energy functions and length of the
prefix. We trained BiLSTMSmall and UniTransf models on examples with varying prefix length
from the Wikitext corpus, and computed the accuracy for each prefix length independently. Figure 1
shows that as the prefix length increases (and the generation gets shorter), the discrimination task
gets harder and the difference between the models more prominent. The unconditional case, i.e. zero
prefix length, is the easiest, while prefixes of length 120 and 140 that are the main experimental setup
in this work, are the hardest.

Finally, in Table 7 we study the impact of the number of negatives and using the most offending
negative in the loss of Eq. (1). Using more negatives and harder negatives improves accuracy.

5.6 STABILITY TO OTHER NEGATIVE DISTRIBUTIONS

In the previous sections we have seen that the energy function is less robust to negatives generated
from a model trained on a different corpus. However, even in that case, a negative is still a sample
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Figure 2: Effect of applying various perturbations (word replacement and swap of adjacent words) to ground-
truth sequences at different positions in terms of energy function and generator negative log-likelihood (averaged
over the whole test set of Wikitext). The energy is only affected by corruptions at either end of the sequence.
These out-of-domain corruptions invariably decrease the energy. However, all perturbations increase the negative
log-likelihood of the sequence.

from an auto-regressive neural network. In Appendix F, we show examples where changing a few
entities can cause large jumps in the energy (from negative to positive or vice versa), and so fool the
EBM. More generally, we see that the energy function is not robust to truly out-of-domain samples.
For example, the energy will score blocks of randomly generated text lower than real text.

These behaviors are evidence that the energy functions have learned the regularities of generated text,
as opposed to learning the regularities of real text. We surmise that it does so because modeling the
latter would be much more difficult than the former. By modeling generated text, the energy function
assigns low score to anything that is not generated by its training generator.

While not surprising, this might be considered a liability of such energy functions. However, as a
model of text, the energy functions should be considered as working on the residuals of the language
models used to generate negatives. For the examples in Appendix F, the language model records a
large decrease in likelihood after the change in entity; and language models of course give much
lower likelihood to random text than gold or generated text. Therefore, the energy function needs not
to be accurate on examples that are already very unlikely according to these language models.

In Figure 2 we show the average effects of applying various perturbations to sequences from Wiki-
text103 on an in-domain energy and language model at each location (from 1 to 160) in the sequence.
We see that for all perturbations, the energy decreases its value, but the language model increases its
negative log likelihood. We also see that the energy function is more sensitive to the ends of the text,
which is where the negatives were different from real text at training time.

6 FINAL REMARKS

The EBM framework could potentially unlock more expressive models of text, as they are not
limited to scoring a single word at a time as current locally normalized auto-regressive models do.
Unfortunately, training EBMs is challenging because generating negatives using the energy function
itself is still an open research problem, and does not scale well in practice. In this work, we propose
a simple solution, which is to leverage generations produced by pre-trained language models as
negative samples.

As a preliminary yet necessary step in this direction we have investigated the generalization ability
of such EBMs. We found that EBMs, when trained on large datasets, achieve good generalization.
For instance, they behave nicely when tested with negatives produced by generators that have rather
different architectures. The generalization is less good when generators are trained on other corpora,
but EBMs re-gain robustness once we train them on even bigger composite datasets.

In the future, we can improve EBMs for text by simply making their architectures bigger and
increasing the diversity and size of their training datasets. Of course, further scaling up of EBMs will
pose formidable engineering challenges.

On the application side, a natural application of the current formulation of EBMs is real/fake text
discrimination. We believe that this is important application in its own right, and that EBMs can be
very powerful, as demonstrated by their superior performance compared to discriminating using the
original language model log-likelihood.

We additionally hope to broaden the scope of applications of EBMs for text, including learning
generic representations of text and using EBMs to improve text generation.
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A CORPORA SIZES

Dataset Train Valid Test
Books 690 7.3 8.0
CCNews 21718 1.0 3.4
Wikitext 113 0.2 0.3

Table 8: Number of BPE tokens in millions for each dataset.

B MODEL SIZES

Generators
Pre-trained GPT2

Conv TransfSmall TransfBig TransfHuge small med large huge

embed. 13 26 51 77 39 52 - -
others 164 19 151 1360 97 327 - -
total 176 45 203 1437 137a 380a 762b 1542b

Table 9: Number of parameters (in millions) for the generator language models. The computational cost is
directly related to the number of parameters in other layers than the input embedding layer (second row).

aWe use models from HuggingFace repository (https://github.com/huggingface/
pytorch-transformers) and report here the sizes of these models as they were used to generate
data for table 5. Note that the OpenAI GPT2 repository (https://github.com/openai/gpt-2) defines
models sizes as 124M and 355M for small and medium model correspondingly.

bAs reported in Radford et al. (2019).

EBM Functions
Linear BiLSTM BiLSTM Big UniTransf BiTransf

embed. 0.1 26 39 51 51
others 0 23 90 151 304
total 0.1 49 129 203 355

Table 10: Number of parameters in millions for the scoring functions. The computational cost is directly related
to the number of parameters in other layers than the input embedding layer (second row).

C RANKING LOSS

The (per-sample) ranking loss is:

LR = max
(
0, 1 + E(x+|c; θ)− E(x−i |c; θ)

)
. (2)

In this case we also refer to the negative energy as the model score. The ranking loss makes the
energy values local, as the loss takes as input the difference of energies for a pairs of positive and
negative that share the same context. Instead, the binary cross entropy loss of Eq. 1 encourages a
more global and absolute scoring as the loss forces all positive examples to have negative energy, and
all negative samples to have positive energy, regardless of the context. Therefore, the binary cross
entropy loss is perhaps more interpretable as it is not context dependent, but the task is also harder to
learn. Empirically, we found similar findings with both losses.

When the energy function is trained using the ranking loss of eq. 2, we evaluate the model using
precision at 1 (P@1), which is the ratio between the number of times the ground truth sequence
scores the lowest over its set of negatives, averaged over the number of sequences in the test set.
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D HYPER-PARAMETER SETTING

All models are implemented using the PyTorch framework (Paszke et al., 2017) and are optimized
using Adam (Kingma & Ba, 2014).

To train our biggest models (UniTransf and BiTransf) we used 8 machines each with 8 GPUs in
synchronous mode using data parallelism. The resulting large batch size speeds up training when
combined with float16 reduced precision and cosine scheduling of the learning rate without any
restarts (Loshchilov & Hutter, 2016), i.e. we decay the learning rate to zero over the course of “max
steps” updates and then stop training. Using these methods, we reduced training time by five times
compared to a single node training. For all other configurations we used a single node with up to 8
GPUs and inverse square root decay.

max lr bsz (per GPU) GPUs fp16 warmup steps max steps

Linear 0.01 1024 1 + 1000 -
BiLSTM 0.0002 128 8 + 1000 -
UniTransf 0.0003 32 64 + 2000 180000
BiTransf 0.00005 20 64 + 2000 180000

Table 11: Hyper-parameter values used in our scoring functions.
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E SCORE DISTRIBUTIONS
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Figure 3: Distributions of score (negative energy) differences between pairs of ground truth completions
and generated ones for different scoring models. We show results for two generations (left to right and right
to left) from Wikitext dataset. In both cases we generate 40 tokens. Examples on the right of the red line
(margin = 0.1) have zero rankiing loss.

F PERTURBING THE ENERGY FUNCTION

In this section we show that we can change a few words to make a negative example become a
“positive” one as judged by the energy function, and vice versa, by using gradient information.

Below here, we show an example of a ground truth sentence from the Wikitext dataset.

<EOS> =Robert Boulter= <EOS> <EOS> Robert Boulter is an English film, television and
theatre actor. He had a guest-starring role on the television series The Bill in 2000. This was
followed by a starring role in the play Herons written by Simon Stephens, which was performed
in 2001 at the Royal Court Theatre. He had a guest role in the television series Judge John Deed
in 2002. In 2004 Boulter landed a role as "Craig" in the episode "Teddy’s Story" of the television
series The Long Firm; he starred alongside actors Mark Strong and[ Derek Jacobi. He was cast
in the 2005 theatre productions of the Philip Ridley play Mercury Fur, which was performed at
the Drum Theatre in Plymouth and the Menier Chocolate Factory in London. He was]

Here the block has 160 BPE tokens, where the first 120 tokens (black font) are used as context and
the remaining 40 are the ground truth completion. Next, we use a language model to generate 10
negatives:

Negative 1 <EOS> =Robert Boulter= <EOS> <EOS> Robert Boulter is an English film,
television and theatre actor. He had a guest-starring role on the television series The Bill in 2000.
This was followed by a starring role in the play Herons written by Simon Stephens, which was
performed in 2001 at the Royal Court Theatre. He had a guest role in the television series Judge
John Deed in 2002. In 2004 Boulter landed a role as "Craig" in the episode "Teddy’s Story" of
the television series The Long Firm; he starred alongside actors Mark Strong and[ Chris Elliott
in 2006 as the character. Boulter has appeared in various television specials dealing with the
series since its inception. <EOS> After graduating with a degree in drama, Boulter worked as a]

Negative 2 <EOS> =Robert Boulter= <EOS> <EOS> Robert Boulter is an English film,
television and theatre actor. He had a guest-starring role on the television series The Bill in 2000.
This was followed by a starring role in the play Herons written by Simon Stephens, which was
performed in 2001 at the Royal Court Theatre. He had a guest role in the television series Judge
John Deed in 2002. In 2004 Boulter landed a role as "Craig" in the episode "Teddy’s Story" of
the television series The Long Firm; he starred alongside actors Mark Strong and[ Stephen Fry
in the episode "You’re All Alone" and in the episode "The Longest Day". <EOS> He auditioned
for the role in the series in 2003 but was not cast. In 2005]
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...

Negative 10 <EOS> =Robert Boulter= <EOS> <EOS> Robert Boulter is an English film,
television and theatre actor. He had a guest-starring role on the television series The Bill in
2000. This was followed by a starring role in the play Herons written by Simon Stephens, which
was performed in 2001 at the Royal Court Theatre. He had a guest role in the television series
Judge John Deed in 2002. In 2004 Boulter landed a role as "Craig" in the episode "Teddy’s
Story" of the television series The Long Firm; he starred alongside actors Mark Strong and[ Ian
Somerhalder on the BBC series Top Gear; this was followed up in 2007 by a role in the BBC
science-fiction series Doctor Who. In 2008 Boulter appeared in the BBC]

Figure 4: Real and fake (negatives generated from TransfBig language model) completions as scored by the
learned energy function. The energy function is able to separate them well. These scores are calcuated based on
the single example reported in the main text of §F. f(x) is the negative energy.

In this example, using the big transformer model, UniTransf, as the energy function, we are able to
separate real from fake examples as shown (Figure 4). We want to perturb these negatives to violate
the margin. To do so, we make use of the gradient information from the energy function∇xEθ(x)
and use a first order Taylor expansion to approximate the effect of a token replacement (we abuse our
notations and use x to denote embeddings in this analysis). Given the original sample x, we change
one word xi to x′i to arrive at x′. The score of x′ is approximately:

Eθ(x) +∇xiEθ(x) · (x′i − xi)

Using this approximation, we can search for those token replacements that increase/decrease the
energy the most. We can easily change a negative sample to a positive one by replacing the 5 words
highlighted below. In paratheses, we report both score and language model perplexity.

Original negative (score -0.77, PPL 20.77) <EOS> =Robert Boulter= <EOS> <EOS> Robert
Boulter is an English film, television and theatre actor. He had a guest-starring role on the
television series The Bill in 2000. This was followed by a starring role in the play Herons written
by Simon Stephens, which was performed in 2001 at the Royal Court Theatre. He had a guest
role in the television series Judge John Deed in 2002. In 2004 Boulter landed a role as "Craig" in
the episode "Teddy’s Story" of the television series The Long Firm; he starred alongside actors
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Mark Strong and[ Chris][ Elliott] in 2006 as the character. Boulter has appeared in various
television specials[ dealing] with the series since its inception. <EOS> After graduating with a
degree in[ drama], Boulter worked as a

Perturbed negative (score 0.00, PPL 117.30) <EOS> =Robert Boulter= <EOS> <EOS>
Robert Boulter is an English film, television and theatre actor. He had a guest-starring role on
the television series The Bill in 2000. This was followed by a starring role in the play Herons
written by Simon Stephens, which was performed in 2001 at the Royal Court Theatre. He had
a guest role in the television series Judge John Deed in 2002. In 2004 Boulter landed a role
as "Craig" in the episode "Teddy’s Story" of the television series The Long Firm; he starred
alongside actors Mark Strong and[ Gor](-0.0.64, 28.97)[ Trem](-0.56, 38.86) in 2006 as the character.
Boulter has appeared in various television specials[ relates](-0.77, 24.60) with the series since its
inception. <EOS> After[Health](-0.35, 39.52) with a degree in[edited](-0.49, 27.45), Boulter worked as
a

In the above example, we also show the (score, PPL) for replacing a single token in the subscripts.
Similarly, we can replace a few words and make a positive sample become negative.

Original positive (score -0.25, PPL 77.68) <EOS> =Robert Boulter= <EOS> <EOS> Robert
Boulter is an English film, television and theatre actor. He had a guest-starring role on the
television series The Bill in 2000. This was followed by a starring role in the play Herons written
by Simon Stephens, which was performed in 2001 at the Royal Court Theatre. He had a guest
role in the television series Judge John Deed in 2002. In 2004 Boulter landed a role as "Craig" in
the episode "Teddy’s Story" of the television series The Long Firm; he starred alongside actors
Mark Strong and[ Derek] Jacobi. He was cast in the 2005 theatre productions of the Philip
Ridley play Mercury Fur, which was performed at the[ Drum] Theatre in[ Plymouth] and the[
Men]ier[ Chocolate] Factory in London. He was

Perturbed positive (score -0.78, PPL 142.85) <EOS> =Robert Boulter= <EOS> <EOS>
Robert Boulter is an English film, television and theatre actor. He had a guest-starring role on the
television series The Bill in 2000. This was followed by a starring role in the play Herons written
by Simon Stephens, which was performed in 2001 at the Royal Court Theatre. He had a guest
role in the television series Judge John Deed in 2002. In 2004 Boulter landed a role as "Craig" in
the episode "Teddy’s Story" of the television series The Long Firm; he starred alongside actors
Mark Strong and[connected](-0.30, 118.30) Jacobi. He was cast in the 2005 theatre productions
of the Philip Ridley play Mercury Fur, which was performed at the[ C](-0.28, 75.36) Theatre in[
London](-0.47, 62.29) and the[ Vaughan](-0.40, 93.77)ier[cerning](-0.32, 100.71) Factory in London. He
was

As shown in Figure 5, we can easily “fool” the discriminator by editing a few words. However, these
edited sentences have a very low probability (high PPL) under the generator we used. This explains
why the discriminator gets fooled, because it has never seen such negatives during training.
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Figure 5: By changing a few words we can make a negative sample become real as scored by the (negative)
ennergy function, and vice versa.
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