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Abstract

The dynamics of DNNs during gradient descent is described by the so-called
Neural Tangent Kernel (NTK). In this article, we show that the NTK allows
one to gain precise insight into the Hessian of the cost of DNNs. When
the NTK is fixed during training, we obtain a full characterization of the
asymptotics of the spectrum of the Hessian, at initialization and during
training. In the so-called mean-field limit, where the NTK is not fixed during
training, we describe the first two moments of the Hessian at initialization.

1 Introduction

The advent of deep learning has sparked a lot of interest in the loss surface of deep neural
networks (DNN), and in particular its Hessian. However to our knowledge, there is still no
theoretical description of the spectrum of the Hessian. Nevertheless a number of phenomena
have been observed numerically.

The loss surface of neural networks has been compared to the energy landscape of different
physical models (Choromanska et al., 2015; Geiger et al., 2018; Mei et al., 2018). It appears
that the loss surface of DNNs may change significantly depending on the width of the network
(the number of neurons in the hidden layer), motivating the distinction between the under-
and over-parametrized regimes (Baity-Jesi et al., 2018; Geiger et al., 2018; 2019).

The non-convexity of the loss function implies the existence of a very large number of saddle
points, which could slow down training. In particular, in (Pascanu et al., 2014; Dauphin
et al., 2014), a relation between the rank of saddle points (the number of negative eigenvalues
of the Hessian) and their loss has been observed.

For overparametrized DNNs, a possibly more important phenomenon is the large number of
flat directions (Baity-Jesi et al., 2018). The existence of these flat minima is conjectured
to be related to the generalization of DNNs and may depend on the training procedure
(Hochreiter & Schmidhuber, 1997; Chaudhari et al., 2016; Wu et al., 2017).

In (Jacot et al., 2018) it has been shown, using a functional approach, that in the infinite-
width limit, DNNs behave like kernel methods with respect to the so-called Neural Tangent
Kernel, which is determined by the architecture of the network. This leads to convergence
guarantees for DNNs (Jacot et al., 2018; Du et al., 2019; Allen-Zhu et al., 2018; Huang &
Yau, 2019) and strengthens the connections between neural networks and kernel methods
(Neal, 1996; Cho & Saul, 2009; Lee et al., 2018).

Our approach also allows one to probe the so-called mean-field/active limit (studied in
(Rotskoff & Vanden-Eijnden, 2018; Chizat & Bach, 2018a; Mei et al., 2018) for shallow
networks), where the NTK varies during training.

This raises the question: can we use these new results to gain insight into the behavior of
the Hessian of the loss of DNNs, at least in the small region explored by the parameters
during training?
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1.1 Contributions

Following ideas introduced in (Jacot et al., 2018), we consider the training of L+ 1-layered
DNNs in a functional setting. For a functional cost C, the Hessian of the loss RP 3 θ 7→
C
(
F (L) (θ)

)
is the sum of two P × P matrices I and S. We show the following results for

large P and for a fixed number of datapoints N :

• The first matrix I is positive semi-definite and its eigenvalues are given by the
(weighted) kernel PCA of the dataset with respect to the NTK. The dominating
eigenvalues are the principal components of the data followed by a high number
of small eigenvalues. The “flat directions” are spanned by the small eigenvalues
and the null-space (of dimension at least P − N when there is a single output).
Because the NTK is asymptotically constant (Jacot et al., 2018), these results apply
at initialization, during training and at convergence.

• The second matrix S can be viewed as residual contribution to H, since it vanishes
as the network converges to a global minimum. We compute the limit of the first
moment Tr (S) and characterize its evolution during training, of the second moment
Tr
(
S2
)

which stays constant during training, and show that the higher moments
vanish.

• Regarding the sum H = I+S, we show that the matrices I and S are asymptotically
orthogonal to each other at initialization and during training. In particular, the
moments of the matrices I and S add up: tr(Hk) ≈ tr(Ik) + tr(Sk).

These results give, for any depth and a fairly general non-linearity, a complete description of
the spectrum of the Hessian in terms of the NTK at initialization and throughout training.
Our theoretical results are consistent with a number of observations about the Hessian
(Hochreiter & Schmidhuber, 1997; Pascanu et al., 2014; Dauphin et al., 2014; Chaudhari
et al., 2016; Wu et al., 2017; Pennington & Bahri, 2017; Geiger et al., 2018), and sheds a
new light on them.

1.2 Related works

The Hessian of the loss has been studied through the decomposition I + S in a number of
previous works (Sagun et al., 2017; Pennington & Bahri, 2017; Geiger et al., 2018).

For least-squares and cross-entropy costs, the first matrix I is equal to the Fisher matrix
(Wagenaar, 1998; Pascanu & Bengio, 2013), whose moments have been described for shallow
networks in (Pennington & Worah, 2018). For deep networks, the first two moments and the
operator norm of the Fisher matrix for a least squares loss were computed at initialization
in (Karakida et al., 2018) conditionally on a certain independence assumption; our method
does not require such assumptions. Note that their approach implicitly uses the NTK.

The second matrix S has been studied in (Pennington & Bahri, 2017; Geiger et al., 2018)
for shallow networks, conditionally on a number of assumptions. Note that in the setting of
(Pennington & Bahri, 2017), the matrices I and S are assumed to be freely independent,
which allows them to study the spectrum of the Hessian; in our setting, we show that the
two matrices I and S are asymptotically orthogonal to each other.

2 Setup

We consider deep fully connected artificial neural networks (DNNs) using the setup and
NTK parametrization of (Jacot et al., 2018), taking an arbitrary nonlinearity σ ∈ C4

b (R)
(i.e. σ : R→ R that is 4 times continuously differentiable function with all four derivatives
bounded). The layers are numbered from 0 (input) to L (output), each containing n` neurons

for ` = 0, . . . , L. The P =
∑L−1
`=0 (n` + 1)n`+1 parameters consist of the weight matrices

W (`) ∈ Rn`+1×n` and bias vectors b(`) ∈ Rn`+1 for ` = 0, . . . , L − 1. We aggregate the
parameters into the vector θ ∈ RP .
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The activations and pre-activations of the layers are defined recursively for an input x ∈ Rn0 ,
setting α(0)(x; θ) = x :

α̃(`+1)(x; θ) =
1
√
n`
W (`)α(`)(x; θ) + βb(`),

α(`+1)(x; θ) = σ
(
α̃(`+1)(x; θ)

)
.

The parameter β is added to tune the influence of the bias on training1. All parameters are
initialized as iid N (0, 1) Gaussians.

We will in particular study the network function, which maps inputs x to the activation of
the output layer (before the last non-linearity):

fθ(x) = α̃(L)(x; θ).

In this paper, we will study the limit of various objects as n1, . . . , nL →∞ sequentially, i.e.
we first take n1 →∞, then n2 →∞, etc. This greatly simplifies the proofs, but they could
in principle be extended to the simultaneous limit, i.e. when n1 = ... = nL−1 → ∞. All
our numerical experiments are done with ‘rectangular’ networks (with n1 = ... = nL−1) and
match closely the predictions for the sequential limit.

In the limit we study in this paper, the NTK is asymptotically fixed, as in (Jacot et al., 2018;
Allen-Zhu et al., 2018; Du et al., 2019; Arora et al., 2019; Huang & Yau, 2019). By rescaling
the outputs of DNNs as the width increases, one can reach another limit where the NTK
is not fixed (Chizat & Bach, 2018a;b; Rotskoff & Vanden-Eijnden, 2018; Mei et al., 2019).
Some of our results can be extended to this setting, but only at initialization (see Section
3.3). The behavior during training becomes however much more complex.

2.1 Functional viewpoint

The network function lives in a function space fθ ∈ F := [Rn0 → RnL ] and we call the
function F (L) : RP → F that maps the parameters θ to the network function fθ the
realization function. We study the differential behavior of F (L):

• The derivative DF (L) ∈ RP ⊗ F is a function-valued vector of dimension P . The
p-th entry DpF (L) = ∂θpfθ ∈ F represents how modifying the parameter θp modifies
the function fθ in the space F .

• The Hessian HF (L) ∈ RP ⊗ RP ⊗F is a function-valued P × P matrix.

The network is trained with respect to the cost functional:

C(f) =
1

N

N∑
i=1

ci (f(xi)) ,

for strictly convex ci, summing over a finite dataset x1, . . . , xN ∈ Rn0 of size N . The
parameters are then trained with gradient descent on the composition C ◦F (L), which defines
the usual loss surface of neural networks.

In this setting, we define the finite realization function Y (L) : RP → RNnL mapping
parameters θ to be the restriction of the network function fθ to the training set yik = fθ,k(xi).

The Jacobian DY (L) is hence an NnL × P matrix and its Hessian HY (L) is a P × P ×NnL
tensor. Defining the restricted cost C(y) = 1

N

∑
i ci(yi), we have C ◦ F (L) = C ◦ Y (L).

For our analysis, we require that the gradient norm ‖DC‖ does not explode during training.
The following condition is sufficient:

Definition 1. A loss C : RNnL → R has bounded gradients over sublevel sets (BGOSS) if
the norm of the gradient is bounded over all sets Ua =

{
Y ∈ RNnL : C(Y ) ≤ a

}
.

For example, the Mean Square Error (MSE) C(Y ) = 1
2N ‖Y

∗ − Y ‖2 for the labels Y ∗ ∈ RNnL
has BGOSS because ‖∇C(Y )‖2 = 1

N ‖Y
∗ − Y ‖2 = 2C(Y ). For the binary and softmax

cross-entropy the gradient is uniformly bounded, see Proposition 2 in Appendix A.
1In our experiments, we take β = 0.1.
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2.2 Neural Tangent Kernel

The behavior during training of the network function fθ in the function space F is described
by a (multi-dimensional) kernel, the Neural Tangent Kernel (NTK)

Θ
(L)
k,k′(x, x

′) =

P∑
p=1

∂θpfθ,k(x)∂θpfθ,k′(x
′).

During training, the function fθ follows the so-called kernel gradient descent with respect to
the NTK, which is defined as

∂tfθ(t)(x) = −∇Θ(L)C|fθ(t)(x) := − 1

N

N∑
i=1

Θ(L)(x, xi)∇ci(fθ(t)(xi)).

In the infinite-width limit (letting n1 →∞, . . . , nL−1 →∞ sequentially) and for losses with

BGOSS, the NTK converges to a deterministic limit Θ(L) → Θ
(L)
∞ ⊗ IdnL , which is constant

during training, uniformly on finite time intervals [0, T ] (Jacot et al., 2018). For the MSE
loss, the uniform convergence of the NTK was proven for T =∞ in (Arora et al., 2019).

The limiting NTK Θ
(L)
∞ : Rn0 × Rn0 → R is constructed as follows:

1. For f, g : R → R and a kernel K : Rn0 × Rn0 → R, define the kernel Lf,gK :
Rn0 × Rn0 → R by

Lf,gK (x0, x1) = E(a0,a1) [f(a0)g(a1)] ,

for (a0, a1) a centered Gaussian vector with covariance matrix (K(xi, xj))i,j=0,1. For

f = g, we denote by LfK the kernel Lf,fK .

2. We define the kernels Σ
(`)
∞ for each layer of the network, starting with Σ

(1)
∞ (x0, x1) =

1/n0(xT0 x1) + β2 and then recursively by Σ
(`+1)
∞ = Lσ

Σ
(`)
∞

+ β2, for ` = 1, . . . , L − 1,

where σ is the network non-linearity.

3. The limiting NTK Θ
(L)
∞ is defined in terms of the kernels Σ

(`)
∞ and the kernels

Σ̇
(`)
∞ = Lσ̇

Σ
(`−1)
∞

:

Θ(L)
∞ =

L∑
`=1

Σ(`)
∞ Σ̇(`+1)

∞ . . . Σ̇(L)
∞ .

The NTK leads to convergence guarantees for DNNs in the infinite-width limit, and connect
their generalization to that of kernel methods (Jacot et al., 2018; Arora et al., 2019).

2.3 Gram Matrices

For a finite dataset x1, . . . , xN ∈ Rn0 and a fixed depth L ≥ 1, we denote by Θ̃ ∈ RNnL×NnL
the Gram matrix of x1, . . . , xN with respect to the limiting NTK, defined by

Θ̃ik,jm = Θ(L)
∞ (xi, xj) δkm.

It is block diagonal because different outputs k 6= m are asymptotically uncorrelated.

Similarly, for any (scalar) kernel K(L) (such as the limiting kernels Σ
(L)
∞ ,Λ

(L)
∞ ,Υ

(L)
∞ ,Φ

(L)
∞ ,Ξ

(L)
∞

introduced later), we denote the Gram matrix of the datapoints by K̃.

3 Main Theorems

3.1 Hessian as I + S

Using the above setup, the Hessian H of the loss C ◦ F (L) is the sum of two terms, with the
entry Hp,p′ given by

Hp,p′ = HC|fθ (∂θpF, ∂θp′F ) +DC|fθ (∂θp,θp′F ).
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For a finite dataset, the Hessian matrix H
(
C ◦ Y (L)

)
is equal to the sum of two matrices

I =
(
DY (L)

)T
HCDY (L) and S = ∇C · HY (L)

where DY (L) is a NnL×P matrix, HC is a NnL×NnL matrix and HY (L) is a P ×P ×NnL
tensor to which we apply a scalar product (denoted by ·) in its last dimension with the NnL
vector ∇C to obtain a P × P matrix.

Our main contribution is the following theorem, which describes the limiting moments
Tr
(
Hk
)

in terms of the moments of I and S:

Theorem 1. For any loss C with BGOSS and σ ∈ C4
b (R), in the sequential limit n1 →

∞, . . . , nL−1 →∞, we have for all k ≥ 1

Tr
(
H (t)

k
)
≈ Tr

(
I (t)

k
)

+ Tr
(
S (t)

k
)
.

The limits of Tr
(
I (t)

k
)

and Tr
(
S (t)

k
)

can be expressed in terms of the NTK Θ
(L)
∞ , the

kernels Υ
(L)
∞ ,Ξ

(L)
∞ and the non-symmetric kernels Φ

(L)
∞ , Λ

(L)
∞ defined in Appendix C:

• The moments Tr
(
I (t)

k
)

converge to the following limits (with the convention that

ik+1 = i1):

Tr
(
I (t)

k
)
→ Tr

((
HC(Y (t))Θ̃

)
k
)

=
1

Nk

N∑
i1,...,ik=1

k∏
m=1

c′′im(fθ(t)(xim))Θ(L)
∞ (xim , xim+1).

• The first moment Tr (S (t)) converges to the limit:

Tr (S (t)) = (G(t))
T ∇C(Y (t)).

At initialization (G(0), Y (0)) form a Gaussian pair of NnL-vectors, independent
for differing output indices k = 1, ..., nL and with covariance E [Gik(0)Gi′k′(0)] =

δkk′Ξ
(L)
∞ (xi, xi′) and E [Gik(0)Yi′k′(0)] = δkk′Φ

(L)
∞ (xi, xi′) for the limiting kernel

Ξ
(L)
∞ (x, y) and non-symmetric kernel Φ

(L)
∞ (x, y). During training, both vectors follow

the differential equations

∂tG(t) = −Λ̃∇C(Y (t))

∂tY (t) = −Θ̃∇C(Y (t)).

• The second moment Tr
(
S (t)

2
)

converges to the following limit defined in terms of

the Gram matrix Υ̃:

Tr
(
S2
)
→ (∇C(Y (t)))

T
Υ̃∇C(Y (t))

• The higher moments Tr
(
S (t)

k
)

for k ≥ 3 vanish.

Proof. The moments of I and S can be studied separately because the moments of their sum
is asymptotically equal to the sum of their moments by Proposition 5 below. The limiting
moments of I and S are respectively described by Propositions 1 and 4 below.

In the case of a MSE loss C(Y ) = 1
2N ‖Y − Y

∗‖2, the first and second derivatives take simple

forms ∇C(Y ) = 1
N (Y − Y ∗) and HC(Y ) = 1

N IdNnL and the differential equations can be
solved to obtain more explicit formulae:
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Figure 1: Comparison of the theoretical prediction of Corollary 1 for the expectation of the
first 4 moments (colored lines) to the empirical average over 250 trials (black crosses) for a
rectangular network with two hidden layers of finite widths n1 = n2 = 5000 (L = 3) with the
smooth ReLU (left) and the normalized smooth ReLU (right), for the MSE loss on scaled
down 14x14 MNIST with N = 256. Only the first two moments are affected by S at the
beginning of training.

Corollary 1. For the MSE loss C and σ ∈ C4
b (R), in the limit n1, ..., nL−1 →∞, we have

uniformly over [0, T ]

Tr
(
H(t)k

)
→ 1

Nk
Tr
(

Θ̃k
)

+ Tr
(
S(t)k

)
where

Tr (S(t))→− 1

N
(Y ∗ − Y (0))T

(
IdNnL + e−tΘ̃

)
Θ̃−1Λ̃T e−tΘ̃(Y ∗ − Y (0))

+
1

N
G(0)T e−tΘ̃(Y ∗ − Y (0))

Tr
(
S(t)2

)
→ 1

N2
(Y ∗ − Y (0))T e−tΘ̃Υ̃e−tΘ̃(Y ∗ − Y (0))

Tr
(
S(t)k

)
→0 when k > 2.

In expectation we have:

E [Tr (S(t))]→− 1

N
Tr
((
IdNnL + e−tΘ̃

)
Θ̃−1Λ̃T e−tΘ̃

(
Σ̃ + Y ∗Y ∗T

))
+

1

N
Tr
(
e−tΘ̃Φ̃T

)
E
[
Tr
(
S(t)2

)]
→ 1

N2
Tr
(
e−tΘ̃Υ̃e−tΘ̃

(
Σ̃ + Y ∗Y ∗T

))
.

Proof. The moments of I are constant because HC = 1
N IdNnL is constant. For the moments

of S, we first solve the differential equation for Y (t):

Y (t) = Y ∗ − e−tΘ̃(Y ∗ − Y (0)).

Noting Y (t)− Y (0) = −Θ̃
∫ t

0
∇C(s)ds, we have

G(t) = G(0)− Λ̃

∫ t

0

∇C(s)ds

= G(0) + Λ̃Θ̃−1(Y (t)− Y (0))

= G(0) + Λ̃Θ̃−1
(
IdNnL + e−tΘ̃

)
(Y ∗ − Y (0))

The expectation of the first moment of S then follows.
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3.2 Mutual Orthogonality of I and S

A first key ingredient to prove Theorem 1 is the asymptotic mutual orthogonality of the
matrices I and S

Proposition (Proposition 5 in Appendix D). For any loss C with BGOSS and σ ∈ C4
b (R),

we have uniformly over [0, T ]

lim
nL−1→∞

· · · lim
n1→∞

‖IS‖F = 0.

As a consequence limnL−1→∞ · · · limn1→∞Tr
(

[I + S]
k
)
−
[
Tr
(
Ik
)

+ Tr
(
Sk
)]

= 0.

Remark 1. If two matrices A and B are mutualy orthogonal (i.e. AB = 0) the range of A is
contained in the nullspace of B and vice versa. The non-zero eigenvalues of the sum A+B
are therefore given by the union of the non-zero eigenvalues of A and B. Furthermore the

moments of A and B add up: Tr
(

[A+B]
k
)

= Tr
(
Ak
)

+ Tr
(
Bk
)
. Proposition 5 shows that

this is what happens asymptotically for I and S.

Note that both matrices I and S have large nullspaces: indeed assuming a constant width
w = n1 = ... = nL−1, we have Rank(I) ≤ NnL and Rank(S) ≤ 2(L − 1)wNnL (see
Appendix C), while the number of parameters P scales as w2 (when L > 2).

Figure 2 illustrates the mutual orthogonality of I and S. All numerical experiments are done
for rectangular networks (when the width of the hidden layers are equal) and agree well with
our predictions obtained in the sequential limit.

3.3 Mean-field Limit

For a rectangular network with width w, if the output of the network is divided by
√
w and

the learning rate is multiplied by w (to keep similar dynamics at initialization), the training
dynamics changes and the NTK varies during training when w goes to infinity. The new
parametrization of the output changes the scaling of the two matrices:

H
[
C

(
1√
w
Y (L)

)]
=

1

w

(
DY (L)

)T
HCDY (L) +

1√
w
∇C · HY (L) =

1

w
I +

1√
w
S.

The scaling of the learning rate essentially multiplies the whole Hessian by w. In this setting,
the matrix I is left unchanged while the matrix S is multiplied by

√
w (the k-th moment of

S is hence multiplied by wk/2). In particular, the two moments of the Hessian are dominated
by the moments of S, and the higher moments of S (and the operator norm of S) should
not vanish. This suggests that the active regime may be characterised by the fact that
‖S‖F � ‖I‖F . Under the conjecture that Theorem 1 holds for the infinite-width limit of
rectangular networks, the asymptotic of the two first moments of H is given by:

1/
√
wTr (H)→ N (0,∇CT Ξ̃∇C)

1/wTr
(
H2
)
→ ∇CT Υ̃∇C,

where for the MSE loss we have ∇C = −Y ∗.

3.4 The matrix S

The matrix S = ∇C · HY (L) is best understood as a perturbation to I, which vanishes as
the network converges because ∇C → 0. To calculate its moments, we note that

Tr
(
∇C · HY (L)

)
=

(
P∑
p=1

∂2
θ2p
Y

)T
∇C = GT∇C,

where the vector G =
∑P
k=1 ∂

2
θ2p
Y ∈ RNnL is the evaluation of the function gθ(x) =∑P

k=1 ∂
2
θ2p
fθ(x) on the training set.
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For the second moment we have

Tr

((
∇C · HY (L)

)2
)

= ∇CT
 P∑
p,p′=1

∂2
θpθp′

Y
(
∂2
θpθp′

Y
)T∇C = ∇CT Υ̃∇C

for Υ̃ the Gram matrix of the kernel Υ(L)(x, y) =
∑P
p,p′=1 ∂

2
θpθp′

fθ(x)
(
∂2
θpθp′

fθ(y)
)T

.

The following proposition desribes the limit of the function gθ and the kernel Υ(L) and the
vanishing of the higher moments:

Proposition (Proposition 4 in Appendix C). For any loss C with BGOSS and σ ∈ C4
b (R),

the first two moments of S take the form

Tr (S(t)) = G(t)T∇C(t)

Tr
(
S(t)2

)
= ∇C(t)T Υ̃(t)∇C(t)

- At initialization, gθ and fθ converge to a (centered) Gaussian pair with covariances

E[gθ,k(x)gθ,k′(x
′)] = δkk′Ξ

(L)
∞ (x, x′)

E[gθ,k(x)fθ,k′(x
′)] = δkk′Φ

(L)
∞ (x, x′)

E[fθ,k(x)fθ,k′(x
′)] = δkk′Σ

(L)
∞ (x, x′)

and during training gθ evolves according to

∂tgθ,k(x) =

N∑
i=1

Λ(L)
∞ (x, xi)∂ikC(Y (t))·

- Uniformly over any interval [0, T ], the kernel Υ(L) has a deterministic and fixed limit

limnL−1→∞ · · · limn1→∞Υ
(L)
kk′ (x, x

′) = δkk′Υ
(L)
∞ (x, x′) with limiting kernel:

Υ(L)
∞ (x, x′) =

L−1∑
`=1

(
Θ(`)
∞ (x, x′)2Σ̈(`)

∞ (x, x′) + 2Θ(`)
∞ (x, x′)Σ̇(`)

∞ (x, x′)
)

Σ̇(`+1)
∞ (x, x′) · · · Σ̇(L−1)

∞ (x, x′).

- The higher moment k > 2 vanish: limnL−1→∞ · · · limn1→∞ Tr
(
Sk
)

= 0.

This result has a number of consequences for infinitely wide networks:

1. At initialization, the matrix S has a finite Frobenius norm ‖S‖2F = Tr
(
S2
)

=

∇CT Υ̃∇C, because Υ converges to a fixed limit. As the network converges, the
derivative of the cost goes to zero ∇C(t)→ 0 and so does the Frobenius norm of S.

2. In contrast the operator norm of S vanishes already at initialization (because for all

even k, we have ‖S‖op ≤
k
√

Tr (Sk) → 0). At initialization, the vanishing of S in
operator norm but not in Frobenius norm can be explained by the matrix S having
a growing number of eigenvalues of shrinking intensity as the width grows.

3. When it comes to the first moment of S, Proposition 4 shows that the spectrum of
S is in general not symmetric. For the MSE loss the expectation of the first moment
at initialization is

E [Tr(S)] = E
[
(Y − Y ∗)TG

]
= E

[
Y TG

]
− (Y ∗)

T E [G] = Tr
(

Φ̃
)
− 0

which may be positive or negative depending on the choice of nonlinearity: with a
smooth ReLU, it is positive, while for the arc-tangent or the normalized smooth
ReLU, it can be negative (see Figure 1).
This is in contrast to the result obtained in (Pennington & Bahri, 2017; Geiger et al.,
2018) for the shallow ReLU networks, taking the second derivative of the ReLU to
be zero. Under this assumption the spectrum of S is symmetric: if the eigenvalues
are ordered from lowest to highest, λi = −λP−i and Tr(S) = 0.
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Figure 2: Illustration of the mutual
orthogonality of I and S. For the 20
first eigenvectors of I (blue) and S
(orange), we plot the Rayleigh quo-
tients vT Iv and vTSv (with L = 3,
n1 = n2 = 1000 and the normal-
ized ReLU on 14x14 MNIST with
N = 256). We see that the direc-
tions where I is large are directions
where S is small and vice versa.
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Figure 3: Plot of the loss surface around a global mini-
mum along the first (along the y coordinate) and fourth
(x coordinate) eigenvectors of I. The network has L = 4,
width n1 = n2 = n3 = 1000 for the smooth ReLU (left)
and the normalized smooth ReLU (right). The data is
uniform on the unit disk. Normalizing the non-linearity
greatly reduces the narrow valley structure of the loss
thus speeding up training.

These observations suggest that S has little influence on the shape of the surface, especially
towards the end of training, the matrix I however has an interesting structure.

3.5 The matrix I

At a global minimizer θ∗, the spectrum of I describes how the loss behaves around θ∗. Along
the eigenvectors of the biggest eigenvalues of I, the loss increases rapidely, while small
eigenvalues correspond to flat directions. Numerically, it has been observed that the matrix
I features a few dominating eigenvalues and a bulk of small eigenvalues (Sagun et al., 2016;
2017; Gur-Ari et al., 2018; Papyan, 2019). This leads to a narrow valley structure of the loss
around a minimum: the biggest eigenvalues are the ‘cliffs’ of the valley, i.e. the directions
along which the loss grows fastest, while the small eigenvalues form the ‘flat directions’or
the bottom of the valley.

Note that the rank of I is bounded by NnL and in the overparametrized regime, when
NnL < P , the matrix I will have a large nullspace, these are directions along which the
value of the function on the training set does not change. Note that in the overparametrized
regime, global minima are not isolated: they lie in a manifold of dimension at least P −NnL
and the nullspace of I is tangent to this solution manifold.

The matrix I is closely related to the NTK Gram matrix:

Θ̃ = DY (L)
(
DY (L)

)T
and I =

(
DY (L)

)T
HCDY (L).

As a result, the limiting spectrum of the matrix I can be directly obtained from the NTK2

Proposition 1. For any loss C with BGOSS and σ ∈ C4
b (R), uniformly over any interval

[0, T ], the moments Tr
(
Ik
)

converge to the following limit (with the convention that ik+1 =
i1):

lim
nL−1→∞

· · · lim
n1→∞

Tr
(
Ik
)

= Tr
((
HC(Yt)Θ̃

)
k
)

=
1

Nk

N∑
i1,...,ik=1

k∏
m=1

c′′im(fθ(t)(xim))Θ(L)
∞ (xim , xim+1)

2This result was already obtained in (Karakida et al., 2018), but without identifying the NTK
explicitely and only at initialization.
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Proof. It follows from Tr
(
Ik
)

= Tr

(((
DY (L)

)T HCDY (L)
)k)

= Tr

((
HCΘ̃

)k)
and the

asymptotic of the NTK (Jacot et al., 2018).

3.5.1 Mean-Square Error

When the loss is the MSE, HC is equal to 1
N IdNnL . As a result, Θ̃ and I have the same

non-zero eigenvalues up to a scaling of 1/N. Because the NTK is assymptotically fixed, the
spectrum of I is also fixed in the limit.

The eigenvectors of the NTK Gram matrix are the kernel principal components of the
data. The biggest principal components are the directions in function space which are most
favorised by the NTK. This gives a functional interpretation of the narrow valley structure in
DNNs: the cliffs of the valley are the biggest principal components, while the flat directions
are the smallest components.

Remark 2. As the depth L of the network increases, one can observe two regimes (Poole
et al., 2016; Jacot et al., 2019): Order/Freeze where the NTK converges to a constant and
Chaos where the NTK converges to a Kronecker delta. In the Order/Freeze the NnL ×NnL
Gram matrix approaches a block diagonal matrix with nL constant blocks, and as a result
nL eigenvalues of I dominate the other ones, corresponding to constant directions along each
outputs (this is in line with the observations of (Papyan, 2019)). This leads to a narrow
valley for the loss and slows down training. In contrast, in the Chaos regime, the NTK Gram
matrix approaches a scaled identity matrix, and the spectrum of I should hence concentrate
around a positive value, hence speeding up training. Figure 3 illustrates this phenomenon:
with the smooth ReLU we observe a narrow valley, while with the normalized smooth ReLU
(which lies in the Chaos according to (Jacot et al., 2019)) the narrowness of the loss is
reduced. A similar phenomenon may explain why normalization helps smoothing the loss
surface and speed up training (Santurkar et al., 2018; Ghorbani et al., 2019).

3.5.2 Cross-Entropy Loss

For a binary cross-entropy loss with labels Y ∗ ∈ {−1,+1}N

C(Y ) =
1

N

N∑
i=1

log
(

1 + e−Y
∗
i Yi
)
,

HC is a diagonal matrix whose entries depend on Y (but not on Y ∗):

HiiC(Y ) =
1

N

1

1 + e−Yi + eYi
.

The eigenvectors of I then correspond to the weighted kernel principal component of the
data. The positive weights 1

1+e−Yi+eYi
approach 1/3 as Yi goes to 0, i.e. when it is close to

the decision boundary from one class to the other, and as Yi → ±∞ the weight go to zero.
The weights evolve in time through Yi, the spectrum of I is therefore not asymptotically
fixed as in the MSE case, but the functional interpretation of the spectrum in terms of the
kernel principal components remains.

4 Conclusion

We have given an explicit formula for the limiting moments of the Hessian of DNNs throughout
training. We have used the common decomposition of the Hessian in two terms I and S and
have shown that the two terms are asymptotically mutually orthogonal, such that they can
be studied separately.

The matrix S vanishes in Frobenius norm as the network converges and has vanishing operator
norm throughout training. The matrix I is arguably the most important as it describes the
narrow valley structure of the loss around a global minimum. The eigendecomposition of I
is related to the (weighted) kernel principal components of the data w.r.t. the NTK.
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A Proofs

For the proofs of the theorems and propositions presented in the main text, we reformulate
the setup of (Jacot et al., 2018). For a fixed training set x1, ..., xN , we consider a (possibly
random) time-varying training direction D(t) ∈ RNnL which describes how each of the
outputs must be modified. In the case of gradient descent on a cost C(Y ), the training
direction is D(t) = ∇C(Y (t)). The parameters are updated according to the differential
equation

∂tθ(t) = (∂θY (t))
T
D(t).

Under the condition that
∫ T

0
‖D(t)‖2 dt is stochastically bounded as the width of the network

goes to infinity, the NTK Θ(L) converges to its fixed limit uniformly over [0, T ].

The reason we consider a general training direction (and not only a gradient of a loss) is
that we can split a network in two at a layer ` and the training of the smaller network will

be according to the training direction D
(`)
i (t) given by

D
(`)
i (t) = diag

(
σ̇
(
α(`)(xi)

))( 1
√
n`
W (`)

)T
...diag

(
σ̇
(
α(L−1)(xi)

))( 1
√
nL−1

W (L−1)

)T
Di(t)

because the derivatives σ̇ are bounded and by Lemma 1 of the Appendix of (Jacot et al.,
2018), this training direction satisfies the constraints even though it is not the gradient of a
loss. As a consequence, as n1 →∞, ..., n`−1 →∞ the NTK of the smaller network Θ(`) also

converges to its limit uniformly over [0, T ]. As we let n` →∞ the pre-activations α̃
(`)
i and

weights W
(`)
ij move at a rate of 1/√n`. We will use this rate of change to prove that other

types of kernels are constant during training.
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When a network is trained with gradient descent on a loss C with BGOSS, the integral∫ T
0
‖D(t)‖2 dt is stochastically bounded. Because the loss is decreasing during training, the

outputs Y (t) lie in the sublevel set UC(Y (0)) for all times t. The norm of the gradient is
hence bounded for all times t. Because the distribution of Y (0) converges to a multivariate
Gaussian, b(C(Y (0))) is stochastically bounded as the width grows, where b(a) is a bound

on the norm of the gradient on Ua. We then have the bound
∫ T

0
‖D(t)‖2 dt ≤ Tb(C(Y (0)))

which is itself stochastically bounded.

For the binary and softmax cross-entropy losses the gradient is uniformly bounded:

Proposition 2. For the binary cross-entropy loss C and any Y ∈ RN , ‖∇C(Y )‖2 ≤
1√
N

.

For the softmax cross-entropy loss C on c ∈ N classes and any Y ∈ RNc, ‖∇C(Y )‖2 ≤
√

2c√
N

.

Proof. The binary cross-entropy loss with labels Y ∗ ∈ {0, 1}N is

C(Y ) = − 1

N

N∑
i=1

log
eYiY

∗
i

1 + eYi
=

1

N

N∑
i=1

log
(
1 + eYi

)
− YiY ∗i

and the gradient at an input i is

∂iC(Y ) =
1

N

eYi − Y ∗i (1 + eYi)

1 + eYi

which is bounded in absolute value by 1
N for both Y ∗i = 0, 1 such that ‖∇C(Y )‖2 ≤

1√
N

.

The softmax cross-entropy loss over c classes with labels Y ∗ ∈ {1, . . . , c}N is defined by

C(Y ) = − 1

N

N∑
i=1

log
e
YiY ∗

i∑c
k=1 e

Yik
=

1

N

N∑
i=1

log

(
c∑

k=1

eYik

)
− YiY ∗i .

The gradient is at an input i and output class m is

∂imC(Y ) =
1

N

(
eYim∑c
k=1 e

Yik
− δY ∗i m

)
which is bounded in absolute value by 2

N such that ‖∇C(Y )‖2 ≤
√

2c√
N

.

B Preliminaries

To study the moments of the matrix S, we first have to show that two tensors vanish as
n1, ..., nL−1 →∞:

Ω
(L)
k0,k1,k2

(x0, x1, x2) = (∇fθ,k0(x0))
T Hfθ,k1(x1)∇fθ,k2(x2)

Γ
(L)
k0,k1,k2,k3

(x0, x1, x2, x4) = (∇fθ,k0(x0))
T Hfθ,k1(x1)Hfθ,k2(x2)∇fθ,k3(x3).

We study these tensors recursively, for this, we need a recursive definition for the first
derivatives ∂θpfθ,k(x) and second derivatives ∂2

θpθp′
fθ,k(x). The value of these derivatives

depend on the layer ` the parameters θp and θp′ belong to, and on whether they are connection

weights W
(`)
mk or biases b

(`)
k . The derivatives with respect to the parameters of the last layer

are

∂
W

(L−1)
mk

fθ,k′(x) =
1

√
nL−1

α(L−1)
m (x)δkk′

∂
b
(L−1)
k

fθ,k′(x) = β2δkk′

for parameters θp which belong to the lower layers the derivatives can be defined recursively
by

∂θpfθ,k(x) =
1

√
nL−1

nL−1∑
m=1

∂θp α̃
(L−1)
m (x)σ̇

(
α̃(L−1)
m (x)

)
W

(L−1)
mk .
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For the second derivatives, we first note that if either of the parameters θp or θp′ are bias of
the last layer, or if they are both connection weights of the last layer, then ∂2

θpθp′
fθ,k(x) = 0.

Two cases are left: when one parameter is a connection weight of the last layer and the
others belong to the lower layers, and when both belong to the lower layers. Both cases can

be defined recursively in terms of the first and second derivatives of α̃
(L−1)
m :

∂2

θpW
(L)
mk

fθ,k′(x) =
1

√
nL−1

∂θp α̃
(L−1)
m (x)σ̇

(
α̃(L−1)
m (x)

)
δkk′

∂2
θpθp′

fθ,k′(x) =
1

√
nL−1

nL−1∑
m=1

∂2
θpθp′

α̃(L−1)
m (x)σ̇

(
α̃(L−1)
m (x)

)
W

(L−1)
mk

+
1

√
nL−1

nL−1∑
m=1

∂θp α̃
(L−1)
m (x)∂θp′ α̃

(L−1)
m (x)σ̈

(
α̃(L−1)
m (x)

)
W

(L−1)
mk .

Using these recursive definitions, the tensors Ω(L+1) and Γ(L+1) are given in terms of
Θ(L),Ω(L) and Γ(L), in the same manner that the NTK Θ(L+1) is defined recursively in terms
of Θ(L) in (Jacot et al., 2018).

Lemma 1. For any loss C with BGOSS and σ ∈ C4
b (R), we have uniformly over [0, T ]

lim
nL−1→∞

· · · lim
n1→∞

Ω
(L)
k0,k1,k2

(x0, x1, x2) = 0

Proof. The proof is done by induction. When L = 1 the second derivatives ∂2
θpθp′

fθ,k(x) = 0

and Ω
(L)
k0,k1,k2

(x0, x1, x2) = 0.

For the induction step, we write Ω
(`+1)
k0,k1,k2

(x0, x1, x2) recursively as

n
−3/2
`

∑
m0,m1,m2

Θ(`)
m0,m1

(x0, x1)Θ(`)
m1,m2

(x1, x2)σ̇(α̃(`)
m0

(x0))σ̈(α̃(`)
m1

(x1))σ̇(α̃(`)
m2

(x2))W
(`)
m0k0

W
(`)
m1k1

W
(`)
m2k2

+ n
−3/2
`

∑
m0,m1,m2

Ω(`)
m0,m1,m2

(x0, x1, x2)σ̇(α̃(`)
m0

(x0))σ̇(α̃(`)
m1

(x1))σ̇(α̃(`)
m2

(x2))W
(`)
m0k0

W
(`)
m1k1

W
(`)
m2k2

+ n
−3/2
`

∑
m0,m1

Θ(`)
m0,m1

(x0, x1)σ̇(α̃(`)
m0

(x0))σ̇(α̃(`)
m1

(x1))σ(α̃(`)
m1

(x2))W
(`)
m0k0

δk1k2

+ n
−3/2
`

∑
m1,m2

Θ(`)
m1,m2

(x1, x2)σ(α̃(`)
m1

(x0))σ̇(α̃(`)
m1

(x1))σ̇(α̃(`)
m2

(x2))δk0k1W
(`)
m2k2

.

As n1, ..., n`−1 →∞ and for any times t < T , the NTK Θ(`) converges to its limit while Ω(`)

vanishes. The second summand hence vanishes and the others converge to

n
−3/2
`

∑
m

Θ(`)
∞ (x0, x1)Θ(`)

∞ (x1, x2)σ̇(α̃(`)
m (x0))σ̈(α̃(`)

m (x1))σ̇(α̃(`)
m (x2))W

(`)
mk0

W
(`)
mk1

W
(`)
mk2

+ n
−3/2
`

∑
m

Θ(`)
∞ (x0, x1)σ̇(α̃(`)

m (x0))σ̇(α̃(`)
m (x1))σ(α̃(`)

m (x2))W
(`)
mk0

δk1k2

+ n
−3/2
`

∑
m

Θ(`)
∞ (x1, x2)σ(α̃(`)

m (x0))σ̇(α̃(`)
m (x1))σ̇(α̃(`)

m (x2))δk0k1W
(`)
mk2

.

At initialization, all terms vanish as n` →∞ because all summands are independent with zero

mean and finite variance: in the n1 →∞, . . . , n`−1 →∞ limit, the α̃
(`)
m (x) are independent

for different m, see (Jacot et al., 2018). During training, the weights W (`) and preactivations
α̃(`) move at a rate of 1/√n` (see the proof of convergence of the NTK in (Jacot et al., 2018)).
Since σ̇ is Lipschitz, we obtain that the motion during training of each of the sums is of

order n
−3/2+1/2
` = n−1

` . As a result, uniformly over times t ∈ [0, T ], all the sums vanish.

Similarily, we have
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Lemma 2. For any loss C with BGOSS and σ ∈ C4
b (R), we have uniformly over [0, T ]

lim
nL−1→∞

· · · lim
n1→∞

Γ
(L)
k0,k1,k2,k3

(x0, x1, x2, x3) = 0

Proof. The proof is done by induction. When L = 1 the hessian HF (1) = 0, such that

Γ
(L)
k0,k1,k2,k3

(x0, x1, x2, x3) = 0.

For the induction step, Γ(`+1) can be defined recursively:

Γ
(L+1)
k0,k1,k2,k3

(x0, x1, x2, x3)

= n−2
L

∑
m0,m1,m2,m3

Γ(L)
m0,m1,m2,m3

(x0, x1, x2, x3)σ̇(α(L)
m0

(x0))σ̇(α(L)
m1

(x1))σ̇(α(L)
m2

(x2))σ̇(α(L)
m3

(x3))

W
(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

Θ(L)
m0,m1

(x0, x1)Ω(L)
m1,m2,m3

(x1, x2, x3)σ̇(α(L)
m0

(x0))σ̈(α(L)
m1

(x1))

σ̇(α(L)
m2

(x2))σ̇(α(L)
m3

(x3))W
(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

Ω(L)
m0,m1,m2

(x0, x1, x2)Θ(L)
m2,m3

(x2, x3)σ̇(α(L)
m0

(x0))σ̇(α(L)
m1

(x1))

σ̈(α(L)
m2

(x2))σ̇(α(L)
m3

(x3))W
(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

Θ(L)
m0,m1

(x0, x1)Θ(L)
m1,m2

(x1, x2)Θ(L)
m2,m3

(x2, x3)σ̇(α(L)
m0

(x0))σ̈(α(L)
m1

(x1))

σ̈(α(L)
m2

(x2))σ̇(α(L)
m3

(x3))W
(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m1,m2,m3

Ω(L)
m1,m2,m3

(x1, x2, x3)σ(α(L)
m1

(x0))σ̇(α(L)
m1

(x1))σ̇(α(L)
m2

(x2))σ̇(α(L)
m3

(x3))

δk0k1W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m1,m2,m3

Θ(L)
m1,m2

(x1, x2)Θ(L)
m2,m3

(x2, x3)σ(α(L)
m1

(x0))σ̇(α(L)
m1

(x1))σ̈(α(L)
m2

(x2))σ̇(α(L)
m3

(x3))

δk0k1W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2

Ω(L)
m0,m1,m2

(x0, x1, x2)σ̇(α(L)
m0

(x0))σ̇(α(L)
m1

(x1))σ̇(α(L)
m2

(x2))σ(α(L)
m2

(x3))

W
(L)
m0k0

W
(L)
m1k1

δk2k3

+n−2
L

∑
m0,m1,m2

Θ(L)
m0,m1

(x0, x1)Θ(L)
m1,m2

(x1, x2)σ̇(α(L)
m0

(x0))σ̈(α(L)
m1

(x1))σ̇(α(L)
m2

(x2))σ(α(L)
m2

(x3))

W
(L)
m0k0

W
(L)
m1k1

δk2k3

+ n−2
L

∑
m1,m2

Θ(L)
m1,m2

(x1, x2)σ(α(L)
m1

(x0))σ̇(α(L)
m1

(x1))σ̇(α(L)
m2

(x2))σ(α(L)
m2

(x3))δk0k1δk2k3

+n−2
L

∑
m0,m1,m3

Θ(L)
m0,m1

(x0, x1)Θ(L)
m1,m3

(x2, x3)σ̇(α(L)
m0

(x0))σ̇(α(L)
m1

(x1))σ̇(α(L)
m1

(x2))σ̇(α(L)
m3

(x3))

W
(L)
m0k0

δk1k2W
(L)
m3k3

As n1, ..., n`−1 →∞ and for any times t < T , the NTK Θ(`) converges to its limit while Ω(`)

and Γ(`) vanishes. Γ
(L+1)
k0,k1,k2,k3

(x0, x1, x2, x3) therefore converges to:

+n−2
L

∑
m

Θ(L)
∞ (x0, x1)Θ(L)

∞ (x1, x2)Θ(L)
∞ (x2, x3)σ̇(α(L)

m (x0))σ̈(α(L)
m (x1))σ̈(α(L)

m (x2))σ̇(α(L)
m (x3))

W
(L)
mk0

W
(L)
mk1

W
(L)
mk2

W
(L)
mk3
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+n−2
L

∑
m

Θ(L)
∞ (x1, x2)Θ(L)

∞ (x2, x3)σ(α(L)
m (x0))σ̇(α(L)

m (x1))σ̈(α(L)
m (x2))σ̇(α(L)

m (x3))

δk0k1W
(L)
mk2

W
(L)
mk3

+n−2
L

∑
m

Θ(L)
∞ (x0, x1)Θ(L)

∞ (x1, x2)σ̇(α(L)
m (x0))σ̈(α(L)

m (x1))σ̇(α(L)
m (x2))σ(α(L)

m (x3))

W
(L)
mk0

W
(L)
mk1

δk2k3

+n−2
L

∑
m

Θ(L)
∞ (x1, x2)σ(α(L)

m (x0))σ̇(α(L)
m (x1))σ̇(α(L)

m (x2))σ(α(L)
m (x3))δk0k1δk2k3

+n−2
L

∑
m

Θ(L)
∞ (x0, x1)Θ(L)

∞ (x2, x3)σ̇(α(L)
m (x0))σ̇(α(L)

m (x1))σ̇(α(L)
m (x2))σ̇(α(L)

m (x3))

W
(L)
mk0

δk1k2W
(L)
mk3

For the convergence during training, we proceed similarily to the proof of Lemma 1. At
initialization, all terms vanish as n` → ∞ because all summands are independent (after
taking the n1, . . . , nL−1 → ∞ limit) with zero mean and finite variance. During training,
the weights W (`) and preactivations α̃(`) move at a rate of 1/√n` which leads to a change of

order n
−2+1/2
` = n−1.5

` , which vanishes for all times t too.

C The Matrix S

We now have the theoretical tools to describe the moments of the matrix S. We first give a
bound for the rank of S:

Proposition 3. Rank(S) ≤ 2(n1 + ...+ nL−1)NnL

Proof. We first observe that S is given by a sum of NnL matrices:

Spp′ =

N∑
i=1

nL∑
k=1

∂ikC∂
2
θpθpfθ,k(xi).

It is therefore sufficiant to show that the rank of each matricesHfθ,k(x) =
(
∂2
θpθp′

fθ,k(xi)
)
p,p′

is bounded by 2(n1 + ...+ nL).

The derivatives ∂θpfθ,k(x) have different definition depending on whether the parameter θp

is a connection weight W
(`)
ij or a bias b

(`)
j :

∂
W

(`)
ij
fθ,k(x) =

1
√
n`
α

(`)
i (x; θ)∂

α̃
(`+1)
j (x;θ)

fθ,k(x)

∂
b
(`)
j
fθ,k(x) = β∂

α̃
(`+1)
j (x;θ)

fθ,k(x)

These formulas only depend on θ through the values
(
α

(`)
i (x; θ)

)
`,i

and
(
∂
α̃

(`)
i (x;θ)

fθ,k(x)
)
`,i

for ` = 1, ..., L−1 (note that both α
(0)
i (x) = xi and ∂

α̃
(L)
i (x;θ)

fθ,k(x) = δik do not depend on θ).

Together there are 2(n1 + ...+nL−1) of them. As a consequence, the map θ 7→
(
∂θpfθ,k(xi)

)
p

can be written as a composition

θ ∈ RP 7→
(
α

(`)
i (x; θ), ∂

α̃
(`)
i (x;θ)

fθ,k(x)
)
`,i
∈ R2(n1+...+nL−1) 7→

(
∂θpfθ,k(xi)

)
p
∈ RP

and the matrix Hfθ,k(x) is equal to the Jacobian of this map. By the chain rule, Hfθ,k(x)
is the matrix multiplication of the Jacobians of the two submaps, whose rank are bounded
by 2(n1 + ... + nL−1), hence bounding the rank of Hfθ,k(x). And because S is a sum
of NnL matrices of rank smaller than 2(n1 + ... + nL−1), the rank of S is bounded by
2(n1 + ...+ nL−1)NnL.
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C.1 Moments

Let us now prove Proposition 4:

Proposition 4. For any loss C with BGOSS and σ ∈ C4
b (R), the first two moments of S

take the form

Tr (S(t)) = G(t)T∇C(t)

Tr
(
S(t)2

)
= ∇C(t)T Υ̃(t)∇C(t)

- At initialization, gθ and fθ converge to a (centered) Gaussian pair with covariances

E[gθ,k(x)gθ,k′(x
′)] = δkk′Ξ

(L)
∞ (x, x′)

E[gθ,k(x)fθ,k′(x
′)] = δkk′Φ

(L)
∞ (x, x′)

E[fθ,k(x)fθ,k′(x
′)] = δkk′Σ

(L)
∞ (x, x′)

and during training gθ evolves according to

∂tgθ,k(x) =

N∑
i=1

Λ(L)
∞ (x, xi)∂ikC(Y (t))·

- Uniformly over any interval [0, T ] where
∫ T

0
‖∇C(t)‖2 dt is stochastically bounded, the kernel

Υ(L) has a deterministic and fixed limit limnL−1→∞ · · · limn1→∞Υ
(L)
kk′ (x, x

′) = δkk′Υ
(L)
∞ (x, x′)

with limiting kernel:

Υ(L)
∞ (x, x′) =

L−1∑
`=1

(
Θ(`)
∞ (x, x′)2Σ̈(`)(x, x′) + 2Θ(`)

∞ (x, x′)Σ̇(`)(x, x′)
)

Σ̇(`+1)(x, x′) · · · Σ̇(L−1)(x, x′).

- The higher moment k > 2 vanish: limnL−1→∞ · · · limn1→∞Tr
(
Sk
)

= 0.

Proof. The first moment of S takes the form

Tr (S) =
∑
p

(∇C)
T Hp,pY = (∇C)

T
G

where G is the restriction to the training set of the function gθ(x) =
∑
p ∂

2
θpθp

fθ(x). This

process is random at initialization and varies during training. Lemma 3 below shows that, in
the infinite width limit, it is a Gaussian process at initialization which then evolves according
to a simple differential equation, hence describing the evolution of the first moment during
training.

The second moment of S takes the form:

Tr(S2) =

P∑
p1,p2=1

N∑
i1,i2=1

∂2
θp1 ,θp2

fθ,k1(x1)∂2
θp2 ,θp1

fθ,k2(x2)c′i1(xi1)c′i2(xi2)

= (∇C)
T

Υ̃∇C

where Υ
(L)
k1,k2

(x1, x2) =
∑P
p1,p2=1 ∂

2
θp1 ,θp2

fθ,k1(x1)∂2
θp2 ,θp1

fθ,k2(x2) is a multidimensional ker-

nel and Υ̃ is its Gram matrix. Lemma 4 below shows that in the infinite-width limit,

Υ
(L)
k1,k2

(x1, x2) converges to a deterministic and time-independent limit Υ
(L)
∞ (x1, x2)δk1k2 .

To show that Tr(Sk) → 0 for all k > 2, it suffices to show that
∥∥S2

∥∥
F
→ 0 as

∣∣Tr(Sk)
∣∣ <∥∥S2

∥∥
F
‖S‖k−2

F and we know that ‖S‖F → (∂Y C)
T

Υ̃∂Y C is finite. We have that

∥∥S2
∥∥
F

=

N∑
i0,i1,i2,i3=1

nL∑
k0,k1,k2,k3=1

Ψ
(L)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3)∂fθ,k0 (xi0 )C∂fθ,k1 (xi1 )C
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∂fθ,k2 (xi2 )C∂fθ,k3 (xi3 )C

= Ψ̃ · (∂Y C)
⊗4

for Ψ̃ the NnL ×NnL ×NnL ×NnL finite version of

Ψ
(L)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) =

P∑
p0,p1,p2,p3=1

∂2
θp0 ,θp1

fθ,k0(x0)∂2
θp1 ,θp2

fθ,k1(x1)

∂2
θp2 ,θp3

fθ,k2(x2)∂2
θp3 ,θp0

fθ,k3(x3).

which vanishes in the infinite width limit by Lemma 5 below.

Lemma 3. For any loss C with BGOSS and σ ∈ C4
b (R), at initialization gθ and fθ converge

to a (centered) Gaussian pair with covariances

E[gθ,k(x)gθ,k′(x
′)] = δkk′Ξ

(L)
∞ (x, x′)

E[gθ,k(x)fθ,k′(x
′)] = δkk′Φ

(L)
∞ (x, x′)

E[fθ,k(x)fθ,k′(x
′)] = δkk′Σ

(L)
∞ (x, x′)

and during training gθ evolves according to

∂tgθ(x) =

N∑
i=1

Λ(L)
∞ (x, xi)Di(t)

Proof. When L = 1, gθ(x) is 0 for any x and θ.

For the inductive step, the trace g
(L+1)
θ,k (x) is defined recursively as

1
√
nL

nL∑
m=1

g
(L)
θ,m(x)σ̇

(
α̃(L)
m (x)

)
W

(L)
mk + Tr

(
∇fθ,m(x) (∇fθ,m(x))

T
)
σ̈
(
α̃(L)
m (x)

)
W

(L)
mk

First note that Tr
(
∇fθ,m(x) (∇fθ,m(x))

T
)

= Θ
(L)
mm(x, x). Now let n1, ...nL−1 →∞, by the

induction hypothesis, the pairs (g
(L)
θ,m, α̃

(L)
m ) converge to iid Gaussian pairs of processes with

covariance Φ
(L)
∞ at initialization.

At initialization, conditioned on the values of g
(L)
m , α̃

(L)
m the pairs (g

(L+1)
k , fθ) follow a centered

Gaussian distribution with (conditioned) covariance

E[g
(L+1)
θ,k (x)g

(L+1)
θ,k′ (x′)|g(L)

θ,m, α̃
(L)
m ] =

δkk′

nL

nL∑
m=1

(
g

(L)
θ,m(x)σ̇

(
α̃(L)
m (x)

)
+ Θ(L)

∞ (x, x)σ̈
(
α̃(L)
m (x)

))
(
g

(L)
θ,m(x′)σ̇

(
α̃(L)
m (x′)

)
+ Θ(L)

∞ (x′, x′)σ̈
(
α̃(L)
m (x′)

))
E[g

(L+1)
θ,k (x)fθ,k′(x

′)|g(L)
θ,m, α̃

(L)
m ] =

δkk′

nL

nL∑
m=1

(
g

(L)
θ,m(x)σ̇

(
α̃(L)
m (x)

)
+ Θ(L)

∞ (x, x)σ̈
(
α̃(L)
m (x)

))
σ
(
α̃(L)
m (x′)

)
E[fθ,k(x)fθ,k′(x

′)|g(L)
θ,m, α̃

(L)
m ] =

δkk′

nL

nL∑
m=1

σ
(
α̃(L)
m (x)

)
σ
(
α̃(L)
m (x′)

)
+ β2.

As nL → ∞, by the law of large number, these (random) covariances converge to their

expectations which are deterministic, hence the pairs (g
(L+1)
k , fθk) have asymptotically the

same Gaussian distribution independent of g
(L)
m , α̃

(L)
m :

E
[
g

(L)
θ,k (x)g

(L)
θ,k′(x

′)
]
→ δkk′Ξ

(L)
∞ (x, x′)
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E
[
g

(L)
θ,k (x)f

(L)
θ,k′(x

′)
]
→ δkk′Φ

(L)
∞ (x, x)

E
[
f

(L)
θ,k (x)f

(L)
θ,k′(x

′)
]
→ δkk′Σ

(L)
∞ (x, x)

with Ξ
(1)
∞ (x, x′) = Φ

(1)
∞ (x, x′) = 0 and

Ξ(L+1)
∞ (x, x′) = E [gg′σ̇(α)σ̇(α′)]

+ Θ(L)
∞ (x′, x′)E [gσ̇(α)σ̈(α′)]

+ Θ(L)
∞ (x, x)E [g′σ̇(α′)σ̈(α)]

+ Θ(L)
∞ (x, x)Θ(L)

∞ (x′, x′)E [σ̈(α′)σ̈(α)]

= Ξ(L)
∞ (x, x′)Σ̇(L)

∞ (x, x′) +
(

Φ(L)
∞ (x, x′)Φ(L)

∞ (x′, x) + Φ(L)
∞ (x, x)Φ(L)

∞ (x′, x′)
)

Σ̈(L)
∞ (x, x′)

+ Φ(L)
∞ (x, x′)Φ(L)

∞ (x′, x′)E [σ̇(α)
...
σ (α′)] + Φ(L)

∞ (x, x)Φ(L)
∞ (x′, x)E [

...
σ (α)σ̇(α′)]

+ Θ(L)
∞ (x′, x′)

(
Φ(L)
∞ (x, x)Σ̈(L)

∞ (x, x′) + Φ(L)
∞ (x, x′)E [σ̇(α)

...
σ (α′)]

)
+ Θ(L)

∞ (x, x)
(

Φ(L)
∞ (x′, x′)Σ̈(L)

∞ (x, x′) + Φ(L)
∞ (x′, x)E [

...
σ (α)σ̇(α′)]

)
+ Θ(L)

∞ (x, x)Θ(L)
∞ (x′, x′)Σ̈(L)

∞ (x, x′)

and

Φ(L+1)
∞ (x, x′) = E [gσ̇(α)σ(α′)] + Θ(L)

∞ (x, x)E [σ̈(α)σ(α′)]

= Φ(L)
∞ (x, x′)Σ̇(L+1)(x, x′) +

(
Φ(L)
∞ (x, x) + Θ(L)

∞ (x, x)
)
E [σ̈(α)σ(α′)]

where (g, g′, α, α′) is a Gaussian quadruple of covariance
Ξ

(L)
∞ (x, x) Ξ

(L)
∞ (x, x′) Φ

(L)
∞ (x, x) Φ

(L)
∞ (x, x′)

Ξ
(L)
∞ (x, x′) Ξ

(L)
∞ (x′, x′) Φ

(L)
∞ (x′, x) Φ

(L)
∞ (x′, x′)

Φ
(L)
∞ (x, x) Φ

(L)
∞ (x′, x) Σ

(L)
∞ (x, x) Σ

(L)
∞ (x, x′)

Φ
(L)
∞ (x, x′) Φ

(L)
∞ (x′, x′) Σ

(L)
∞ (x, x′) Σ

(L)
∞ (x′, x′)

 .

During training, the parameters follow the gradient ∂tθ(t) = (∂θY (t))
T
D(t). By the

induction hypothesis, the traces g
(L)
θ,m then evolve according to the differential equation

∂tg
(L)
θ,m(x) =

1
√
nL

N∑
i=1

nL∑
m=1

Λ
(L)
mm′(x, xi)σ̇(α̃

(L)
m′ (x))

(
W

(L)
m′

)T
Di(t)

and in the limit as n1, ..., nL−1 → ∞, the kernel Λ
(L)
mm′(x, xi) converges to a deterministic

and fixed limit δmm′Λ
(L)
∞ (x, xi). Note that as nL grows, the g

(L)
θ,m(x) move at a rate of 1/√nL

just like the pre-activations α̃
(L)
m . Even though they move less and less, together they affect

the trace g
(L+1)
θ,k which follows the differential equation

∂tg
(L+1)
θ,k (x) =

N∑
i=1

nL∑
k′=1

Λ
(L+1)
kk′ (x, xi)Dik′(t)

where

Λ
(L+1)
kk′ (x, x′) =

1

nL

∑
m,m′

Λ
(L)
mm′(x, x

′)σ̇
(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

∑
m,m′

g
(L)
θ,m(x)Θ

(L)
mm′(x, x

′)σ̈
(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

∑
m

g
(L)
θ,m(x)σ̇

(
α̃(L)
m (x)

)
σ
(
α̃(L)
m (x′)

)
δkk′
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+
2

nL

∑
m,m′

Ω
(L)
m′mm(x′, x, x)σ̈

(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

∑
m,m′

Θ(L)
mm(x, x)Θ

(L)
mm′(x, x

′)
...
σ
(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

∑
m

Θ(L)
mm(x, x)σ̈

(
α̃(L)
m (x)

)
σ
(
α̃(L)
m (x′)

)
δkk′ .

As n1, ..., nL−1 →∞, the kernels Θ
(L)
mm′(x, x

′) and Λ
(L)
mm′(x, x

′) converge to their limit and

Ω
(L)
m′mm(x′, x, x) vanishes:

Λ
(L)
kk′ (x, x

′)→ 1

nL

∑
m

Λ(L)
∞ (x, x′)σ̇

(
α̃(L)
m (x)

)
σ̇
(
α̃(L)
m (x′)

)
W

(L)
mkW

(L)
mk′

+
1

nL

∑
m

g
(L)
θ,m(x)Θ(L)

∞ (x, x′)σ̈
(
α̃(L)
m (x)

)
σ̇
(
α̃(L)
m (x′)

)
W

(L)
mkW

(L)
mk′

+
1

nL

∑
m

g
(L)
θ,m(x)σ̇

(
α̃(L)
m (x)

)
σ
(
α̃(L)
m (x′)

)
δkk′

+
1

nL

∑
m

Θ(L)
∞ (x, x)Θ(L)

∞ (x, x′)
...
σ
(
α̃(L)
m (x)

)
σ̇
(
α̃(L)
m (x′)

)
W

(L)
mkW

(L)
mk′

+
1

nL

∑
m

Θ(L)
∞ (x, x)σ̈

(
α̃(L)
m (x)

)
σ
(
α̃(L)
m (x′)

)
δkk′

By the law of large numbers, as nL →∞, at initialization Λ
(L+1)
kk′ (x, x′)→ δkk′Λ

(L+1)
∞ (x, x′)

where

Λ(L+1)
∞ (x, x′) = Λ(L)

∞ (x, x′)Σ̇(L+1)
∞ (x, x′)

+ Θ(L)
∞ (x, x′)E [gσ̈ (α) σ̇ (α′)]

+ E [gσ̇ (α)σ (α′)]

+ Θ(L)
∞ (x, x)Θ(L)

∞ (x, x′)E [
...
σ (α) σ̇ (α′)]

+ Θ(L)
∞ (x, x)E [σ̈ (α)σ (α′)]

= Λ(L)
∞ (x, x′)Σ̇(L+1)

∞ (x, x′)

+ Θ(L)
∞ (x, x′)

(
Φ(L)
∞ (x, x′)Σ̈(L+1)

∞ (x, x′) + Φ(L)
∞ (x, x)E [

...
σ (α) σ̇ (α′)]

)
+ Φ(L)

∞ (x, x′)Σ̇(L+1)
∞ (x, x′) + Φ(L)

∞ (x, x)E [σ̈ (α)σ (α′)]

+ Θ(L)
∞ (x, x)Θ(L)

∞ (x, x′)E [
...
σ (α) σ̇ (α′)]

+ Θ(L)
∞ (x, x)E [σ̈ (α) σ̇ (α′)]

During training Θ
(L)
∞ and Λ

(L)
∞ are fixed in the limit n1, .., nL−1 → ∞, and the values

g
(L)
θ,m(x), α̃

(L)
m (x) and W

(L)
mk vary at a rate of 1/√nL which induce a change of the same rate

to Λ
(L)
kk′ (x, x

′), which is therefore asymptotically fixed during training as nL →∞.

The next lemma describes the asymptotic limit of the kernel Υ(L):

Lemma 4. For any loss C with BGOSS and σ ∈ C4
b (R), the second moment of the

Hessian of the realization function HF (L) converges uniformly over [0, T ] to a fixed limit as
n1, ...nL−1 →∞

Υ
(L)
kk′ (x, x

′)→ δkk′
L−1∑
`=1

(
Θ(`)
∞ (x, x′)2Σ̈(`)

∞ (x, x′) + 2Θ(`)
∞ (x, x′)Σ̇(`)

∞ (x, x′)
)

Σ̇(`+1)
∞ (x, x′) · · · Σ̇(L−1)

∞ (x, x′).
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Proof. The proof is by induction on the depth L. The case L = 1 is trivially true because
∂2
θpθp′

fθ,k(x) = 0 for all p, p′, k, x. For the induction step we observe that

Υ
(L)
k,k′(x, x

′)

=

P∑
p1,p2=1

∂2
θp1 ,θp2

fθ,k(x)∂2
θp2 ,θp1

fθ,k′(x
′)

=
1

nL

nL∑
m,m′=1

Υ
(L)
m,m′(x, x

′)σ̇
(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

nL∑
m,m′=1

Ω
(L)
m′,m,m′(x

′, x, x′)σ̇
(
α̃(L)
m (x)

)
σ̈
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

nL∑
m,m′=1

Ω
(L)
m,m′,m(x, x′, x)σ̈

(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
1

nL

nL∑
m,m′=1

Θ
(L)
m,m′(x, x

′)Θ
(L)
m′,m(x′, x)σ̈

(
α̃(L)
m (x)

)
σ̈
(
α̃

(L)
m′ (x′)

)
W

(L)
mkW

(L)
m′k′

+
2

nL

nL∑
m=1

Θ
(L)
m,m′(x, x

′)σ̇
(
α̃(L)
m (x)

)
σ̇
(
α̃

(L)
m′ (x′)

)
δkk′

if we now let the width of the lower layers grow to infinity n1, ...nL−1 →∞, the tensor Ω(L)

vanishes and Υ
(L)
m,m′ and the NTK Θ

(L)
m,m′ converge to limits which are non-zero only when

m = m′. As a result, the term above converges to

1

nL

nL∑
m=1

Υ(L)
∞ (x, x′)σ̇

(
α̃(L)
m (x)

)
σ̇
(
α̃(L)
m (x′)

)
W

(L)
mkW

(L)
mk′

+
1

nL

nL∑
m=1

Θ(L)
∞ (x, x′)2σ̈

(
α̃(L)
m (x)

)
σ̈
(
α̃(L)
m (x′)

)
W

(L)
mkW

(L)
mk′

+
2

nL

nL∑
m=1

Θ(L)
∞ (x, x′)σ̇

(
α̃(L)
m (x)

)
σ̇
(
α̃(L)
m (x′)

)
δkk′

At initialization, we can apply the law of large numbers as nL →∞ such that it converges

to Υ
(L+1)
∞ (x, x′)δkk′ , for the kernel Υ

(L+1)
∞ (x, x′) defined recursively by

Υ(L+1)
∞ (x, x′) =Υ(L)

∞ (x, x′)Σ̇(L)
∞ (x, x′) + Θ(L)

∞ (x, x′)2Σ̈(L)
∞ (x, x′) + 2Θ(L)

∞ (x, x′)Σ̇(L)
∞ (x, x′)

and Υ
(1)
∞ (x, x′) = 0.

For the convergence during training, we proceed similarily to the proof of Lemma 1: the

activations α̃
(L)
m (x) and weights W

(L)
mk move at a rate of 1/√nL and the change to Υ

(L+1)
kk′ is

therefore of order 1/√nL and vanishes as nL → 0.

Finally, the next lemma shows the vanishing of the tensor Ψ
(L)
k0,k1,k2,k3

to prove that the
higher moments of S vanish.

Lemma 5. For any loss C with BGOSS and σ ∈ C4
b (R), uniformly over [0, T ]

lim
nL−1→∞

· · · lim
n1→∞

Ψ
(L)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) = 0

Proof. When L = 1 the Hessian is zero and Ψ
(1)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) = 0.

For the induction step, we write Ψ
(L+1)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) recursively, because

it contains many terms, we change the notation, writing

[
x0 x1

m0 m1

]
for
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Θ
(L)
m0,m1(x0, x1),

[
x0 x1 x2

m0 m1 m2

]
for Ω

(L)
m0,m1,m2(x0, x1, x2) and

[
x0 x1 x2 x3

m0 m1 m2 m3

]
for Γ

(L)
m0,m1,m2,m3(x0, x1, x2, x3). The value Ψ

(L+1)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) is then equal to

n−2
L

∑
m0,m1,m2,m3

Ψ(L)
m0,m1,m2,m3

(x0, x1, x2, x3)σ̇
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m1

(x1)
)
σ̇
(
α̃(L)
m2

(x2)
)

σ̇
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1

m0 m1

] [
x1 x2

m1 m2

] [
x2 x3

m2 m3

] [
x3 x0

m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)

σ̈
(
α̃(L)
m1

(x1)
)
σ̈
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1 x2

m0 m1 m2

] [
x2 x3

m2 m3

] [
x3 x0

m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1

m0 m1

] [
x1 x2 x3

m1 m2 m3

] [
x3 x0

m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̇
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1

m0 m1

] [
x1 x2

m1 m2

] [
x2 x3 x0

m2 m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x1 x2

m1 m2

] [
x2 x3

m2 m3

] [
x3 x0 x1

m3 m0 m1

]
σ̇
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1 x2

m0 m1 m2

] [
x2 x3 x0

m2 m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x1 x2 x3

m1 m2 m3

] [
x3 x0 x1

m3 m0 m1

]
σ̇
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̇
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1 x2 x3

m0 m1 m2 m3

] [
x3 x0

m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m1

(x1)
)

σ̇
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x0 x1

m0 m1

] [
x1 x2 x3 x0

m1 m2 m3 m0

]
σ̈
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̇
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m0,m1,m2,m3

[
x1 x2

m1 m2

] [
x2 x3 x0 x1

m2 m3 m0 m1

]
σ̇
(
α̃(L)
m0

(x0)
)
σ̈
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3
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+n−2
L

∑
m0,m1,m2,m3

[
x2 x3

m2 m3

] [
x3 x0 x1 x2

m3 m0 m1 m2

]
σ̇
(
α̃(L)
m0

(x0)
)
σ̇
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̈
(
α̃(L)
m3

(x3)
)
W

(L)
m0k0

W
(L)
m1k1

W
(L)
m2k2

W
(L)
m3k3

+n−2
L

∑
m,m1,m2

[
x0 x1

m m1

] [
x1 x2

m1 m2

] [
x2 x3

m2 m

]
σ̇
(
α̃(L)
m (x0)

)
σ̈
(
α̃(L)
m1

(x1)
)

σ̈
(
α̃(L)
m2

(x2)
)
σ̇
(
α̃(L)
m (x3)

)
W

(L)
m1k1

W
(L)
m2k2

δk0k3

+n−2
L

∑
m,m2,m3

[
x1 x2
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m2 m3
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]
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(
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σ̇
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m m3
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x3 x0
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(
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m0

(x0)
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σ̇
(
α̃(L)
m (x1)
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σ̇
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α̃(L)
m (x2)
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m3
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(L)
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(L)
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x0 x1
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x3 x0

m m0
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α̃(L)
m0
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)
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α̃(L)
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(x1)
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m (x1)
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(
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)
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W
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] [
x2 x3 x0

m2 m3 m

]
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(
α̃(L)
m (x0)

)
σ̇
(
α̃(L)
m (x1)
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(
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(x2)
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σ̇
(
α̃(L)
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)
W
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W
(L)
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x2 x3
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(
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m0
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σ̇
(
α̃(L)
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σ̇
(
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(
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)
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W
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+n−2
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∑
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x0 x1 x2
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x3 x0

m m0
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(x0)
)
σ̇
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m1
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W
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W
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+n−2
L

∑
m,m′

[
x0 x1

m m′
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x2 x3

m′ m

]
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(
α̃(L)
m (x0)

)
σ̇
(
α̃

(L)
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(
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(L)
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(
α̃(L)
m (x3)
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m m′
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m (x0)
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σ̇
(
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m (x1)
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(
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(L)
m′ (x2)
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σ̇
(
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(L)
m′ (x3)

)
δk0k3δk1k2

Even though this is a very large formula one can notice that most terms are “rotation of
each other”. Moreover, as n1, ..., nL−1 →∞, all terms containing either an Ψ(L), an Ω(L) or
a Γ(L) vanish. For the remaining terms, we may replace the NTKs Θ(L) by their limit and

as a result Ψ
(L+1)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) converges to

n−2
L

∑
m

Θ(L)
∞ (x0, x1)Θ(L)

∞ (x1, x2)Θ(L)
∞ (x2, x3)Θ(L)
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(
α̃(L)
m (x0)
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α̃(L)
m (x1)
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α̃(L)
m (x2)
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W

(L)
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W
(L)
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W
(L)
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W
(L)
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W
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W
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+n−2
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+n−2
L

∑
m

Θ(L)
∞ (x0, x1)Θ(L)

∞ (x2, x3)σ̇
(
α̃(L)
m (x0)

)
σ̇
(
α̃(L)
m (x1)

)
σ̇
(
α̃(L)
m (x2)

)
σ̇
(
α̃(L)
m (x3)

)
δk0k1δk2k3

+n−2
L

∑
m

Θ(L)
∞ (x1, x2)Θ(L)

∞ (x3, x0)σ̇
(
α̃(L)
m (x0)

)
σ̇
(
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)
σ̇
(
α̃(L)
m (x2)

)
σ̇
(
α̃(L)
m (x3)

)
δk0k3δk1k2

And all these sums vanish as nL →∞ thanks to the prefactor n−2
L , proving the vanishing of

Ψ
(L+1)
k0,k1,k2,k3

(xi0 , xi1 , xi2 , xi3) in the infinite width limit.

During training, the activations α̃
(L)
m (x) and weights W

(L)
mk move at a rate of 1/√nL which

induces a change to Ψ(L+1) of order n
−3/2
L which vanishes in the infinite width limit.

D Orthogonality of I and S

From Lemma 2 and the vanishing of the tensor Γ(L) as proven in Lemma 2, we can easily
prove the orthogonality of I and S of Proposition 5:

Proposition 5. For any loss C with BGOSS and σ ∈ C4
b (R), we have uniformly over [0, T ]

lim
nL−1→∞

· · · lim
n1→∞

‖IS‖F = 0.

As a consequence limnL−1→∞ · · · limn1→∞Tr
(

[I + S]
k
)
−
[
Tr
(
Ik
)

+ Tr
(
Sk
)]

= 0.

Proof. The Frobenius norm of IS is equal to

‖IS‖2F =
∥∥∥DYHC (DY )

T
(∇C · HY )

∥∥∥2

F

=

P∑
p1,p2=1

 P∑
p=1

N∑
i1,i2=1

nL∑
k1,k2=1

∂θp1 fθ,k1(xi1)c′′k1(xi1)∂θpfθ,k1(xi1)∂2
θp,θp3

fθ,k2(x2)(xi2)c′k2(xi2)

2

=

N∑
i1,i2,i′1,i

′
2=1

nL∑
k1,k2,k′1,k

′
2=1

c′′k1(xi1)c′′k′1(xi′1)c′k2(xi2)c′k′2(xi′2)Θk1,k′1
(xi1 , xi′1)Γk1,k2,k′2,k′1(xi1 , xi2 , xi′2 , xi′1)

and Γ vanishes as n1, ..., nL−1 →∞ by Lemma 2.

The k-th moment of the sum Tr (I + S)
k

is equal to the sum over all Tr (A1 · · ·Ak) for any

word A1 . . . Ak of Ai ∈ {I, S}. The difference Tr
(

[I + S]
k
)
−
[
Tr
(
Ik
)

+ Tr
(
Sk
)]

is hence

equal to the sum over all mixed words, i.e. words A1 . . . Ak which contain at least one I and
one S. Such words must contain two consecutive terms AmAm+1 one equal to I and the
other equal to S. We can then bound the trace by

|Tr (A1 · · ·Ak)| ≤ ‖A1‖F · · · ‖Am−1‖F ‖AmAm+1‖F ‖Am+2‖F · · · ‖Ak‖F
which vanishes in the infinite width limit because ‖I‖F and ‖S‖F are bounded and
‖AmAm+1‖F = ‖IS‖F vanishes.
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