
Under review as a conference paper at ICLR 2020

TOWARDS UNIFYING NEURAL ARCHITECTURE SPACE
EXPLORATION AND GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT
In this paper, we address a fundamental research question of significant practical
interest: Can certain theoretical characteristics of CNN architectures indicate a
priori (i.e., without training) which models with highly different number of pa-
rameters and layers achieve a similar generalization performance? To answer this
question, we model CNNs from a network science perspective and introduce a
new, theoretically-grounded, architecture-level metric called NN-Mass. We also
integrate, for the first time, the PAC-Bayes theory of generalization with small-
world networks to discover new synergies among our proposed NN-Mass metric,
architecture characteristics, and model generalization. With experiments on real
datasets such as CIFAR-10/100, we provide extensive empirical evidence for our
theoretical findings. Finally, we exploit these new insights for model compres-
sion and achieve up to 3× fewer parameters and FLOPS, while losing minimal
accuracy (e.g., 96.82% vs. 97%) over large CNNs on the CIFAR-10 dataset.

1 INTRODUCTION

Are there any theoretical characteristics of CNN architectures that can indicate a priori (i.e., without
training) which models achieve a similar test accuracy, despite having a vastly different number
of parameters and layers? Even though there has been significant progress in architecture design
practices (both manual [He et al. (2016); Huang et al. (2017); Howard et al. (2017)] as well as
automated via Neural Architecture Search (NAS) [Zoph et al. (2018); Liu et al. (2018); Real et al.
(2017)]), the above question remains unanswered, thereby making it one of the most fundamental
problems in modern deep learning research. Clearly, answering this question can help us directly
design efficient CNN architectures with predictable performance figures. More precisely, the above
question is related to three important areas of research:

Neural Architecture Search (NAS) techniques automatically search for highly accurate and effi-
cient models [Zoph et al. (2018); Liu et al. (2018); Real et al. (2017)]. The models designed by NAS
algorithms usually surpass the manually designed architectures [Howard et al. (2017)].

Model Compression methods reduce the computational costs of existing deep networks without
losing significant test accuracy. The existing model compression techniques mainly focus on prun-
ing, quantization, and knowledge distillation [Li et al. (2016); Yang et al. (2016); Hubara et al.
(2017); Lai et al. (2017); Hinton et al. (2015)].

Generalization of deep networks aims to theoretically understand why deep networks work well in
practice by exploring properties of weight-norms/initializations, stability of deep networks to noise,
optimization characteristics such as sharpness of the minima, etc. [Zhang et al. (2016); Arora et al.
(2018); Neyshabur et al. (2015; 2017b;a)]. Deep networks achieve low generalization error despite
having a large number of parameters. In contrast, traditional wisdom suggests that models should
overfit when the number of parameters is much larger than the dataset size (which is true in practice).

Although there has been extensive research in the above three areas separately, to the best of our
knowledge, there is no research at the intersection of all three directions. Specifically, while NAS
can generate efficient architectures for mobile applications [Tan et al. (2019); Cai et al. (2018); Wu
et al. (2019)], existing NAS research does not theoretically explain why the newly discovered archi-
tectures perform better than other models containing a similar number of parameters. Conversely,
NAS also does not theoretically explain why can architectures with significantly different number of
parameters and layers sometimes achieve similar accuracy. Moreover, a few generalization studies
(e.g., Arora et al. (2018)) use compression to prove generalization error bounds. However, the gen-
eralization studies do not provide any theory that can explicitly guide efficient architecture design.

1

Under review as a conference paper at ICLR 2020

…

…

…… … …

…

…

…

i j

αij

Short-range
links

Long-range
links

×
× ×

×o
o

o o

NN-Density

A
cc

u
ra

cy

NN-Mass

A
cc

u
ra

cy

×

o

×

o
×o

×o

o Deeper models with
more parameters

× Shallower models
with less parameters

Smaller models with comparable
or higher NN-Mass can achieve
comparable accuracies to larger CNNs

NN-Mass

A
cc

u
ra

cy

×

o

×

o
×o

×o

Use NN-Mass to directly design new
compressed models with far fewer parameters
and layers without significant loss of accuracy

a. Model CNNs as a
network of channels

b. Neural Architecture Space Exploration via
the proposed network science-based metrics

c. Directly design compressed
models using NN-Mass

Figure 1: Approach Overview: (a) First, model a CNN as a network of channels. (b) Next, we pro-
pose NN-Mass and NN-Density, where NN-Mass is a theoretically-grounded metric that indicates
generalization capability. (c) Exploit NN-Mass to directly design significantly compressed models.

In view of the above, in this paper, we explicitly unify the architecture space exploration and gen-
eralization. Towards this, we first model CNNs as complex networks [Newman et al. (2011)] since
CNNs essentially consist of channels connected via filters at each convolutional layer (see Fig. 1(a)).
Then, we define a new NN-Density metric to quantify how densely the channels of a CNN are con-
nected to each other. We next use NN-Density to define a new, theoretically-grounded, architecture-
level metric called NN-Mass which establishes a link between the structure of CNN architectures
and their generalization error. Our objective is to use these architectural metrics for Neural Archi-
tecture Space Exploration (NASE); throughout this paper, NASE refers to the process of studying
the design space of deep networks via theoretically-grounded metrics such as NN-Mass.

To this end, we combine for the very first time, the Probably Approximately Correct (PAC)-Bayes
theory of generalization [McAllester (1999a;b)] with network science [Newman & Watts (1999);
Monasson (1999); Watts & Strogatz (1998a)] to theoretically prove that: (i) Architectures with
higher NN-Mass achieve lower generalization error, and (ii) Models with similar NN-Mass lead
to similar test accuracy, despite having different numbers of parameters and layers (see Fig. 1(b)).
Then, we provide extensive empirical evidence to support our theory. Finally, given a large, highly
accurate CNN, we show how NN-Mass can be used to directly design efficient models without
compromising their accuracy. Of note, our proposed NN-Mass metric has a closed-form equation in
terms of structure of the CNN architecture. Hence, it can be used to directly discover new, efficient
models without training individual models (see Fig. 1(c)). Our approach is illustrated in Fig. 1.

Overall, we make the following key contributions to both theory and practice:

1. To the best of our knowledge, we are the first to exploit network science to theoretically
study the generalization properties of CNN architectures. Towards this, we propose a new,
architecture-level metric called NN-Mass which can indicate the generalization capabil-
ities of CNNs with long-range links; we call concatenation-type skip connections (see
Densenet [Huang et al. (2017)]) as long-range links or shortcut connections in this paper.

2. We are also the first to integrate the PAC-Bayes theory with network science to offer a new,
principled method for studying properties of large deep networks. We discover a theoretical
link between NN-Mass, a property of the CNN architectures, and generalization. We also
show that models with similar NN-Mass achieve similar generalization errors.

3. To validate our new findings, we conduct extensive experiments with CNNs of different
depths, parameters, and long-range links for CIFAR-10/100 datasets. We quantify the re-
lationship between NN-Mass and generalization by demonstrating that the goodness-of-fit
parameter (R2) for a linear fit achieves high values (e.g., between 0.74-0.90). We also show
that NN-Mass can be used to predict the test accuracy of unknown architectures.

4. Finally, we demonstrate practical implications of our work by exploiting NN-Mass for
model compression. Specifically, given a large, highly accurate CNN (e.g., ∼ 97% on
CIFAR-10), we directly use our proposed NN-Mass metric to design new architectures that
achieve accuracy close to that of the large model (e.g., 96.82% on CIFAR-10 test set), while
reducing the total parameters and FLOPS by more than 3×.

The rest of the paper is organized as follows: Section 2 covers related work on NAS and generaliza-
tion, while Section 3 describes our proposed approach and the theoretical relationship between CNN
architectures and their generalization. Next, Section 4 presents extensive experiments to support our
theoretical results. Section 5 concludes the paper with final remarks on future work.

2

Under review as a conference paper at ICLR 2020

2 RELATED WORK

We now discuss related work on NAS, model compression and generalization. Prior art on long-
range links for CNNs and network science is discussed in Appendix A.

Network Science-based NAS and Model Compression. Recently, standard network-generation
techniques such as Barabasi-Albert (BA) [Barabási & Albert (1999)] or Watts-Strogatz (WS) [Watts
& Strogatz (1998a)] models were used for NAS [Xie et al. (2019); Wortsman et al. (2019)]. However,
like the rest of the NAS research, [Xie et al. (2019); Wortsman et al. (2019)] did not explore what
theoretical characteristics of the architecture make models (with different number of parameters and
layers) achieve similar generalization performance. Hence, to our knowledge, no theoretical attempt
has been made to understand the link between architecture design and generalization.

Another prior work analyzes the impact of initialization on pruned networks via a lottery ticket
hypothesis [Frankle & Carbin (2018)]. However, this work (and the rest of the model compression
literature) does not explore the characteristics of the architectures that can indicate generalization.

Generalization of deep networks. The field of generalization has recently gained attention to un-
derstand why deep networks generalize without overfitting [Saxe et al. (2013); Nye & Saxe (2018);
Li & Liang (2018); Brutzkus et al. (2017); Arora et al. (2018); Neyshabur et al. (2015; 2017b;a);
Bartlett et al. (2017)]. However, these generalization studies either explore the properties of model
weights (e.g., weight-norms, noise stability, and other spectral properties), or attempt to understand
the role of the optimization algorithm (e.g., sharpness of minima, etc.); hence, generalization does
not explicitly study what characteristics make good deep network architectures.

In contrast, our objective is twofold: (i) Theoretically understand architectural aspects of gener-
alization, and (ii) Practically design new, efficient architectures without searching for them (e.g.,
by directly exploiting our proposed metrics). Moreover, by integrating the PAC-Bayes theory with
small-world networks, we present an effective way of modeling generalization of CNN architectures
containing long-range links. We next describe our proposed approach that unifies these areas.

3 PROPOSED APPROACH

We first explain how CNNs can be modeled via network science. Next, we mathematically derive
the proposed NN-Density and NN-Mass metrics that are needed for NASE. We then demonstrate
the theoretical relationship between NN-Mass and generalization.

3.1 MODELING CNNS VIA NETWORK SCIENCE

We assume a generic CNN consisting of multiple cells, each containing a fixed number of convolu-
tional layers, similar to existing works such as Densenets [Huang et al. (2017)], Resnets [He et al.
(2016)], etc. As shown in Fig. 2(a), each cell can have a different width, i.e., number of channels
per layer. Following the standard practice [Simonyan & Zisserman (2014)], the width is increased
by a factor of two at each cell as the feature map is reduced by half (see Fig. 2(a)).

We now illustrate a single convolution layer in Fig. 2(b) for our setup. In a standard CNN, a convolu-
tional layer with n input channels and m output channels consists of m filters, each with [k×k×n]
dimensions. That is, the red kernel in Fig. 2(b) convolves with red input channel, green kernel con-
volves with green input channel, and so on. The outputs of all such channel-wise convolutions are
added together to obtain a single output channel (violet output channel in Fig. 2(b)). In our setup,
we explicitly assign different contributions from each input channel i to each output channel j as
probabilities αij , which are fixed to random values1. These αij probabilities are directly used to
define an adjacency matrix of any cell c: Acij = αij , where i, j ∈ {0, 1, 2, . . . , wc · dc − 1}.
Next, we define the structure of our cells. Fig. 2(c) shows a cell with dc convolution layers, and wc
channels per layer. Output channels at each layer i receive contributions from all output channels of
layer i− 1; we call these contributions short-range links since they connect consecutive layers (see
red links in Fig. 2(c))2. In addition to short-range links, the output channels at layer i can also receive
long-range contributions from maximum tc channels present at layers l ∈ {0, 1, . . . , i−2}within the

1See Appendix B for more details on how these αij probabilities are assigned to channel connections.
2Not all links are shown in Fig. 2(c): All output channels at layer i will receive short-range links from the

last layer, and additional long-range links from selected previous channels (see Fig. 8 (inset) in Appendix D).

3

Under review as a conference paper at ICLR 2020

…

…

…… … …

…

…

…

i j

Average
Pool

Logits

32×32
Feature Map

16×16
Feature Map

8×8
Feature Map

Cell 2 Cell 3

dc layers dc layers dc layers

Initial
conv

Outputs after
softmax

… …
…

…

… …

dc layers

wc channels
per layer

dc-10 1 2 3
Layer Indices

αij

R

G

B

…

αR

αG αB

Convolution layer i

m Output Channels

n Input Channels

m [k×k×n] Filters

Contributions of each input channel to
each output channel can be quantified
via probabilities α’s

Fully-connected

Short-
range links

Long-range
links

Cell 1

a. Convolutional Neural Network

b. Single Convolutional Layer c. Structure of a single cell

Number of incoming long-
range links per layer = tc × wc

Figure 2: (a) CNN consisting of three cells of dc layers each. (b) An input channel i contributes to
a given output channel j with some fixed probability αij . (c) Each cell contains dc layers with wc
channels per layer. Output channels at each layer get contributions from output channels of last layer
and additional long-range links from previous layers (via concatenation). Not all links are shown.
The contribution probabilities (αij’s) are used to define the weighted adjacency matrix of the CNN.

given cell (see purple links in Fig. 2(c)). That is, tc determines maximum number of channels that
can supply long-range links. By definition, a link is long-range if it connects channels across two or
more layers. Hence, each layer receives long-range contributions from min{wc(i−1), tc} channels3.
In practice, to create long-range links, the feature maps from previous layers are concatenated at the
current convolution layer (like in Densenets [Huang et al. (2017)]). Of note, in our current setup,
long-range links are confined only within the cell and do not extend across multiple cells.

To create long-range links at each layer i, we randomly select min{wc(i− 1), tc} previous channels
(out of all channels until layer i− 2). Similar to recent NAS research [Li & Talwalkar (2019)], our
rationale behind selecting random links (and random probabilities αij’s) is that random architectures
are often as competitive as the carefully designed/searched models. Hence, throughout the paper,
we look only at architectures with randomly chosen long-range links (after fixing the random seed).

3.2 PROPOSED METRICS FOR NEURAL ARCHITECTURE SPACE EXPLORATION

The above network formulation can be used to systematically study the architecture space for deep
networks. Specifically, our problem has following objectives: (i) Theoretically quantify the archi-
tectural aspects of the generalization problem, and (ii) Exploit the above theory to directly design
efficient CNN architectures in practice. To address the above goals, we propose two new network
science-based metrics called NN-Mass and NN-Density, as defined below.
Definition 1 (Cell-Density). Given a CNN, density of a cell quantifies how densely its channels are
connected via long-range links. Formally, for a given cell c, cell-density ρc is expressed as:

ρc =
#long-range links within cell c

Total possible #long-range links within cell c
=

2
∑dc−1
i=2 min{wc(i− 1), tc}
wc(dc − 1)(dc − 2)

(1)

For complete derivation, please refer to Appendix C. Next, we define NN-Density as the average
density across all cells in a CNN. If a CNN has Nc cells, then the NN-Density ρavg is expressed as:

ρavg =
1

Nc

Nc∑
c=1

ρc =
1

Nc

Nc∑
c=1

2
∑dc−1
i=2 min{wc(i− 1), tc}
wc(dc − 1)(dc − 2)

(2)

3When tc > wc(i− 1), total possible channels that can supply long-range links is limited to wc(i− 1), i.e.,
the total number of channels until layer i− 2

4

Under review as a conference paper at ICLR 2020

Definition 2 (Mass of Deep Networks). We define NN-Mass to quantify the generalization capability
of a CNN. Intuitively, for a given width (wc), models with similar NN-Mass but different depth (dc),
long-range links (tc), and number of parameters should achieve a similar test accuracy.

Note that, density is basically mass divided by volume. Let volume be the total number of channels
in a cell. Then, we can analogously derive the NN-Mass metric by multiplying the cell-density with
total number of channels in each cell. Hence, the NN-Mass (m) is given as:

m =

Nc∑
c=1

wcdcρc =

Nc∑
c=1

wcdc
2
∑dc−1
i=2 min{wc(i− 1), tc}
wc(dc − 1)(dc − 2)

=

Nc∑
c=1

2dc
∑dc−1
i=2 min{wc(i− 1), tc}
(dc − 1)(dc − 2)

(3)
Below, we explain the use of above metrics for Neural Architecture Space Exploration.

Neural Architecture Space Exploration (NASE). We define NASE as the process of study-
ing the design space of CNNs via theoretically-grounded metrics such as NN-Mass. Note
that, both NN-Density and NN-Mass relate network width, depth, and number of long-
range links. For a fixed number of cells, a CNN architecture can be completely specified
by {depth per cell, width per cell, maximum long-range link candidates per cell} = {dc, wc, tc}.
Hence, to perform NASE, we vary {dc, wc, tc} to obtain random architectures with varying NN-
Density and NN-Mass values. Appendix D illustrates NN-Mass calculation for a given architecture
using a concrete example. We next show the theoretical link between NN-Mass and generalization.

3.3 PROVABLE RELATIONSHIP BETWEEN NN-MASS AND GENERALIZATION

In this section, we theoretically prove the relationship between generalization and our proposed NN-
Mass metric, a property of CNN architectures. We further show that models with similar NN-Mass
values achieve similar test accuracy. To this end, we start with the PAC-Bayes theory which is used
to bound the generalization error of a given (not necessarily a neural network-based) classifier. We
also integrate the network theory with PAC-Bayes theory to derive our results.
Theorem 1 (McAllester Bound for Generalization Error (McAllester (1999a;b); Laviolette)). Given
any data generating distribution D, any hypothesis class of predictors H, any prior distribution P
over the predictors, and any δ ∈ (0, 1], with probability at least 1 − δ and for all distributions Q
overH for a randomly drawn training set S of N examples, the generalization bound is given by:

ED(L(fQ)) ≤ ES(L̂(fQ)) +

√
KL(Q||P) + log 2

√
N
δ

2N
,

where, fQ is a classifier drawn from Q, ED(L(fQ)) denotes the expected error, ES(L̂(fQ)) is the
empirical error over the training set S, and KL(Q||P) denotes the Kullback-Leibler (KL) diver-
gence between the distributions P and Q.

The above PAC-Bayes theorem bounds the generalization error of any classifier. Next, we prove
generalization bounds for CNN architectures with long-range links in terms of NN-Mass. Without
loss of generality, we assume in this section that the CNN architecture consists of a single cell
containing dc convolutional layers, each containing wc channels per layer (i.e., the width is wc).
Theorem 2 (Generalization Bound for CNN Architectures in terms of NN-Mass). Consider single-
cell CNN models with dc layers and wc channels per layer. Also, let tc be the number of channels
contributing long-range links. If Q denotes a probability distribution over CNNs with long-range
links and an architecture fQ ∼ Q has a NN-Mass of m, then, with probability at least 1 − δ the
generalization error for this architecture is bounded as follows:

ED(L(fQ)) ≤ ES(L̂(fQ)) +

√
1

2σ (1
6m −

1
2 log(πem)) + log 2

√
N
δ

2N
,

where, σ is the maximum number of connections a channel can have in a given CNN architecture.

To prove the above theorem, we integrate, for the very first time, the PAC-Bayes theory of gen-
eralization [McAllester (1999a;b)] with the small-world theory from network science [Newman &
Watts (1999); Monasson (1999)]. Essentially, we express the KL-divergence term in Theorem 1 as
a function of NN-Mass. For complete proof, please refer to Appendix E.

5

Under review as a conference paper at ICLR 2020

Remark 1. The KL-divergence term (equation 14 in Appendix E) is a decreasing function of m.
Hence, for a family of models with depth dc and width wc, Theorem 2 guarantees that the test error
should reduce as NN-Mass increases. We show extensive empirical results for this observation.

As a natural consequence of Theorem 2, we next show that for two CNNs with a given width but
different depths, models with similar NN-Mass values are expected to achieve similar generalization
performance, even if the two models have vastly different number of parameters and layers!
Corollary 1 (Models with Similar Mass Achieve Similar Generalization Performance). Given two
models of same width wc, let fLQ be a deeper model with NN-Mass mL, and let fSQ be a shallower
model with NN-Mass mS such that mL ≤ mS . Then, the difference in expected test error of the two
models is bounded with probability at least 1− δ as follows:

ED(L(fLQ))− ED(L(fSQ)) ≤ ES(L̂(fLQ))− ES(L̂(fSQ)) +

√√√√ 1
2σ

[
mS−mL
6mLmS

− 1
2 log mL

mS

]
+ log 4N

δ2

2N
In other words, irrespective of number of parameters and layers, as the NN-Mass for the two models
becomes similar, their test error is also expected to become similar.

The corollary follows directly from the KL-divergence term in Theorem 2 (see equation 14 in Ap-
pendix). See Appendix F for the complete proof of the closed-form bound above.

Remark 2. For the same width, a shallower and a deeper model with same NN-Mass intuitively
implies that the shallower model is more densely connected than the deeper model (see equation 3).
Hence, this might suggest that NN-Density can also help us identify models that achieve similar test
accuracy. However, as we shall show empirically, NN-Density alone cannot be used to identify such
models since the CNNs with different depths achieve similar test accuracy for different NN-Density
values. In contrast, NN-Mass can identify CNNs that yield similar generalization performance a
priori (i.e., without training) since it has a closed-form equation 3 in terms of {dc, wc, tc}.

Intuition behind why NN-Mass indicates generalization performance of CNN architectures.
While proving Theorem 2, we show that a CNN with long-range links can be seen as a superposition
of a lattice network and a random network (see Fig. 9 in Appendix E). Also, for dc >> 2 (true
for deep CNNs), the average degree (i.e., the average number of connections for nodes) of the
random network k̄R|G = m/2 (see equation 9 in Appendix E), and that of the lattice network is
just wc. Hence, the average degree of the overall CNN is wc + m/2, which is independent of
the depth dc. Since average degree indicates how well-connected the network is, it controls how
effectively the information can flow through a given topology. Therefore, for a given width and NN-
Mass, the average amount of information that can flow through various architectures (with different
#parameters/layers) should be similar (due to the same average degree). As a result, we hypothesize
that these topological properties might constrain the amount of information being learned by CNNs.

Next, we present detailed experimental evidence to support our theoretical findings.

4 EXPERIMENTAL SETUP AND RESULTS

4.1 EXPERIMENTAL SETUP

Our objective is to perform NASE by varying {dc, wc, tc} that generates random architectures with
different NN-Mass and NN-Density values. Similar to prior art like Huang et al. (2017), we keep
the total number of cells = 3 for all experiments. Overall, we conduct the following types of
experiments for NASE on CIFAR-10 and CIFAR-100 datasets: (i) We show the impact of vary-
ing NN-Density (Remark 2). (ii) By providing extensive empirical evidence towards Theorem 2
and Corollary 1, we next show that NN-Mass can identify models that achieve similar test accuracy.
(iii) We further show that our findings hold across models with different widths. (iv) We then demon-
strate that NN-Mass is better for predicting generalization performance than parameter counting, a
baseline used to indicate model generalization. (v) We predict test accuracy of completely unknown
architectures. (vi) We also show that our findings hold for CIFAR-100 which is significantly more
complex than CIFAR-10. All experiments are repeated three times with different random seeds.

Finally, to demonstrate the practical implications of our work, we exploit NN-Mass to directly design
efficient CNNs which achieve accuracy comparable to larger networks with similar NN-Mass. More
details for the experimental setup (e.g., architecture details, learning rates, data augmentation, etc.)
can be found in Appendix G (see Table 2). Next, we describe the results for the above experiments.

6

Under review as a conference paper at ICLR 2020

0.10 0.15 0.20 0.25 0.30

NN-Density

95.9

96.0

96.1

96.2

96.3

96.4

96.5

96.6

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Density

2 4 6 8 10 12

Number of Parameters (in Millions)

95.9

96.0

96.1

96.2

96.3

96.4

96.5

96.6

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. Number of Parameters

W

P

R

Q

A B C

D
E

200 400 600 800 1000 1200

NN-Mass

95.9

96.0

96.1

96.2

96.3

96.4

96.5

96.6

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Mass

Y

Z

X

A'
B' C'

D'
E'

a. b. c.

Figure 3: CIFAR-10 Width Multiplier wm = 2: (a) Shallower models with higher density can reach
comparable accuracy to deeper models with lower density. This does not help since models with
different depths achieve comparable accuracies at different densities. (b) Models with very different
#parameters (box W) achieve similar test accuracies. (c) Models with similar accuracy often have
similar NN-Mass: Models in W get clustered into Z. Results are reported as mean of three runs.

4.2 RESULTS

Unless stated otherwise, the results are for CIFAR-10 (CIFAR-100 is presented towards the end).

4.2.1 NASE: NN-MASS AS AN INDICATOR OF GENERALIZATION OF CNN ARCHITECTURES

Impact of Varying NN-Density. We train different deep networks with varying NN-Density (see
Table 2 models in Appendix G). Fig. 3(a) shows that shallower models with higher density can
reach accuracy comparable to deeper models with lower density (which is quite reasonable; see
Remark 2). However, NN-Density alone does not help us identify a family of models that yields
similar generalization despite having significantly different number of parameters/layers. Specifi-
cally, while we can say that for a given width, a shallower model might outperform a deeper model
provided it is connected densely enough, NN-Density does not specify how dense the connections
must be. Moreover, models with different depths achieve comparable test accuracies for different
NN-Density values (e.g., although a 31-layer model with ρavg = 0.3 performs close to 64-layer
model with ρavg = 0.1, a 49-layer model with ρavg = 0.2 already outperforms the test accuracy of
the above 64-layer model; see models P, Q, R in Fig. 3(a)). Therefore, NN-Density alone cannot be
used to identify CNNs with similar generalization performance. Hence, we next focus on NN-Mass.

Impact of Varying NN-Mass on Generalization. Fig. 3(b) shows the test accuracy of the trained
models vs. total parameters. As evident, some 40-layer models with 5M parameters (e.g., model
A in Fig. 3(b) within box W) perform comparably to several 64-layer models with more than 8M
parameters (models D,E in Fig. 3(b)). Hence, models with highly different numbers of parameters
and layers can achieve comparable accuracies (see all models within box W in Fig. 3(b)).

To explain this, we show test accuracy vs. NN-Mass in Fig. 3(c). Two observations are worth noting:

1. The higher the NN-Mass, the higher the test accuracy. This observation reinforces
Remark 1 and Theorem 2 that higher NN-Mass should result in lower generalization error.

2. Irrespective of number of parameters/layers, models with similar NN-Mass achieve
similar accuracy (Corollary 1). All models within box W (models A-E in Fig. 3(b))
cluster into bucket Z (models A’-E’ in Fig. 3(c)). Same holds for models within X and Y.

These observations emphasize that the NN-Mass is an important indicator of generalization perfor-
mance, and is able to identify a family of models that obtains similar test accuracy.

The above results are for width multiplier, wm = 2, and vary NN-Mass indirectly due to changing
NN-Densities. Since it is clear that NN-Mass is highly correlated with generalization, we now
directly vary NN-Mass for models with wm ∈ {1, 3} to ensure that the above observations hold true
for CNNs with different widths. More specifically, in Fig. 4(a), we observe that forwm = 1, models
in boxes U and V have significantly different number of parameters and, yet, they achieve a similar
test accuracy. Again, when plotted against NN-Mass (see Fig. 4(b)), models within the boxes U and
V in Fig. 4(a) concentrate into buckets W and Z, respectively (see also other buckets).

7

Under review as a conference paper at ICLR 2020

0.5 1.0 1.5 2.0 2.5

Number of Parameters (in Millions)

94.50

94.75

95.00

95.25

95.50

95.75

96.00

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. Number of Parameters -- wm = 1

a.

U

V

100 200 300 400 500

NN-Mass

94.50

94.75

95.00

95.25

95.50

95.75

96.00

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Mass -- wm = 1

b.

W

Y
Z

X

Higher Width (wm=3)Lower Width (wm=1)

200 400 600 800 1000

NN-Mass

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Mass -- wm = 3

d.

W

Y

Z

X

5.0 7.5 10.0 12.5 15.0 17.5

Number of Parameters (in Millions)

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. Number of Parameters -- wm = 3

c.

Figure 4: Similar observations hold for low- (wm = 1) and high-width (wm = 3) models: (a,
b) Many models with very different #parameters (boxes U and V) get clustered into buckets W
and Z (see also other buckets). (c, d) For high-width, we observe significantly tighter clustering
compared to the low-width case. Results are reported as mean of three runs.
a. b.

4.0 4.5 5.0 5.5 6.0 6.5

log(NN-Mass)

94.50

94.75

95.00

95.25

95.50

95.75

96.00

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(NN-Mass) -- wm = 1. R-squared = 0.74

5.5 6.0 6.5 7.0

log(NN-Mass)

96.0

96.2

96.4

96.6

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(NN-Mass). R-squared = 0.84

5.5 6.0 6.5 7.0

log(NN-Mass)

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(NN-Mass) -- wm = 3. R-squared = 0.90

c.

Figure 5: Impact of varying width: (a) Width multiplier, wm = 1, (b) wm = 2, and (c) wm = 3.
As width increases, capacity of small (shallower) models increases and, therefore, the accuracy-gap
between models of different depths reduces. Hence, theR2 for linear fit increases as width increases.

Note that, for wm = 1, the 31-layer models do not fall within the buckets (see blue line in Fig. 4(b)).
We hypothesize that this could be because of the following tradeoff. Specifically, since Corollary 1
states that the difference in test errors is bounded by the sum of (i) difference in training errors, and
(ii) difference between NN-Mass values, the former term might dominate for low-capacity models
(and, thus, the difference in test errors would increase). For instance, the training accuracy of 31-
layer models is found to be much lower (e.g., 0.66%-0.9%) than that of 64-layer models. In contrast,
40-layer models have only 0.27%-0.4% lower training error than the 64-layer CNNs. Hence, this
suggests that a tradeoff between training accuracy difference and NN-Mass values should affect the
difference in test accuracies of various architectures. We next show that as the width multiplier
increases further, the shallower models perform much more similar to deeper models.

Fig. 4(c) shows the results for wm = 3. As evident, models with 6M-7M parameters achieve com-
parable test accuracy as models with up to 16M parameters (e.g., bucket Y in Fig. 4(d) contains
models ranging from {31 layers, 6.7M parameters}, all the way to {64 layers, 16.7M parameters}).
In general, we observe that as the width increases, the capacity of the CNNs increases and, hence, the
curves on Accuracy vs. NN-Mass plot come closer to each other. We next quantify the above obser-
vation by fitting a linear model to predict Accuracy using log(NN-Mass). As evident from Fig. 5, the
goodness-of-fit (R2) increases from 0.74 to 0.84 to 0.90, as the width increases. This demonstrates
that as the width of the CNN increases, NN-Mass becomes a better indicator of generalization.

Comparison between NN-Mass and Parameter Counting. Direct parameter counting is often
used as a baseline for comparison in many generalization studies. In Appendix H.1 (Fig 10), we
show that NN-Mass significantly outperforms parameter counting as an indicator of generalization
for CNNs. Specifically, for low-width models (wm = 2), a linear model between test accuracy
and log(#parameters) yields an R2 = 0.76 (compared to R2 = 0.84 for NN-Mass, see Fig. 10(a,
b)); this indicates that parameter counting is a decent predictor of generalization for low-width
models. However, for high-width models (wm = 3), parameter counting cannot predict generaliza-
tion performance at all. More precisely, the parameter count achieves an R2 = 0.14 for wm = 3
(Fig. 10(c)). On the other hand, NN-Mass achieves a significantly higherR2 = 0.90 (see Fig. 10(d)).

We note that our work cannot be compared against generalization indicators presented in Arora et al.
(2018); Neyshabur et al. (2015; 2017b;a); Bartlett et al. (2017), because these works do not consider
architectural aspects of the generalization problem and do not deal explicitly with CNN architectures
with long-range links. The objective of this prior art is to understand how optimization properties

8

Under review as a conference paper at ICLR 2020

2 4 6 8 10 12

Number of Parameters (in Millions)

77.0

77.5

78.0

78.5

79.0

79.5

80.0

80.5

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. Number of Parameters

200 400 600 800 1000 1200

NN-Mass

77.0

77.5

78.0

78.5

79.0

79.5

80.0

80.5

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. NN-Mass
a. b.

W Y

Z

X

5.5 6.0 6.5 7.0

log(NN-Mass)

77.0

77.5

78.0

78.5

79.0

79.5

80.0

80.5

81.0

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(NN-Mass). R-squared = 0.84
c.

Figure 6: Similar results are obtained for the CIFAR-100 dataset (wm = 2). (a) Models in box
W have significantly different #parameters but achieve similar accuracy. (b) These models get
clustered into buckets Y and Z. (c) The R2 value for fitting a linear regression model is 0.84 which
shows that NN-Mass is a good predictor of test accuracy. Results are reported as mean of three runs.

(e.g., sharpness of minima), noise-stability, weight-norms, etc., affect generalization. Hence, the
prior research does not explicitly provide any insights into the architecture itself. In contrast, our
problem is to explicitly understand the impact of CNN architectures on generalization.

Exploiting NN-Mass to Predict Test Accuracy of Unknown Architectures. Since NN-Mass is a
good indicator of generalization performance, we next use it to predict test accuracies of completely
unknown architectures. Specifically, forwm = 2, we train the linear model shown in Fig. 5(b) on the
initial set of {31, 40, 49, 64}-layer models, and use this linear model to predict the test accuracy of
the unknown {28, 43, 52, 58}-layer CNNs with different NN-Densities. The complete details of this
experiment and the results are presented in Appendix H.2. We show that a linear model trained on
CNNs of depth {31, 40, 49, 64} (R2 = 0.84; see Fig. 5(b)) can successfully predict the test accuracy
of unknown CNNs of depth {28, 43, 52, 58} with a high R2 = 0.79 (see Fig. 11 in Appendix H.2).

Results for CIFAR-100 Dataset. We now corroborate our main findings on CIFAR-100 dataset
which is significantly more complex than CIFAR-10. To this end, we train the models shown in
Table 2 (Appendix G) from scratch on CIFAR-100. Fig. 6(a) shows the test accuracy of various
models as a function of number of parameters. As evident, several models achieve similar accuracy
despite having highly different number of parameters (e.g., see models within box W in Fig. 6(a)).
Again, these models get clustered together when plotted against NN-Mass. Specifically, models
within box W in Fig. 6(a) fall into buckets Y and Z in Fig. 6(b). Hence, models that got clustered
together for CIFAR-10 dataset, also get clustered for CIFAR-100. To quantify the above results, we
fit a linear model between test accuracy and log(NN-Mass) and, again, obtain a highR2 = 0.84 (see
Fig. 6(c)). Therefore, our observations hold true across multiple image classification datasets.

To summarize, we show that (i) As NN-Mass increases, the test error of CNNs reduces, and
(ii) NN-Mass can identify models that yield similar test accuracy, despite having very different
#parameters/layers. We next use the latter observation to directly design efficient architectures.

4.2.2 CASE STUDY: DIRECTLY DESIGNING COMPRESSED MODELS WITH NN-MASS

We now directly exploit the NN-Mass for model compression. Appendix H.3 explains how com-
pressed models can be designed via NN-Mass. Following the setup in recent NAS works like
DARTS [Liu et al. (2018)], we train our models for 600 epochs and report their test accuracy.

Table 1 summarizes the number of parameters, FLOPS, and test accuracy of various CNNs. We
first train two large CNN models of about 8M and 12M parameters with NN-Mass of 622 and 1126,
respectively; both of these models achieve around 97% accuracy. Next, we train three compressed
models: (i) A 5M parameter model with 40 layers and a NN-Mass of 755, (ii) A 4.6M parameter
model with 37 layers and a NN-Mass of 813, and (iii) A 31-layer, 3.82M parameter model with a
NN-Mass of 856. We set the NN-Mass of our compressed models between 750-850 (i.e., within
the 600-1100 range of the manually-designed CNNs). Interestingly, we do not need to train any
intermediate architectures to arrive at the above compressed CNNs. Indeed, NAS involves an initial
“search-phase” over a space of operations to find the architectures [Zoph et al. (2018)]. Similarly,
model compression techniques like pruning [Li et al. (2016)] and quantization [Hubara et al. (2017)]
also involve some kind of finetuning. In contrast, our models can be directly found using the closed

9

Under review as a conference paper at ICLR 2020

Table 1: Exploiting NN-Mass for Model Compression on CIFAR-10 Dataset. All our experiments
are reported as mean ± standard deviation of three runs. DARTS results are reported from Liu et al.
(2018) which uses a similar setup for training the final model discovered after the search.

Model Architecture design
method

#Parameters/
#FLOPS

Number of layers/
cells/long-range
links (tc)

Specialized
search space? NN-Mass Test

Accuracy

DARTS (first order) NAS [Liu et al. (2018)] 3.3M/– –/20 cells/– Yes – 97.00± 0.14%
DARTS (second order) NAS [Liu et al. (2018)] 3.3M/– –/20 cells/– Yes – 97.24± 0.09%

Train large models
to be compressed

Manual 11.89M/3.63G 64/3 cells/
[90, 170, 300] No 1126 97.02± 0.06%

Manual 8.15M/2.54G 64/3 cells/
[50,100,150] No 622 96.99± 0.07%

Proposed Directly via NN-Mass 5.02M/1.59G 40/3 cells/
[60,130,170] No 755 97.00± 0.06%

Proposed Directly via NN-Mass 4.69M/1.51G 37/3 cells/
[70,140,180] No 813 96.93± 0.10%

Proposed Directly via NN-Mass 3.82M/1.2G 31/3 cells/
[70,140,200] No 856 96.82± 0.05%

form equation 3 of NN-Mass (see Appendix H.3), which does not involve any intermediate train-
ing/finetuning or even an initial search-phase like prior NAS methods. Therefore, NN-Mass can
indicate the generalization properties of various architectures a priori (i.e., without any training)!

As evident from Table 1, our 5M parameter model reaches a test accuracy of 97.00%, while the 4.6M
(3.82M) parameter model4 obtains 96.93% (96.82%) accuracy on the CIFAR-10 test set. Clearly,
all these accuracies are either comparable to, or slightly lower (∼ 0.2%) than the large CNNs, while
reducing total parameters by up to 3× compared to the 11.89M parameter model. Moreover, the
improvement in number of FLOPS is also up to 3×. Hence, NN-Mass results in a new model
compression method which operates at architecture-level and does not rely on pruning/quantization.

Finally, Table 1 shows CIFAR-10 results for DARTS [Liu et al. (2018)], a competitive NAS baseline.
As shown, with slightly lower 3.3M parameters, the first order DARTS achieves comparable accu-
racy to our proposed NN-Mass-based compressed models. Moreover, DARTS second order achieves
a slightly higher accuracy (∼ 0.2% higher). However, it should be noted that the search space of
DARTS (like all other NAS techniques) is very specialized and utilizes many state-of-the-art inno-
vations such as depth-wise separable convolutions [Howard et al. (2017)], dialated convolutions [Yu
& Koltun (2015)], etc. In contrast, we use the regular convolutions with only concatenation-type
long-range links in our work and present a theoretically-grounded approach. We show that it is not
just the specialized convolutions that result in models that attain high accuracy with less parameters,
but also certain CNN architectures are inherently more accurate. Therefore, NN-Mass can be used
to design efficient architectures even when the search space is limited to regular convolutions.

5 CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new, theoretically-grounded, architecture-level metric called NN-
Mass that can indicate the generalization properties of CNN architectures a priori (i.e., without train-
ing). By integrating PAC-Bayes and small-world network science for the very first time, we have
also theoretically proved two key properties of NN-Mass: (i) For a given depth and width, the higher
the NN-Mass, the lower the generalization error, and (ii) Irrespective of total number of parameters,
models with similar NN-Mass yield similar test accuracy. We have further presented extensive em-
pirical evidence for the above theoretical findings by conducting experiments on real datasets such
as CIFAR-10/100. Finally, we have used these new insights to directly design compressed models
which reduce parameters/FLOPS by up to 3×, while losing minimal accuracy compared to the large
CNN (e.g., 96.82% test accuracy vs. ∼ 97% for large CNN on CIFAR-10 dataset).

The present work opens several new directions in deep network generalization with implications for
architecture search and model compression. As a future work, we plan to extend, both in theory and
practice, NN-Mass for networks with branches and depth-wise separable convolutions. We further
plan to bridge the theory between architectural aspects of generalization presented in this work vs.
the generalization ideas discussed in prior art (e.g., weight-norms, etc.).

4Unlike the 5M parameter model in Table 1 (which we partially explored by training it for 200 epochs in
the last section during NASE), we never trained these 31- and 37-layer compressed models before. In fact, we
never trained any other 37-layer models at all throughout this work. Hence, these models are completely new!

10

Under review as a conference paper at ICLR 2020

REFERENCES

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. arXiv preprint arXiv:1802.05296, 2018.

Albert-Laszlo Barabasi. Network Science (Chapter 3: Random Networks). Cambridge University
Press, 2016. URL https://bit.ly/2ONAUqQ.

Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286
(5439):509–512, 1999.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In Advances in Neural Information Processing Systems, pp. 6240–6249, 2017.

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. Sgd learns over-
parameterized networks that provably generalize on linearly separable data. arXiv preprint
arXiv:1710.10174, 2017.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018.

Ronald J Evans and J Boersma. The entropy of a Poisson distribution (C. Robert Appledorn). SIAM
Review, 30(2):314–317, 1988.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

V. E. Hoggatt, Chih yi Wang, R. T. Hood, J. L. Brown, and C. H. Cunkle. E1366: Two related
triangles. The American Mathematical Monthly, 67(1):82–84, 1960. ISSN 00029890, 19300972.
URL http://www.jstor.org/stable/2308942.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv:1704.04861, 2017.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized
neural networks: Training neural networks with low precision weights and activations. JMLR, 18
(1):6869–6898, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Liangzhen Lai, Naveen Suda, and Vikas Chandra. Deep convolutional neural network inference
with floating-point weights and fixed-point activations. arXiv preprint arXiv:1703.03073, 2017.

Francois Laviolette. A tutorial on pac-bayesian theory. NeurIPS 2017 Tutorial (NeurIPS 2017
Workshop on (Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights). URL
https://bit.ly/2ySQPsU.

11

https://bit.ly/2ONAUqQ
http://www.jstor.org/stable/2308942
https://bit.ly/2ySQPsU

Under review as a conference paper at ICLR 2020

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv:1608.08710, 2016.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.
arXiv preprint arXiv:1902.07638, 2019.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems, pp. 8157–
8166, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

David A McAllester. Some PAC-Bayesian Theorems. Machine Learning, 37(3):355–363, 1999a.

David A McAllester. PAC-Bayesian model averaging. In COLT, volume 99, pp. 164–170. Citeseer,
1999b.

Remi Monasson. Diffusion, localization and dispersion relations on small-world lattices. The Euro-
pean Physical Journal B-Condensed Matter and Complex Systems, 12(4):555–567, 1999.

Mark Newman, Albert-Laszlo Barabasi, and Duncan J Watts. The structure and dynamics of net-
works, volume 19. Princeton University Press, 2011.

Mark EJ Newman and Duncan J Watts. Renormalization group analysis of the small-world network
model. Physics Letters A, 263(4-6):341–346, 1999.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
networks. In Conference on Learning Theory, pp. 1376–1401, 2015.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. In Advances in Neural Information Processing Systems, pp. 5947–5956,
2017a.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A pac-bayesian approach to
spectrally-normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564,
2017b.

Maxwell Nye and Andrew Saxe. Are efficient deep representations learnable? arXiv preprint
arXiv:1807.06399, 2018.

Umit Y Ogras and Radu Marculescu. ” it’s a small world after all”: Noc performance optimization
via long-range link insertion. IEEE Transactions on very large scale integration (VLSI) systems,
14(7):693–706, 2006.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pp. 2902–2911. JMLR.
org, 2017.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019.

Duncan J Watts and Steven H Strogatz. Collective dynamics of small-worldnetworks. nature, 393
(6684):440, 1998a.

Duncan J Watts and Steven H Strogatz. Collective dynamics of small-worldnetworks. nature, 393
(6684):440, 1998b.

12

Under review as a conference paper at ICLR 2020

Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings. arXiv
preprint arXiv:1906.00586, 2019.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 10734–10742, 2019.

Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring randomly wired neural
networks for image recognition. arXiv preprint arXiv:1904.01569, 2019.

Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient convolutional neural
networks using energy-aware pruning. arXiv:1611.05128, 2016.

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122, 2015.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

A LONG-RANGE LINKS IN CNNS AND NETWORK SCIENCE

Many recent innovations in deep learning architecture design have resulted in state-of-the-art deep
networks that achieve excellent classification accuracy on complex vision and natural language ap-
plications. One of the most important innovations is the concept of shortcut connections in deep
networks which enable complex architectures and have pushed the accuracy far beyond the tradi-
tional CNNs. For instance, Resnets [He et al. (2016)] introduced residual blocks which add feature
maps at alternate convolution layers. Similarly Densenets [Huang et al. (2017)] have dense blocks
that contain all-to-all connections. In contrast to Resnets, Densenets do not add feature maps but
instead concatenate them together. The core idea in both of these models is to improve the infor-
mation flow through the deep networks with the help of such shortcut connections between various
layers.

Indeed, shortcut connections have long been a subject of study in the field of network science,
e.g., small world networks [Watts & Strogatz (1998b)] that specifically deal with networks with
long-range and short-range links (e.g., in social, biological, transportation networks [Newman et al.
(2011)], and even multicore networks [Ogras & Marculescu (2006)]). In this paper, we view the
shortcut connections in deep networks as being analogous to the long-range links in generic net-
works such as social and transportation networks. Hence, network science can be a good choice
for studying the dynamics of long-range links in deep networks. Since Densenets [Huang et al.
(2017)] have been shown to achieve higher accuracy than Resnets, we focus on concatenation-type
long-range links.

B COMPUTING NETWORK WEIGHTS FOR CNN CHANNEL CONNECTIONS

Note that, in a standard CNN, a convolutional layer with n input channels and m output channel
consists of m filters, each with [k × k × n] dimensions. That is, as shown in Fig. 2(b), red kernel
in the filter convolves with red input channel, green kernel convolves with green input channel, and
so on. The output of all such channel-wise convolutions are added together to obtain a single output
channel (e.g., violet output channel in Fig. 2(b)). However, this implicitly assumes that all input

13

Under review as a conference paper at ICLR 2020

channels contribute equally to all output channels. Clearly, this assumption is counter-intuitive since
our overall objective in an image classification problem is to separate out the identifying features of
various classes at the final convolution layer (i.e., output channels at the final layer must activate for
different features). Therefore, adding the outputs of channel-wise convolutions at each intermediate
layer can make the training process of CNN inherently hard.

To alleviate the above problem, we explicitly assign different contributions from each input channel
i to each output channel j as probabilities αij . Specifically, for each output channel, we create a
vector qj = {q1j , q2j , . . . , qnj} with Kaiming-normal initialization [He et al. (2015)], where each
element qij of this vector denotes an unnormalized contribution from an input channel i to the given
output channel j. Then, to generate the probabilities αij , we simply compute the softmax of qj . The
probabilities thus obtained are used as contributions from input channels to this output channel (e.g.,
{αR, αG, αB} in Fig. 2(b)). We call the unnormalized weight vector qj as contribution weights,
and the probabilities αij’s as contribution probabilities throughout this paper. Hence, in contrast
to a standard convolution where individual channel-wise convolutions are directly added to obtain
one output channel (i.e., in a traditional CNN, αij = 1 for all connections), the final convolution in
our proposed model is computed as a weighted sum of channel-wise convolutions (where, weights
are given by αij). Of note, throughout the training as well as inference, we keep these probabilities
fixed.

Note that, all channel contributions (both long-range and short-range) are quantified by probabilities
αij’s. Specifically, instead of defining the contribution weight vectors (qi) for each output channel,
we can directly initialize a contribution weight matrix Q = [qT1 , q

T
2 , . . . , q

T
n] for all channels in

a cell. Then, the contribution probabilities αij’s are obtained by taking column-wise softmax of
Q. Next, we show that fixing random probabilities, in fact, leads to better test accuracy than fixing
constant contributions from input to output channels.

B.1 IMPACT OF INPUT-TO-OUTPUT CONTRIBUTIONS

To evaluate the impact of various αij’s on CNN generalization, we train three separate models:
(a) For the first model, we initialize the contribution weights for each layer to zeros and then take
the softmax. Therefore, in this case, all contribution probabilities (αij’s) are constant (1/N, N being
the number of input channels per layer). (b) In the next model, we directly initialize αij’s to all ones,
which is the traditional CNN case where all channel-wise convolutions are directly added to obtain
each output channel. The above two cases are equal-contribution cases. (c) Finally, to account for
the proposed unequal-contribution case, we follow the process described in Appendix B above by
fixing the contribution weights to Kaiming initialization [He et al. (2015)] and then take the softmax.
Table 2 shows the architecture of CNNs used in this section: all models have 46-layers, tc = 200,
and width-multiplier of 2, which amounts to about 8M parameters. The models are trained for 350
epochs using stochastic gradient descent algorithm.

Fig. 7 demonstrates the training and test accuracy for the three models. As shown, the model with
proposed unequal contributions (via random probabilities) achieves about 96.6% accuracy, which
is about 1% higher than the corresponding equal-contributions cases. This is a significant result
because achieving accuracy beyond 96% is very hard for CIFAR-10 dataset [Zoph & Le (2016);
Huang et al. (2017); Zagoruyko & Komodakis (2016); Liu et al. (2018)]. Hence, this clearly demon-
strates that not all input channels contribute equally to all output channels, and that even fixing the
contributions to random probabilities significantly improves the generalization and convergence of
the model. Note that, the αij contributions do not come at any additional cost in terms of number of
parameters since these values are fixed and can be directly incorporated into convolution weights by
element-wise multiplication. Therefore, this simple observation can be used to improve the accuracy
of CNNs without any overhead in terms of number of parameters.

C DERIVATION OF DENSITY OF A CELL

Note that, the maximum number of channels contributing long-range links at each layer in cell c is
given by tc. Also, for a layer i, possible candidates for long-range links = all channels up to layer
(i − 2) = wc(i − 1) (see Fig. 2(c)). Indeed, if tc is sufficiently large, initial few layers may not
have tc channels that can supply long-range links. For these layers, we use all available channels for

14

Under review as a conference paper at ICLR 2020

0 50 100 150 200 250 300 350
Epochs

0.5

0.6

0.7

0.8

0.9

1.0

T
ra

in
in

g
 A

cc
u
ra

cy

Training Accuracy vs. Epochs

Constant probabiliy (1/N)
Equal contributions (traditional CNN: all ones)
Unequal contributions (random probabilities)

0 50 100 150 200 250 300 350
Epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

T
e
st

 A
cc

u
ra

cy

Test Accuracy vs. Epochs

Constant probabiliy (1/N)
Equal contributions (traditional CNN: all ones)
Unequal contributions (random probabilities)

a. b. 96.56%

~95.6%

Figure 7: Not all input channels contribute equally to all output channels. (a) Training accuracy
for three cases: (i) Set αij’s to constant probabilities by initializing the input-to-output contribution
weights to zero at every layer and then taking the softmax. This results in constant probabilities as
contributions from input to output channel at each layer (N is the number of input channels). (ii) A
traditional CNN case where all channel-wise convolutions are directly added (i.e., contributions from
all inputs to all outputs (αij’s) are all ones). (iii) Channel-wise contributions are fixed to random
probabilities, i.e., αij’s are random. (b) Test accuracy for the above three cases demonstrates that
the unequal contributions from input-to-output channels achieves significantly higher accuracy.

long-range links. Therefore, for a given layer i, number of long-range links (li) is given by:

li =

{
wc(i− 1)× wc if tc > wc(i− 1)

tc × wc otherwise
(4)

where, both cases have been multiplied by wc because once the channels are selected to supply
long-range links, they supply long-range links to all wc channels at the current layer i. Hence, for
an entire cell, total number of channels contributing long-range links (lc) is as follows:

lc = wc

dc−1∑
i=2

min{wc(i− 1), tc} (5)

On the other hand, total number of possible long-range links within a cell (L) is simply the sum of
possible candidates at each layer:

L =

dc−1∑
i=2

wc(i− 1)× wc = w2
c

dc−1∑
i=2

(i− 1) = w2
c [1 + 2 + . . .+ (dc − 2)] =

w2
c (dc − 1)(dc − 2)

2

(6)
Using equation 5 and equation 6, we can rewrite equation 1 as:

ρc =
2
∑dc−1
i=2 min{wc(i− 1), tc}
wc(dc − 1)(dc − 2)

(7)

D EXAMPLE: COMPUTING NN-MASS AND NN-DENSITY FOR A CNN

Given a CNN architecture shown in Fig. 8, we now calculate its NN-Density and NN-Mass. This
CNN consists of three cells, each containing dc = 4 convolutional layers. The three cells have a
width, (i.e., the number of channels per layer) of 2, 3, and 4, respectively. We denote the network
width as wc = [2, 3, 4]. Finally, the maximum number of channels that can supply long-range links
is given by tc = [3, 4, 5]. That is, first cell can have a maximum of three long-range link candidates
per layer (i.e., previous channels that can supply long-range links), second cell can have a maximum
of four long-range link candidates per layer, and so on. Note that, the contribution probabilities
(αij’s) are computed using the procedure in Appendix B (i.e., we first generate contribution weights
via Kaiming initialization, and then take the softmax to get probabilities). Moreover, as mentioned
before, we randomly choose min{wc(i−1), tc} channels for long-range links at each layer. The inset

15

Under review as a conference paper at ICLR 2020

1

2

3

4

5

6

7

8

tc = 3

tc = 4

tc = 5

Not all links are shown above. If a
channel is selected, it contributes
long-range links to all output
channels of the current layer

1

2

3

4

5

6

1

2

3

4

5

6

Concatenate feature
maps like Densenets

Average
Pool

Logits

Outputs after
softmax

…

… …

Fully-connected

Cell 1
Cell 2

Cell 3

Layer i=2: Long-range links (violet) from 4
previous channels because min{wc(i-1), tc} = 4

No long-range links between cells

Layer i: 0 1 2 3

Layer i=3: Long-range links (green) from 5
previous channels because min{wc(i-1), tc} = 5

Initial
conv

Max previous channels
for long-range links

All links

dc =4 layers

w
c

=
3

Figure 8: An example CNN to calculate NN-Density and NN-Mass. Not all links are shown in
the main figure for simplicity. The inset shows the contribution from all long-range and short-range
links: The feature maps for randomly selected channels are concatenated at the current layer (similar
to Densenets [Huang et al. (2017)]). At each layer in a given cell, the maximum number of channels
that can contribute long-range links is given by tc.

of Fig. 8 shows how long-range links are created by concatenating the feature maps from previous
layers.

Hence, using dc = 4, wc = [2, 3, 4], and tc = [3, 4, 5] for each cell c, we can directly use equation 2
and equation 3 to compute the NN-Density and NN-Mass values. Putting the values in the equations,
we obtain ρavg = 0.78 and m = 28. Consequently, the set {dc, wc, tc} can be used to specify the
architecture of any CNN with concatenation-type long-range links. Therefore, to perform NASE,
we vary {dc, wc, tc} to obtain architectures with different NN-Mass and NN-Density values.

E PROOF OF THEOREM 2

Theorem 2 (Generalization Bound for CNN Architectures in terms of NN-Mass). Consider single-
cell CNN models with dc layers and wc channels per layer. Also, let tc be the number of channels
contributing long-range links. If Q denotes a probability distribution over CNNs with long-range
links and an architecture fQ ∼ Q has a NN-Mass of m, then, with probability at least 1 − δ the
generalization error for this architecture is bounded as follows:

ED(L(fQ)) ≤ ES(L̂(fQ)) +

√
1

2σ (1
6m −

1
2 log(πem)) + log 2

√
N
δ

2N
,

where, σ is the maximum number of connections a channel can have in a given CNN architecture.

Proof. To prove Theorem 2, it only suffices to express the KL-divergence term in Theorem 1 as a
function ofm. As a result, we must model the distributionsQ and P for various CNNs. Since we are
dealing with the hypothesis class of CNN architectures, network science can be used to explicitly
model the distributions of the CNN topology. Hence, in order to study the distributions over CNN
architectural topology (i.e., how various channels are connected together), network science concepts
such as random networks, small-world networks, etc., can provide valuable insights. Towards this,
the problem of computing distributions over CNN architectures can be equivalently seen as the prob-
lem of modeling connectivity in various network topologies. Now, it has been established in network
science literature [Newman et al. (2011)] that the connectivity of a network can be quantified using
its degree distribution (recall that degree of a node in a network is given by total number of links
connected to it). Hence, degree distribution can be used for modeling the distributions over various
topologies of CNN architectures.

16

Under review as a conference paper at ICLR 2020

Short-range links Long-range links

= +

Small-World Network Lattice Network (G) Random Network (R)

Each node has
k short-range

neighbors

…

…

…… … …
…
…

…

…

…

…… … …

…
…

…

…

…

…… … …

…
…

…

= +
CNN architecture with
long-range links

Lattice Network (G) containing
layer-by-layer connections

Random Network (R)
consisting of long-range links

a. Traditional Network Science:

b. A Convolutional Neural Network: wc incoming links at each node (channel)

Figure 9: (a) Small-World Networks in traditional network science are modeled as a superposition of
a lattice network (G) and a random networkR [Watts & Strogatz (1998a); Newman & Watts (1999);
Monasson (1999)]. (b) A CNN with both short-range and long-range links can be similarly modeled
as a random network superimposed on a lattice network. Not all links are shown for simplicity.

Starting from the above ideas, we assume a priori that our CNN architecture does not have any long-
range links. In other words, our prior distribution P for CNN architectures consists only of models
with short-range links and no shortcut connections5. Therefore, any architecture drawn from prior
distribution P will look like a lattice network G with wc × dc total channels, and each channel at
layer i is connected to wc channels from the previous layer. Let this prior distribution P be given by
a distribution P (G) over lattice networks G.

Next, we model the distribution Q for the proposed CNN architectures with long-range links. Note
that, the CNNs considered in our work have both short-range and long-range links (see Fig. 2(c)
and Fig. 8(inset)). This kind of topology typically falls into the category of small-world networks
which can be represented as a lattice network G (containing short-range links) superimposed with a
random network R (to account for long-range links) [Monasson (1999); Newman & Watts (1999)].
This is illustrated in Fig. 9. Hence, the distribution over connectivities c in the small-world network
can be written as:

Q ∼ P (G,R) = P (G) · P (R|G) (8)

Since P (R|G) represents the random long-range links created on top of the lattice network G, the
connectivity of long-range links due to R|G follows a Poisson Distribution. This is because the de-
gree distribution of random networks has been shown to be Poisson Distribution [Barabasi (2016)].
The λ parameter (i.e., the mean) of this Poisson Distribution is given by the average degree of the
random network. Therefore, the average degree forR superimposed on G is given by:

λ = k̄R|G =
Number of long-range links added byR

Number of nodes

=
wc
∑dc−1
i=2 min{wc(i− 1), tc}

wcdc

=
m(dc − 1)(dc − 2)

2d2
c

(using equation 3 for one cell)

≈ m

2
(when dc >> 2, e.g., for deep CNNs)

(9)

5Note that, choosing a prior without any long-range links makes sense even from an “evolution of CNN
architectures” perspective since, initially, CNN architectures such as AlexNet [Krizhevsky et al. (2012)] and
VGG-16 [Simonyan & Zisserman (2014)] were developed (which do not have any shortcut connections), and
complex architectures with long-range connections such as NASNET [Zoph et al. (2018)], DenseNets [Huang
et al. (2017)], etc. were proposed only later.

17

Under review as a conference paper at ICLR 2020

Then, the probability Q(c) = P (G) · P (R|G)) of observing connectivity c in the small-world net-
work can be written as follows:

Q(c) = P (G) · λ
ce−λ

c!

= P (G) ·
(k̄R|G)ce−k̄R|G

c!
,

(10)

where, c ≥ k̄G , the average degree of the lattice network G. Since average degree is given by total
number of links divided by number of nodes, k̄G = (w2

c (dc − 1))/(wcdc) = (wc(dc − 1))/dc ≈ wc
when dc >> 2 (and implicitly dc >> 1, which is true for deep CNNs). Now, let σ be the upper
bound on the connectivity c. Also, we assume that the prior distribution P of drawing a lattice
network is a uniform distribution for support c ∈ {k̄G − σ + 1, k̄G − σ + 2, . . . , k̄G + σ}. Then, the
probability of observing a lattice network G with connectivity c is given by:

P (G) =

{
1

2σ if c ∈ {k̄G − σ + 1, k̄G − σ + 2, . . . , k̄G + σ}
0 otherwise

(11)

Note that, since our proposed CNN architecture (drawn from distributionQ) is also based on a lattice
network, the probability of drawing a lattice P (G) is same between P (i.e., the prior) and Q (i.e.,
our hypothesis).

We next use the above equations to simplify the KL-divergence term in Theorem 1. For deep CNNs
with dc >> 2, we have

KL(Q||P) = −
σ∑

c=k̄G

Q(c) log

(
P (c)

Q(c)

)

= −
σ∑

c=k̄G

P (G) · P (R|G) log

(
P (G)

P (G) · P (R|G)

)

=

σ∑
c=k̄G

P (G) · P (R|G) log(P (R|G))

=

σ∑
c=k̄G

1

2σ
· P (R|G) log(P (R|G))

=
1

2σ

σ∑
c=k̄G

P (R|G) log(P (R|G))

=
1

2σ
(−HPoisson(k̄R|G)),

(12)

where, HPoisson(k̄R|G) is the Entropy ofR|G which follows a Poisson Distribution (equation 10). For
a large λ, the Entropy of a Poisson Distribution can be approximated as [Evans & Boersma (1988)]:

HPoisson(λ) =
1

2
log(2πeλ)− 1

12λ
+O(

1

λ2
) (13)

From equation 9, equation 13, and equation 12 and by ignoring the higher order terms of λ (since it
is large), we get the following expression:

KL(Q||P) =
1

2σ

(
1

6m
− 1

2
log(πem)

)
(14)

Putting the above expression into the bound in Theorem 1, we immediately get the generalization
bound in terms of NN-Mass as shown in Theorem 2.

F PROOF OF COROLLARY 1

Corollary 1 (Models with Similar Mass Achieve Similar Generalization Performance). Given two
models of same width wc, let fLQ be a deeper model with NN-Mass mL, and let fSQ be a shallower

18

Under review as a conference paper at ICLR 2020

model with NN-Mass mS such that mL ≤ mS . Then, the difference in expected test error of the two
models is bounded with probability at least 1− δ as follows:

ED(L(fLQ))− ED(L(fSQ)) ≤ ES(L̂(fLQ))− ES(L̂(fSQ)) +

√√√√ 1
2σ

[
mS−mL
6mLmS

− 1
2 log mL

mS

]
+ log 4N

δ2

2N

In other words, irrespective of number of parameters and layers, as the NN-Mass for the two models
becomes similar, their test error is also expected to become similar.

Proof. We first compute the difference between the expected test errors for the deeper model fLQ and
the shallower model fSQ. Then, according to Theorem 1, we have:

ED(L(fLQ))− ED(L(fSQ)) ≤ ES(L̂(fLQ))− ES(L̂(fSQ))

+

√
KL(QL||P) + log 2

√
N
δ

2N
−

√
KL(QS ||P) + log 2

√
N
δ

2N
(15)

To simplify the difference of square roots, we use the following lemma.
Lemma 1 (Two Related Triangles (Hoggatt et al. (1960))). If three non-negative numbers a, b, and
c satisfy the triangle inequality (i.e., a + b ≥ c, b + c ≥ a, and a + c ≥ b), then the following also
holds:

|
√
b−
√
c| ≤

√
a ≤
√
b+
√
c

Proof for this lemma is given in Hoggatt et al. (1960).

Let b =
KL(QL||P)+log 2

√
N
δ

2N , and let c =
KL(QS ||P)+log 2

√
N
δ

2N . Then, all we need to do is to find
a such that the triangle inequality between a, b, and c is satisfied. Once we find such an a, the
difference of square roots in equation 15 can be bounded by

√
a. Towards this, we begin by finding

a lower bound for b+ c:

b+ c =
1

2N
(KL(QL||P) +KL(QS ||P)) +

1

2N
log

4N

δ2

≥ 1

2N
|KL(QL||P)−KL(QS ||P)|+ 1

2N
log

4N

δ2

=
1

2N
(KL(QL||P)−KL(QS ||P)) +

1

2N
log

4N

δ2
= a,

(16)

where, the first inequality follows from the fact that the sum of two non-negative real numbers will
always be greater than or equal to the absolute value of their difference. The second equality follows
from equation 14. Specifically, since KL-divergence is a decreasing function of NN-Mass, and since
mL ≤ mS , it follows that KL(QL||P) ≥ KL(QS ||P).

Now that we have a lower bound on b+ c, we use this value as a. In order to use Lemma 1, we only
need to make sure that the chosen values for a, b, and c satisfy the triangle inequality. Note that, by
construction, b+ c ≥ a. So, we only need to prove that a+ c ≥ b and a+ b ≥ c. For the former, it
is easy to see that a+ c = b+ 1

2N log 4N
δ2 =⇒ a+ c ≥ b (since 1

2N log 4N
δ2 is non-negative as the

size of training set N is a large number and δ ∈ (0, 1]). For the latter, we have:

a+ b =
1

2N
KL(QL||P)− 1

2N
KL(QS ||P) +

1

2N
log

4N

δ2
+

1

2N
KL(QL||P) +

1

2N
log

2
√
N

δ

=
2

2N
KL(QL||P)− 1

2N
KL(QS ||P) (add and subtract KL(QS ||P)/2N)

− 1

2N
KL(QS ||P) +

1

2N
KL(QS ||P) +

1

2N
log

2
√
N

δ︸ ︷︷ ︸
c

+
1

2N
log

4N

δ2

= c+
2

2N
(KL(QL||P)−KL(QS ||P))︸ ︷︷ ︸

≥0 sincemL≤mS =⇒ KL(QL||P)≥KL(QS ||P)

+
1

2N
log

4N

δ2︸ ︷︷ ︸
≥0

≥ c

(17)

19

Under review as a conference paper at ICLR 2020

Hence, a, b, and c satisfy the triangle inequality. Therefore, we can use Lemma 1 to bound the differ-
ence of square roots in equation 15. Putting KL-divergence from equation 14 into a in equation 16,
we get:

a =

1
2σ

[
mS−mL
6mLmS

− 1
2 log mL

mS

]
+ log 4N

δ2

2N
(18)

Finally, using Lemma 1 on equation 15 with the above a, we get the corollary statement. Clearly,
the difference in expected error for the two models reduces as their NN-Mass values become similar.
Therefore, irrespective of the number of parameters, if two models have similar NN-Mass, they are
expected to yield similar test accuracies. We will present extensive empirical evidence to verify this
corollary.

G COMPLETE DETAILS OF EXPERIMENTAL SETUP

We first analyze the impact of non-uniform contributions from input channels to output channels
at all layers (Appendix B). Then, we perform the Neural Architecture Space Exploration with NN-
Mass and NN-Density. Specifically, we run many experiments with CIFAR-10 and CIFAR-100
datasets for CNNs containing different number of layers, parameters, NN-Mass and NN-Density:

1. Impact of Input-to-Output Contributions: We train three separate models to evaluate the
impact of various αij’s on CNN generalization: Two models for constant contribution from
all inputs to all outputs at each layer, and one model for the proposed unequal contributions
via random probabilities. As shown in Table 2, for these experiments, we create a 46-
layer model with width-multiplier6 of 2, and a single cell (i.e., any channel from any layer
can contribute to any other channel7). Also, tc = 200 long-range link candidates are
selected randomly at each layer. We have already explained the results of this experiment
in Appendix B.

2. Neural Architecture Space Exploration and Correlation of NN-Mass with General-
ization: Next, we explore the architecture design space using our proposed NN-Mass and
NN-Density metrics. We further demonstrate that NN-Mass is indeed correlated with gen-
eralization (Theorem 2) and can be used to identify models with similar accuracy despite
having different number of parameters (Corollary 1). All models in this category are trained
for 200 epochs. We conduct the following classes of experiments:

• Impact of Varying NN-Density. We first systematically analyze how the test accu-
racy changes when average density (as defined in equation 2) is varied for CNNs of
different depths. Specifically, we fix the width of all models and vary the depth (total
depth of the CNN with three cells = 3dc + 4) and the maximum number of long-
range link candidates (tc). We choose tc for different cells such that the density for
all networks varies as: {0.1, 0.15, 0.2, 0.25, 0.3}. That is, different tc values result in
architectures with different NN-Mass and number of parameters and, hence, allows
us to explore the architecture design space (see Example 1 for an illustration on how
the set {dc, wc, tc} is used to define an architecture). Complete details of various tc
values for different networks is given in Table. 2.

• Impact of Varying NN-Mass and Width. The above experiment indirectly changes
NN-Mass (due to varying NN-Density). We next explicitly vary the NN-Mass across
models of different widths to analyze how the relationship between test accuracy and
NN-Mass changes across a large spectrum of architectures. For all experiments, we
explicitly quantify the relationship between accuracy of CNNs vs. NN-Mass by fitting
a linear regression model. We report the goodness-of-fit (or coefficient of determina-
tion, R2) of the linear model.

6Base number of channels in each group is [16,32,64]. Hence, a width-multiplier of 2 implies that each
group will have [32,64,128] channels per layer.

7Note that for evaluating the impact of αij’s, we have fixed the number of cells to one; as explained in
the footnote above, this cell contains three separate groups of [32,64,128] channels per layer. We found that
creating more cells improves the accuracy and, therefore, in the rest of the paper, we will use three cells for all
models.

20

Under review as a conference paper at ICLR 2020

Table 2: Details of Experiments for varying αij’s and Average Densities

Experiment
Type

Number
of Cells

Max. Long-Range
Link Candidates (tc)

αij’s Depth Width Multiplier

Impact of αij’s
1 200 Constant(1/N) 46 2
1 200 Ones (Traditional CNN) 46 2
1 200 Random Probabilities 46 2

Impact of
Average Density 3

[10,35,50]
[20,45,75]
[30,50,100]
[40,60,120]
[50,70,145]

Random Probabilities 31 2

Impact of
Average Density 3

[20,40,70]
[30,50,100]
[40,80,125]
[50,105,150]
[60,130,170]

Random Probabilities 40 2

Impact of
Average Density 3

[25,50,90]
[35,80,125]
[50,105,150]
[70,130,170]
[90,150,210]

Random Probabilities 49 2

Impact of
Average Density 3

[30,80,117]
[50,110,150]
[70,140,200]
[90,175,250]
[110,215,300]

Random Probabilities 64 2

• Comparison to Parameter Counting. Parameter counting (i.e., total number of train-
able parameters in a model) has been a standard method to determine whether or not a
given model will achieve high accuracy. Towards this, we demonstrate that NN-Mass
is a significantly better metric than parameter counting for understanding generaliza-
tion performance of various CNNs.

• Predicting Test Accuracy of Unknown Architectures. Finally, we train unknown
models (e.g., models with different depths, density, etc.) that were not trained as part
of the initial Neural Architecture Space Exploration. The objective of this experiment
is to determine if NN-Mass can be used to predict the test accuracy of models that
were never trained before.

3. Exploiting NN-Mass for Model Compression: Finally, we design new models with NN-
Mass comparable to (or slightly higher than) large state-of-the-art networks but signifi-
cantly fewer layers and parameters. We train the large model and these newly designed,
small models for 600 epochs and compare their test accuracies. This experiment is used to
evaluate if NN-Mass can be used directly as measure for model compression.

We verify our findings on CIFAR-10 and CIFAR-100 image classification datasets. The learning
rate for all models is initialized to 0.05 and follows a cosine-annealing schedule at each epoch.
The minimum learning rate is 0.0. Similar to setup in NAS prior works, cutout is used for data
augmentation. All models are trained in Pytorch on NVIDIA 1080-Ti, Titan Xp, and 2080-Ti GPUs.
This completes the experimental setup.

H ADDITIONAL RESULTS

H.1 COMPARISON BETWEEN NN-MASS AND PARAMETER COUNTING

Direct parameter counting is often used as a baseline for comparison in the generalization litera-
ture [Arora et al. (2018)]. Here, we quantitatively demonstrate that while parameter counting can be
a useful indicator of generalization for models with low width (but still not as good as NN-Mass),
as the width increases, parameter counting cannot predict generalization. In contrast, we show
that NN-Mass consistently predicts generalization performance with high accuracy. Specifically, in

21

Under review as a conference paper at ICLR 2020

1.0 1.5 2.0 2.5

log(#Parameters)

95.9

96.0

96.1

96.2

96.3

96.4

96.5

96.6

96.7

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(#Parameters) -- wm = 2. R-squared = 0.76

a. b.

5.5 6.0 6.5 7.0

log(NN-Mass)

96.0

96.2

96.4

96.6

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(NN-Mass). R-squared = 0.84

5.5 6.0 6.5 7.0

log(NN-Mass)

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(NN-Mass) -- wm = 3. R-squared = 0.90

d.c.

1.5 2.0 2.5 3.0

log(#Parameters)

96.1

96.2

96.3

96.4

96.5

96.6

96.7

96.8

T
e
s
t

A
c
c
u
ra

c
y

Test Accuracy vs. log(#Parameters) -- wm = 3. R-squared = 0.14

Figure 10: NN-Mass as an indicator of generalization performance compared to parameter counting.
(a) Forwm = 2, log(#parameters) fits the test accuracy with anR2 = 0.76. (b) For the samewm =
2 case, log(NN-Mass) fits the test accuracy with a higher R2 = 0.84. For lower width, parameter
counting is a decent indicator of generalization performance. (c) For higher width (wm = 3),
parameter counting completely fails to fit the test accuracy of various models (R2 = 0.14). (d) In
contrast, NN-Mass still fits the accuracies with a high R2 = 0.9.

Fig. 10(a), we fit a linear model between test accuracy and log(#parameters) and found that the
R2 for this model is 0.76 which is slightly lower than that obtained for NN-Mass (R2 = 0.84, see
Fig. 10(b)). When the width multiplier of CNNs increases to three, parameter counting completely
fails to fit the test accuracies of the models (R2 = 0.14). In contrast, NN-Mass significantly out-
performs parameter counting for wm = 3 as it achieves an R2 = 0.90. This demonstrates that
NN-Mass is indeed a significantly stronger indicator of generalization than parameter counting for
models with long-range links.

H.2 NN-MASS TO PREDICT TEST ACCURACY OF UNKNOWN ARCHITECTURES

We now demonstrate that NN-Mass can be used to predict the test accuracy of unknown architectures
that have not been trained before. Towards this, we create a testing set of new architectures by
training 20 previously unknown architectures with wm = 2, and {28, 43, 52, 58} layers. For these
models, we vary the NN-Density between {0.125, 0.175, 0.225, 0.275, 0.325} which is different
from the initial architecture space exploration setting in Fig 5(b) or Table 2 (in the initial setting,
{31, 40, 49, 64}-layer models were trained for NN-Densities: {0.10, 0.15, 0.20, 0.25, 0.30}). We
next use the linear model trained on the {31, 40, 49, 64}-layer models (see Fig. 5(b)) to predict the
test accuracy of the unknown {28, 43, 52, 58}-layer CNNs. Note that, our testing set consists of
models with both different number of layers and different NN-Densities (and, implicitly, different
NN-Mass values) compared to the training set.

Fig. 11 shows that the testing R2 = 0.79 (i.e., the R2 obtained by predicting the accuracy of models
in the testing set) which is close to the training R2 = 0.84 (see Fig. 5(b)). Hence, NN-Mass can be
used to predict test accuracy of models which were never trained before.

22

Under review as a conference paper at ICLR 2020

5.5 6.0 6.5 7.0
log(NN-Mass)

96.0

96.2

96.4

96.6

Te
st

 A
cc

ur
ac

y

Test Accuracy vs. log(NN-Mass). Testing R-squared = 0.79
28-layers
43-layers
52-layers
58-layers

Figure 11: Linear modeled trained in Fig. 5(b) is used to predict the test accuracy of completely
new architectures. The resulting R2 = 0.79 is still high and is comparable to the training
R2 = 0.84. The linear model was trained on the test accuracies and NN-Mass of models with
{31, 40, 49, 64} layers, and densities varying as {0.10, 0.15, 0.20, 0.25, 0.30}. To create the test-
ing set, we trained completely new models with {28, 43, 52, 58} layers, and densities varying as
{0.125, 0.175, 0.225, 0.275, 0.325}.

H.3 NN-MASS FOR DIRECTLY DESIGNING COMPRESSED ARCHITECTURES

Our theoretical and empirical evidence shows that NN-Mass is a reliable indicator for models which
achieve similar accuracy despite having different number of layers and parameters. Therefore, this
observation can be used for model compression as follows:

• First, train a reference big CNN (with a large number of parameters and layers) which
achieves very high accuracy on the target dataset. Calculate its NN-Mass (denoted mL).

• Next, create a completely new and significantly compressed model using far fewer param-
eters and layers, but with a NN-Mass comparable to or higher than the large CNN. This
process is very fast as the new model is created without any a priori training. For instance,
to design a compressed CNN of width wc and depth per cell dc and NN-Mass mS ≈ mL,
we only need to find how many long-range links to add in each cell. Since, NN-Mass has
a closed form equation (i.e., equation 3), a simple search over the number of long-range
links can directly determine NN-Mass of various architectures. Then, we select the ar-
chitecture with the NN-Mass close to that of the reference CNN. Unlike current manual
or NAS-based methods, our approach does not require training of individual architectures
during the search.

• Since NN-Mass of the compressed model is similar to that of the reference CNN, Corol-
lary 1 suggests that the newly generated model will lose only a small amount of accuracy,
while significantly reducing the model size. To validate this, we train the newly compressed
model and compare its test accuracy against that of the original large CNN.

Note that, our work is agnostic to what dataset is used since we rely solely on the properties of
CNN architectures. That is, if we train the large CNN on a different dataset, our compressed model
should still give accuracy close to that of the large CNN on the new dataset. Of course, the range of
accuracy of different models will vary when the dataset is changed, but different architectures with
similar NN-Mass should still yield a similar test accuracy. This observation is explicitly shown for
CIFAR-10 and CIFAR-100 datasets in experiments (The “Results for CIFAR-100 Dataset” part in
Section 4.2.1 shows that the same set of models that got clustered together for CIFAR-10 dataset,
still form clusters for CIFAR-100 on the test accuracy vs. NN-Mass plot).

23

	Introduction
	Related Work
	Proposed Approach
	Modeling CNNs via Network Science
	Proposed Metrics for Neural Architecture Space Exploration
	Provable Relationship between NN-Mass and Generalization

	Experimental Setup and Results
	Experimental Setup
	Results
	NASE: NN-Mass as an Indicator of Generalization of CNN Architectures
	Case Study: Directly Designing Compressed Models with NN-Mass

	Conclusion and Future Work
	Long-range links in CNNs and Network Science
	Computing network weights for CNN channel connections
	Impact of Input-to-Output Contributions

	Derivation of Density of a Cell
	Example: Computing NN-Mass and NN-Density for a CNN
	Proof of Theorem 2
	Proof of Corollary 1
	Complete Details of Experimental Setup
	Additional Results
	Comparison between NN-Mass and Parameter Counting
	NN-Mass to Predict Test Accuracy of Unknown Architectures
	NN-Mass for directly designing compressed architectures

