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ABSTRACT

There are great interests as well as many challenges in applying reinforcement
learning (RL) to recommendation systems. In this setting, an online user is
the environment; neither the reward function nor the environment dynamics
are clearly defined, making the application of RL challenging. In this
paper, we propose a novel model-based reinforcement learning framework for
recommendation systems, where we develop a generative adversarial network
to imitate user behavior dynamics and learn her reward function. Using this
user model as the simulation environment, we develop a novel DQN algorithm
to obtain a combinatorial recommendation policy which can handle a large
number of candidate items efficiently. In our experiments with real data, we
show this generative adversarial user model can better explain user behavior than
alternatives, and the RL policy based on this model can lead to a better long-term
reward for the user and higher click rate for the system.

1 INTRODUCTION

Recommendation systems have become a crucial part of almost all online service platforms. A
typical interaction between the system and its users is — users are recommended a page of items
and they provide feedback, and then the system recommends a new page of items. A common
way of building recommendation systems is to estimate a model which minimizes the discrepancy
between the model prediction and the immediate user response according to some loss function. In
other words, these models do not explicitly take into account the long-term user interest. However,
user’s interest can evolve over time based on what she observes, and the recommender’s action may
significantly influence such evolution. In some sense, the recommender is guiding users’ interest by
displaying particular items and hiding the rest. Thus, a recommendation strategy which takes users’
long-term interest into account is more favorable.

Reinforcement learning (RL) is a learning paradigm where a policy will be obtained to guide
the actions in an environment so as to maximize the expected long-term reward. Although RL
framework has been successfully applied to many game settings, such as Atari (Mnih et al., 2015)
and GO (Silver et al., 2016), it met a few challenges in the recommendation system setting because
the environment will correspond to the logged online user.

First, a user’s interest (reward function) driving her behavior is typically unknown, yet it is critically
important for the use of RL algorithms. In existing RL algorithms for recommendation systems, the
reward functions are manually designed (e.g. ±1 for click/no-click) which may not reflect a user’s
preference over different items (Zhao et al., 2018a; Zheng et al., 2018).

Second, model-free RL typically requires lots of interactions with the environment in order to learn
a good policy. This is impractical in the recommendation system setting. An online user will quickly
abandon the service if the recommendation looks random and do not meet her interests. Thus, to
avoid the large sample complexity of the model-free approach, a model-based RL approach is more
preferable. In a related but a different setting where one wants to train a robot policy, recent works
showed that model-based RL is much more sample efficient (Nagabandi et al., 2017; Deisenroth
et al., 2015; Clavera et al., 2018). The advantage of model-based approaches is that potentially
large amount of off-policy data can be pooled and used to learn a good environment dynamics
model, whereas model-free approaches can only use expensive on-policy data for learning. However,
previous model-based approaches are typically designed based on physics or Gaussian processes,
and not tailored for complex sequences of user behaviors.
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To address the above challenges, we propose a novel model-based RL framework for
recommendation systems, where a user behavior model and the associated reward function are
learned in unified minimax framework, and then RL policies are learned using this model. Our
main technical innovations are:

1. We develop a generative adversarial learning (GAN) formulation to model user behavior
dynamics and recover her reward function. These two components are estimated
simultaneously via a joint mini-max optimization algorithm. The benefits of our
formulation are: (i) a more predictive user model can be obtained, and the reward function
are learned in a consistent way with the user model; (ii) the learned reward allows later
reinforcement learning to be carried out in a more principled way, rather than relying on
manually designed reward; (ii) the learned user model allows us to perform model-based
RL and online adaptation for new users to achieve better results.

2. Using this model as the simulation environment, we also develop a cascading DQN
algorithm to obtain a combinatorial recommendation policy. The cascading design of
action-value function allows us to find the best subset of items to display from a large
pool of candidates with time complexity only linear in the number of candidates.

In our experiments with real data, we showed that this generative adversarial model is a better fit to
user behavior in terms of held-out likelihood and click prediction. Based on the learned user model
and reward, we show that the estimated recommendation policy leads to better cumulative long-term
reward for the user. Furthermore, in the case of model mismatch, our model-based policy can also
quickly adapt to the new dynamics with a much fewer number of user interactions compared to
model-free approaches.

2 RELATED WORK

Commonly used recommendation algorithms typically use a simple user model. For instance,
Wide&Deep networks (Cheng et al., 2016) and other methods such as xgboost (Chen & Guestrin,
2016) and DFM (Guo et al., 2017) based on logistic regression essentially assume a user chooses
each item independently; Collaborative competitive filtering (Yang et al., 2011) takes into account
the context where a user makes her choice but assumes that user’s behaviors in each page view
are independent. Session-based RNN (Hidasi et al., 2016) and session-based KNN (Jannach &
Ludewig, 2017) improve upon previous approaches by modeling users’ history, but this model does
not recover a users’ reward function and can not be used subsequently for reinforcement learning.
Bandit based approaches, such as LinUCB (Li et al., 2010), can deal with adversarial user behaviors,
but the reward is updated in a Bayesian framework and can not be directly used by a reinforcement
learning framework.

Zhao et al. (2018b;a); Zheng et al. (2018) used model-free RL for recommender systems, which
may require many user interactions and the reward function is manually designed. Model-based
reinforcement learning has been commonly used in robotics applications and resulted in reduced
sample complexity to obtain a good policy (Deisenroth et al., 2015; Nagabandi et al., 2017; Clavera
et al., 2018). However, these approaches can not be used in the recommendation setting, as a user
behavior model typically consists of sequences of discrete choices under a complex session context.

3 SETTING AND RL FORMULATION

We will focus on a simple yet typical setting where the recommendation system and its user interact
as follows: a user is displayed to a page of k items and she provides feedback by clicking on
one or none of these items, and then the system recommends a new page of k items. Our model
can be extended to settings with more complex page views and user interactions, but these settings
are left for future studies.

Since reinforcement learning can take into account long-term reward, it holds the promise to improve
users’ long-term engagement with an online platform. In the RL framework, a recommendation
system wants to find a policy π(s, I) to choose a set I of k items based on user state s, such that
the long-term expected reward to the user is maximized, i.e.

π∗ = arg max
π(st,It)

E
[ ∞∑
t=0

γtr(st, at)
]
, where s0 ∼ p0, At ∼ π(st, It), st+1 ∼ P (·|st,At), at ∈ At, (1)

where several key aspects of this RL framework are as follows:
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(1) Environment: will correspond to a logged online user who can click on one of the k items
displayed by the recommendation system in each page view (or interaction);
(2) State st ∈ S: will correspond to an ordered sequence of a user’s historical clicks;
(3) Action At ∈

(It
k

)
of the recommender: will correspond to a subset of k items chosen by the

recommender from It to display to the user.
(It
k

)
means the set of all subsets of k items of It.

It ⊂ I is the subset of available items to recommend at time t among all items I.
(4) State Transition P (·|st,At) : S ×

(I
k

)
7→ P(S): will correspond to a user behavior model which

returns the transition probability for st+1 given previous state st and the set of items At displayed
by the system. It is equivalent to the distribution φ(st,At) over a user’s actions, which is defined in
our user model in section 4.1.
(5) Reward Function r(st,At, at) : S ×

(I
k

)
× I 7→ R: will correspond to a user’s utility or

satisfaction after making her choice at ∈ At in state st. Here we assume that the reward to the
recommendation system is the same as the user’s utility. Thus, a recommendation algorithm which
optimizes its long-term reward is designed to satisfy the user in a long run. One can also include the
company’s benefit to the reward, but in this paper we will focus on users’ satisfaction.
(6) Policy At ∼ π(st, It) : S × 2I 7→ P(

(I
k

)
): will correspond to a recommendation strategy which

takes a user’s state st and returns the probability of displaying a subset At of It.

Remark. We note that in the above mapping, Environment, State and State Transition are associated
with the user, the Action and Policy are associated with the recommendation system, and the Reward
Function is associated with both the recommendation system and the user. Here we use the notation
r(st,At, at) to emphasize the dependency of the reward on the recommendation action, as the user
can only choose from the display set. However, the value of the reward is actually determined by
the user’s state and the clicked item once the item occurs in the display set At. In fact, r(st,At, at)=
r(st, at) · 1(at ∈ At). Thus, in section 4.1 where we discuss the user model, we simply denote
r(st, at)= r(st,At, at) and assume at ∈ At is true. The overall RL framework for recommendation
is illustrated in Figure 1.

available articles

…

: user’s past choicesstate

user’s choicedisplay set

state updated

system

reward

user
Figure 1: Illustration of the interaction between a user and the recommendation system. Green arrows
represent the recommender information flow and orange arrows represent user’s information flow.

Since both the reward function and the state transition model are not provided, we need to learn
them from data. Once these quantities are learned, the optimal policy π∗ in Eq. (1) can be estimated
by repeated querying to the model using algorithms such as Q-learning (Watkins, 1989). In the next
two sections, we will explain our formulation for estimating the user behavior model as well as the
reward function and design an efficient algorithm for learning the RL policy for the recommendation.

4 GENERATIVE ADVERSARIAL USER MODEL

In this section, we propose a model to imitate users’ sequential choices and discuss its
parameterization and estimation. The formulation of our user model is inspired by imitation
learning, which is a powerful tool for learning sequential decision-making policies from expert
demonstrations (Abbeel & Ng, 2004; Ho et al., 2016; Ho & Ermon, 2016; Torabi et al., 2018) We
will formulate a unified mini-max optimization to learn user behavior model and reward function
simultaneously based on sample trajectories.

4.1 USER BEHAVIOR AS REWARD MAXIMIZATION

We model user behavior based on two realistic assumptions. (i) Users are not passive. Instead, when
a user is displayed to a set of k items, she will make a choice to maximize her own reward. The
reward r measures how much she will be satisfied with or interested in an item. Alternatively, the
user can choose not to click on any items. Then she will receive the reward of not wasting time on
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boring items. (ii) The reward depends not only on the selected item but also on the user’s history. For
example, a user may not be interested in Taylor Swift’s song at the beginning, but once she happens
to listen to it, she may like it and then becomes interested in her other songs. Also, a user can get
bored after listening to Taylor Swift’s songs repeatedly. In other words, a user’s evaluation of the
items varies in accordance with her personal experience.

To formalize the model, we consider both the clicked item and the state of the user as the inputs to
the reward function r(st, at), where the clicked item is the user’s action at and the user’s history is
captured in her state st (non-click is treated as a special item/action). Suppose in session t, the user
is presented with a set of k items At = {a1, · · · , ak} and their associated features {f t1, · · · ,f tk} by
the recommendation system. She will take an action at ∈ At according to a strategy φ∗ which can
maximize her expected reward. More specially, this strategy is a probability distribution over the set
of candidate actions At, which is the result of the following optimization problem

User Model: φ∗(st,At) = arg max
φ∈∆k−1

Eφ
[
r(st, at)

]
−R(φ)/η, (2)

where ∆k−1 is the probability simplex, and R(φ) is a convex regularization function to encourage
exploration, and η controls the strength of the regularization.

Model Interpretion. A widely used regularization is the negative Shannon entropy, with which
we can obtain an interpretation of our user model from the perspective of exploration-exploitation
trade-off (See Appendix A for a proof).

Lemma 1. Let the regularization term in Eq. (2) be R(φ) =
∑k
i=1 φi log φi and φ ∈ ∆k−1 is

allowed to be arbitrary mappings. Then the optimal solution φ∗ for the problem in Eq. (2) has a
closed form

φ∗(st,At)i = exp(ηr(st, ai))/
∑
aj∈At exp(ηr(st, aj)). (3)

Furthermore, in each session t, the user’s decision according to her optimal policy φ∗ is equivalent
to the following discrete choice model where εt follows a Gumbel distribution.

at = arg max
a∈At

η r(st, a) + εt. (4)

Essentially, this lemma makes it clear that the user greedily picks an item according to the reward
function (exploitation), and yet the Gumbel noise εt allows the user to deviate and explore other
less rewarding items. Similar models have also appeared in the econometric choice model (Manski,
1975; McFadden, 1973), but previous econometric models did not take into account diverse features
and user state evolution. The regularization parameter η is revealed to be an exploration-exploitation
trade-off parameter. It can be easily seen that with a smaller η, the user is more exploratory. Thus,
η reveals a part of users’ character. In practice, we simply set the value η = 1 in our experiments,
since it is implicitly learned in the reward r, which is a function of various features of a user.

Remark. (i) Other regularization R(φ) can also be used in our framework, which may induce
different user behaviors. In these cases, the relations between φ∗ and r are also different, and may
not appear in the closed form. (ii) The case where the user does not click any items can be regarded
as a special item which is always in the display setAt. It can be defined as an item with zero feature
vector, or, alternatively, its reward value can be defined as a constant to be learned.

4.2 MODEL PARAMETERIZATION

In this section, we will define the state st as an embedding of the historical sequence of items clicked
by the user before session t, and then we will define the reward function r(st, at) based on the state
and the embedding of the current action at.

First, we will define the state of the user as st := h(F 1:t−1
∗ := [f1

∗ , · · · ,f t−1
∗ ]), where each fτ∗ ∈

Rd is the feature vector of the clicked item at session τ and h(·) is an embedding function. One can
also define a truncated M -step sequence as F t−m:t−1

∗ := [f t−m∗ , · · · ,f t−1
∗ ]. For the state embedding

function h(·), we propose a simple and effective position weighting scheme. Let W ∈ Rm×n be
a matrix where the number of rows m corresponds to a fixed number of historical steps, and each
of the n columns corresponds to one set of importance weights on positions. Then the embedding
function h can be designed as

st = h(F t−m:t−1
∗ ) := vec

[
σ
(
F t−m:t−1
∗ W + B

) ]
∈ Rdn×1, (5)

where B ∈ Rd×n is a bias matrix, and σ(·) is a nonlinear activation function such as ReLU and
ELU, and vec[·] turns the input matrix into a long vector by concatenating the matrix columns.
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Alternatively, one can also use an LSTM to capture the history. However, the advantage of the
position weighting parameterization is that the history embedding is obtained by a shallow network
which is more efficient for forward-computation and gradient backpropagation than RNN.
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Figure 2: Architecture of our models parameterized by either position weight (PW) or LSTM.

Next, we define the reward function and the user behavior model. A user’s choice at ∈ At
corresponds to an item with feature f tat . Thus we will use f tat as the surrogate for at and
parameterize the reward function and user behavior model as

r(st, at) := v>σ
(
V

[
st

f tat

]
+ b

)
and φ(s,At) ∝ exp

(
v′
>
σ
(
V ′
[
st

f tat

]
+ b′

))
, (6)

where V ,V ′ ∈ R`×(dn+d) are weight matrices, b, b′ ∈ R1×(dn+d) are bias vectors , and v,v′ ∈ R` are
the final regression parameters. See Figure 2 for an illustration of the overall parameterization. For
simplicity of notation, we will denote the set of all parameters in the reward function as θ and the
set of all parameters in the user model as α, and hence the notation rθ and φα respectively.

4.3 GENERATIVE ADVERSARIAL TRAINING

In practice, both the user reward function r(st, at) and the behavior model φ(st,At) are unknown
and need to be estimated from the data. The behavior model φ tries to mimic the action sequences
provided by a real user who acts to maximize her reward function r. In analogy to generative
adversarial networks, (i) φ acts as a generator which generates the user’s next action based on her
history, and (ii) r acts as a discriminator which tries to differentiate the user’s actual actions from
those generated by the behavior model φ. Thus, inspired by the GAN framework, we estimate φ and
r simultaneously via a mini-max formulation.

More precisely, given a trajectory of T observed actions {a1
true, a

2
true, . . . , a

T
true} of a user and the

corresponding clicked item features {f1
∗ ,f

2
∗ , . . . ,f

T
∗ }, we learn the user behavior model and reward

function jointly by solving the following mini-max optimization

min
θ

max
α

(
Eφα

[∑T
t=1rθ(s

t
true, a

t)
]
−R(φα)/η

)
−
∑T
t=1rθ(s

t
true, a

t
true), (7)

where we use sttrue to emphasize that this is observed in the data. From the above optimization, one
can see that the learned reward function rθ will extract some statistics from both real user actions
and model user actions, and try to magnify their difference (or make their negative gap larger). In
contrast, the learned user behavior model will try to make the difference smaller, and hence more
similar to the real user behavior. Alternatively, the mini-max optimization can also be interpreted as
a game between an adversary and a learner where the adversary tries to minimize the reward of the
learner by adjusting rθ, while the learner tries to maximize its reward by adjusting φα to counteract
the adversarial moves. This gives the user behavior training process a large-margin training flavor,
where we want to learn the best model even for the worst scenario.

For general regularization function R(φα), the mini-max optimization problem in Eq. (7) does not
have a closed form, and typically needs to be solved by alternatively updating φα and rθ, e.g.α← α+ γ1∇αEφα

[∑T
t=1 rθ(s

t
true, a

t)
]
− γ1∇αR(φα)/η;

θ ← θ − γ2Eφα
[∑T

t=1∇θrθ(s
t
true, a

t)
]

+ γ2

∑T
t=1∇θrθ(s

t
true, a

t
true).

(8)

The process may be unstable due to the non-convexity nature of the problem. To stabilize the
training process, we will leverage a special regularization for initializing the training process.
More specifically, for entropy regularization, we can obtain a closed form solution to the
inner-maximization for user behavior model, which makes the learning of reward function easy
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(See lemma 2 below and Appendix A for a proof). Once the reward function is learned for entropy
regularization, it can be used to initialize the learning in the case of other regularization functions
which may induce different user behavior models and final rewards.

Lemma 2. Consider the case where regularization in Eq. (7) is defined as R(φ) =
∑k
i=1 φi log φi

and Φ includes all mappings from S ×
(I
k

)
to ∆k−1. Then the optimization problem in Eq. (7) is

equivalent to the following maximum likelihood estimation

max
θ∈Θ

T∏
t=1

exp(ηrθ(s
t
true, a

t
true))∑

at∈At exp(ηrθ(sttrue, a
t))
. (9)

5 CASCADING Q-NETWORKS FOR RL RECOMMENDATION POLICY

Using the estimated user behavior model φ and the corresponding reward function r as the
simulation environment, we can then use reinforcement learning to obtain a recommendation
policy. Note that the recommendation policy needs to deal with a combinatorial action space(I
k

)
, where each action is a subset of k items chosen from a larger set I of K candidates. Two

challenges associated with this problem include the potentially high computational complexity of
the combinatorial action space and the development of a framework for estimating the long-term
reward (the Q function) from a combination of items. Our contribution is designing a novel cascade
of Q-networks to handle the combinatorial action space. We can also design an algorithm to estimate
this cascade of Q-networks from interaction with the environment.

5.1 CASCADING Q-NETWORKS

We assume that each time when a user visits the online platform, the recommendation system
needs to choose a subset A of k items from I. We will use the Q-learning framework where an
optimal action-value functionQ∗(s,A) will be learned and satisfiesQ∗(st,At) = E

[
r(st,At, at)+

γmaxA′⊂I Q
∗(st+1,A′)

]
, at ∈ At. Once the action-value function is learned, an optimal policy

for recommendation can be obtained as
π∗(st, It) = arg maxAt⊂It Q

∗(st,At), (10)
where It ⊂ I is the set of items available at time t. The challenge is that the action space contains(
K
k

)
many choices, which can be very large even for moderate K (e.g. 1,000) and k (e.g. 5).

Furthermore, an item put in different combinations can have different probabilities of being clicked,
which is indicated by the user model and is in line with reality. For instance, interesting items may
compete with each other for a user’s attention. Thus, the policy in Eq. (10) will be very expensive
to compute. To address this challenge, we will design not just one but a set of k related Q-functions
which will be used in a cascading fashion for finding the maximum in Eq. (10).

Denote the recommender actions as A = {a1, a2, · · · , ak} ⊂ I and the optimal action as A∗ =
{a∗1, a∗2, · · · , a∗k} = arg maxAQ

∗(s,A). Our cascading Q-networks are inspired by the key fact that:
max

a1,a2,··· ,ak
Q∗(s, a1, a2, · · · , ak) = max

a1

(
max

a2,...,ak
Q∗(s, a1, a2, · · · , ak)

)
, (11)

which also implies that there is a cascade of mutually consistent Q1∗, Q2∗, . . . , Qk∗ such that:

a∗1 = arg maxa1Q
1∗(s, a1) with Q1∗(s, a1) := maxa2,··· ,akQ

∗(s, a1, · · · , ak),

a∗2 = arg maxa2Q
2∗(s, a∗1, a2) with Q2∗(s, a1, a2) := maxa3,··· ,akQ

∗(s, a1, · · · , ak),

· · · · · ·

a∗k = arg maxakQ
k∗(s, a∗1, · · · , a∗k−1, ak) with Qk∗(s, a1, · · · , ak) := Q∗(s, a1, · · · , ak).

Thus, we can obtain an optimal action in O(k|I|) computations by applying these functions in a
cascading manner. See algorithm 1 and Figure 3 for a summary. However, this cascade of Qj∗
functions are usually not available and need to be estimated from the data.

5.2 PARAMETERIZATION AND ESTIMATION OF CASCADING Q-NETWORKS

Each Qj∗ function is estimated by a neural network parameterized as

Q̂j(s, a∗1:j−1, aj ; Θj) = q>j σ
(
Lj
[
s>, f>a∗1 , . . . , f

>
a∗j−1

, f>aj
]>

+ cj

)
, ∀j = 1, . . . , k, (12)

where Lj ∈ R`×(dn+dj), cj ∈ R` and qj ∈ R` are the set Θj of parameters, and we use the same
embedding for the state s as in Eq. (5). Now the problem left is how we can estimate these functions
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Q̂j . Note that the set of Qj∗ functions need to satisfy a large set of constraints. At the optimal point,
the value of Qj∗ is the same as Q∗ for all j, i.e.,

Qj∗(s, a∗1, · · · , a∗j ) = Q∗(s, a∗1, · · · , a∗k), ∀j = 1, . . . , k. (13)
Since it may not be easy to strictly enforce these constraints, we take them into account in a soft and
approximate way in our model fitting process as stated below.

Different from standard Q-learning, our cascading Q-learning process is learning a set of k
parameterized functions Q̂j(st, a∗1:j−1, aj ; Θj) as approximations of Qj∗. To enforce the constraints
in Eq. (13) in a soft and approximate way, we can define the loss as(

y − Q̂j
)2
, where y = r(st,At, at) + γQ̂k(st+1, a∗1, · · · , a∗k; Θk), ∀j = 1, . . . , k. (14)

That is all Q̂j networks are fitting against the same target y. Then the parameters Θk can be updated
by performing gradient steps over the above loss. It is noticed in our experiments that the set of
learned Q̂j networks satisfies the constraints nicely with a small error.

The overall cascading Q-learning algorithm is summarized in Algorithm 2 in Appendix B, where
we employ the cascading Q functions to search the optimal action efficiently. Besides, both the
experience replay (Mnih et al., 2013) and ε-exploration techniques are applied.

Algorithm 1 Search using Q̂j Cascades

1: function ARGMAX Q(s,A,Θ1, · · · ,Θk)
2: Let A∗ be empty.
3: I = A \ s . remove clicked items.
4: for j = 1 to k do
5: a∗j = arg maxaj∈I\A∗Q̂

j(s, a∗1:j−1, aj ; Θj)

6: Update A∗ = A∗ ∪ {a∗j}
7: end for
8: return A∗ = (a∗1, · · · , a∗k)
9: end function

𝑸"𝟏(𝒔, 𝒂𝟏 ; 𝜽𝟏）

Argmax

𝑸"𝟐(𝒔, 𝒂𝟏∗ , 𝒂𝟐; 𝜽𝟐）

Argmax

𝑎-∗ 𝑎.∗

…

𝑸"𝒌(𝒔, 𝒂𝟏∗, … , 𝒂𝒌1𝟏∗ , 𝒂𝒌; 𝜽𝒌）

𝑎2∗

Argmax

𝑠 𝑎- 𝑎. 𝑎2

Figure 3: Cascading Q-networks
6 EXPERIMENTS

We conduct three sets of experiments to evaluate our generative adversarial user model (called
GAN user model) and the resulting RL recommendation policy. Our experiments are designed to
investigate the following questions: (1) Can GAN user model lead to better user behavior prediction?
(2) Can GAN user model lead to higher user reward and click rate? and (3) Can GAN user model
help reduce the sample complexity of reinforcement learning?

6.1 DATASET AND FEATURE DESCRIPTION

We experimented with 6 real-world datasets: (1) Ant Financial News dataset contains clicks
records from 50,000 users for one month, involving dozens of thousands of news. On average
each display set contains 5 news articles. It also contains user-item cross features which are widely
used in this online platform; (2) MovieLens contains a large number of movie ratings, from which
we randomly sample 1,000 active users. Each display set is simulated by collecting 39 movies
released near the time the movie is rated. Movie features are collected from IMDB. Categorical
and descriptive features are encoded as sparse and dense vectors respectively; (3) Last.fm contains
listening records from 359,347 users. Each display set is simulated by collecting 9 songs with the
nearest time-stamp. (4) Yelp contains users’ reviews to various businesses. Each display set is
simulated by collecting 9 businesses with the nearest location. (5) RecSys15 contains click-streams
that sometimes end with purchase events. (6) Taobao contains the clicking and buying records of
users in 22 days. We consider the buying records as positive events. (More details in Appendix C)

6.2 PREDICTIVE PERFORMANCE OF USER MODEL

To assess the predictive accuracy of GAN user model with position weight (GAN-PW) and LSTM
(GAN-LSTM), we choose a series of most widely used or state-of-the-arts as the baselines,
including: (1) W&D-LR (Cheng et al., 2016), a wide & deep model with logistic regression loss
function; (2) CCF (Yang et al., 2011), an advanced collaborative filtering model which takes into
account the context information in the loss function; we further augment it with wide & deep
feature layer (W&D-CCF); (3) IKNN (Hidasi et al., 2015), one of the most popular item-to-item
solutions, which calculates items similarly according to the number of co-occurrences in sessions;
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(4) S-RNN (Hidasi et al., 2016), a session-based RNN model with a pairwise ranking loss; (5)
SCKNNC (Jannach & Ludewig, 2017), a strong methods which unify session based RNN and KNN
by cascading combination; (6) XGBOOST (Chen & Guestrin, 2016), a parallel tree boosting; (7)
DFM (Guo et al., 2017) is a deep neural factorization-machine based on wide & deep features.

Top-k precision (Prec@k) is employed as the evaluation metric. It is the proportion of top-k ranked
items at each page view that are actually clicked by the user, averaged across test page views and
users. Users are randomly divided into train(50%), validation(12.5%) and test(37.5%) subsets for
3 times. The results are reported in Table 1, which shows that GAN model performs significantly
better than baseline models. Moreover, GAN-PW performs nearly as well as GAN-LSTM, but it is
more efficient to train. Thus we use GAN-PW for later experiments and simply refer to it as GAN.

Table 1: Comparison of predictive performances, where we use Shannon entropy for GAN-PW and GAN-LSTM.
(1) Ant Financial news dataset (2) MovieLens dataset (3) LastFM

Model prec(%)@1 prec(%)@2 prec(%)@1 prec(%)@2 prec(%)@1 prec(%)@2
IKNN 20.6(±0.2) 32.1(±0.2) 38.8(±1.9) 40.3(±1.9) 20.4(±0.6) 32.5(±1.4)

S-RNN 32.2(±0.9) 40.3(±0.6) 39.3(±2.7) 42.9(±3.6) 9.4(±1.6) 17.4(±0.9)
SCKNNC 34.6(±0.7) 43.2(±0.8) 49.4(±1.9) 51.8(±2.3) 21.4(±0.5) 26.1(±1.0)

XGBOOST 41.9(±0.1) 65.4(±0.2) 66.7(±1.1) 76.0(±0.9) 10.2(±2.6) 19.2(±3.1)
DFM 41.7(±0.1) 64.2(±0.2) 63.3(±0.4) 75.9(±0.3) 10.5(±0.4) 20.4(±0.1)

W&D-LR 37.5(±0.2) 60.9(±0.1) 61.5(±0.7) 73.8(±1.2) 7.6(±2.9) 16.6(±3.3)
W&D-CCF 37.7(±0.1) 61.1(±0.1) 65.7(±0.8) 75.2(±1.1) 15.4(±2.4) 25.7(±2.6)

GAN-PW 41.9(±0.1) 65.8(±0.1) 66.6(±0.7) 75.4(±1.3) 24.1(±0.8) 34.9(±0.7)
GAN-LSTM 42.1(±0.2) 65.9(±0.2) 67.4(±0.5) 76.3(±1.2) 24.0(±0.9) 34.9(±0.8)

(4) Yelp (5) Taobao (6) RecSys15: YooChoose
Model prec(%)@1 prec(%)@2 prec(%)@1 prec(%)@2 prec(%)@1 prec(%)@2
IKNN 57.7(±1.8) 73.5(±1.8) 32.8(±2.6) 46.6(±2.6) 39.3(±1.5) 69.8(±2.1)

S-RNN 67.8(±1.4) 73.2(±0.9) 32.7(±1.7) 47.0(±1.4) 41.8(±1.2) 69.9(±1.9)
SCKNNC 60.3(±4.5) 71.6(±1.8) 35.7(±0.4) 47.9(±2.1) 40.8(±2.5) 70.4(±3.8)

XGBOOST 64.1(±2.1) 79.6(±2.4) 30.2(±2.5) 51.3(±2.6) 60.8(±0.4) 80.3(±0.4)
DFM 72.1(±2.1) 80.3(±2.1) 30.1(±0.8) 48.5(±1.1) 61.3(±0.3) 82.5(±1.5)

W&D-LR 62.7(±0.8) 86.0(±0.9) 34.0(±1.1) 54.6(±1.5) 51.9(±0.8) 75.8(±1.5)
W&D-CCF 73.2(±1.8) 88.1(±2.2) 34.9(±1.1) 53.3(±1.3) 52.1(±0.5) 76.3(±1.5)

GAN-PW 72.0(±0.2) 92.5(±0.5) 34.7(±0.6) 54.1(±0.7) 52.9(±0.7) 75.7(±1.4)
GAN-LSTM 73.0(±0.2) 88.7(±0.4) 35.9(±0.6) 55.0(±0.7) 52.7(±0.3) 75.9(±1.2)

We also tested different types of regularization (Table 2). In general, Shannon entropy performs
well and it is also favored for its closed form solution. However, on the Yelp dataset, we find that L2

regularization R(φ) = ‖φ‖22 leads to a better user model. It is noteworthy that the user model with
L2 regularization is trained with Shannon entropy initialization scheme proposed in section 4.3.

Table 2: GAN user model with SE (Shannon entropy) versus L2 regularization on Yelp dataset.
Split 1 Split 2 Split 3

Model prec(%)@1 prec(%)@2 prec(%)@1 prec(%)@2 prec(%)@1 prec(%)@2
GAN-LSTM-SE 73.1 88.8 72.8 89.0 73.1 88.2
GAN-LSTM-L2 73.5 89.0 78.8 91.5 76.1 91.1

Another interesting result on Movielens is shown in Figure 4 (see Appendix D.1 for similar figures).
The blue curve represents a user’s actual choices over time. The orange curves are trajectories
predicted by GAN and W&D-CCF. Each data point (t, c) represents time step t and the category c of
the clicked item. The upper sub-figure shows that GAN performs much better as time goes by, while
the items predicted by W&D-CCF in the lower sub-figure are concentrated on several categories.
This indicates a drawback of static models - it fails to capture the evolution of a user’s interests.

GAN	prediction

Figure 4: Comparison of the true trajectory
(blue) of a user’s choices, the simulated trajectory
predicted by GAN model (orange curve in upper
sub-figure) and the simulated trajectory predicted
by W&D-CCF (the orange curve in the lower
sub-figure) for the same user. Y -axis represents
80 categories of movies.
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6.3 RECOMMENDATION POLICIES GENERATED FROM USER MODELS

With a learned user model, we can immediately derive a greedy policy to recommend k items
with the highest estimated likelihood. We will compare the strongest baseline methods W&D-LR,
W&D-CCF and GAN-Greedy in this setting. Furthermore, we will learn an RL policy using the
cascading Q-networks from section 5 (GAN-CDQN). We will compare it with two RL methods: a
cascading Q-network trained with ±1 reward (GAN-RWD1), and an additive Q-network policy (He
et al., 2016), Q(s, a1, · · · , ak) :=

∑k
j=1 Q(s, aj), trained with the learned reward (GAN-GDQN).

Since we cannot perform online experiments at this moment, we use collected data from the online
news platform to fit a user model, and then use it as a test environment. To make the experimental
results trustful and solid, we fit the test model based on a randomly sampled test set of 1,000 users
and keep this set isolated. The RL policies are learned from another set of 2,500 users without
overlapping the test set. The performances are evaluated by two metrics: (1) Cumulative reward:
For each recommendation action, we can observe a user’s behavior and compute her reward r(st, at)
using the test model. Note that we never use the reward of test users when we train the RL policy.
The numbers shown in Table 3 are the cumulative rewards averaged over time horizon first and then
averaged over all users. It can be formulated as 1

N

∑N
u=1

1
T

∑T
t=1r

t
u, where rtu is the reward received

by user u at time t. (2) CTR (click through rate): it is the ratio of the number of clicks and the
number of steps it is run. The values displayed in Table 3 are also averaged over 1,000 test users.

Table 3: Comparison of recommendation performance of different policies.
k = 2 k = 3 k = 5

model reward CTR reward CTR reward CTR
W&D-LR 11.82(±0.38) 0.38(±0.012) 14.46(±0.42) 0.46(±0.013) 15.18(±0.38) 0.48(±0.011)
W&D-CCF 17.15(±1.16) 0.53(±0.034) 19.93(±1.09) 0.62(±0.031) 20.94(±1.03) 0.65(±0.029)
GAN-Greedy 19.17(±1.20) 0.58(±0.042) 21.37(±1.24) 0.67(±0.038) 22.97(±1.22) 0.71(±0.034)
GAN-RWD1 22.37(±0.87) 0.68(±0.035) 22.17(±1.07) 0.68(±0.031) 25.15(±1.04) 0.78(±0.029)
GAN-GDQN 21.88(±0.92) 0.66(±0.037) 23.60(±1.06) 0.72(±0.034) 23.19(±1.17) 0.70(±0.033)
GAN-CDQN 22.76(±0.90) 0.69(±0.037) 24.05(±0.98) 0.74(±0.032) 25.36(±1.10) 0.77(±0.031)

Three sets of experiments with different numbers of items in each page view are conducted and
the results are summarized in Table 3. Since users’ behaviors are not deterministic, each policy is
evaluated repeatedly for 50 times on test users. The results show that: (1) Greedy policy built on
GAN model is significantly better than the policies built on other models. (2) RL policy learned
from GAN is better than the greedy policy. (3) Although GAN-CDQN is trained to optimize the
cumulative reward, the recommendation policy also achieves a higher CTR compared to GAN-RWD1
which directly optimizes ±1 reward. The learning of GAN-CDQN may have benefited from the
well-known reward shaping effects of the learned continuous reward (Mataric, 1994; Ng et al., 1999;
Matignon et al., 2006). (4) While the computational cost of GAN-CDQN is about the same as that
of GAN-GDQN (both are linear in the total number of items), our proposed GAN-CDQN is a more
flexible parametrization and achieved better results, especially when k is larger.

Since Table 3 only shows average values taken over test users, we compare the policies in user
level and the results are shown in figure 5. GAN-CDQN policy results in higher averaged cumulative
reward for most users. A similar figure which compares the CTR is deferred to Appendix D. Figure 6
shows that the learned cascading Q-networks satisfy constraints in Eq. (13) well when k = 5.
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Figure 5: Cumulative rewards among 1,000 users under the recommendation policies based on different user
models. The experiments are repeated for 50 times and the standard deviation is plotted as the shaded area.
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Figure 6: Each scatter-plot compares Qj
∗

with Q5∗ values in Eq. (13) evaluated at the same set of k
recommended items. In the ideal case, all scattered points should lie along the diagonal.

6.4 USER MODEL ASSISTED POLICY ADAPTATION

Former results in section 6.2 and 6.3 have demonstrated that GAN is a better user model and RL
policy based on it can achieve higher CTR compared to other user models, but this user model may
be misspecified. In this section, we show that our GAN model can help an RL policy to quickly
adapt to a new user. The RL policy assisted by GAN user model is compared with other policies that
are learned from and adapted to online users: (1) CDQN with GAN: cascading Q-networks which
are first trained using the learned GAN user model from other users and then adapted online to a
new user using MAML (Finn et al., 2017). (2) CDQN model free: cascading Q-networks without
pre-trained by the GAN model. It interacts with and adapts to online users directly. (3) LinUCB: a
classic contextual bandit algorithm which assumes adversarial user behavior. We choose its stronger
version - LinUCB with hybrid linear models (Li et al., 2010) - to compare with.

The experiment setting is similar to section 6.3. All policies are evaluated on a set of 1,000 test users
associated with a test model. Three sets of results corresponding to different sizes of display set are
plotted in Figure 7. It shows how the CTR increases as each policy interacts with and adapts to users
over time. In fact, the performances of users’ cumulative reward according to different policies are
also similar, and the corresponding figure is deferred to Appendix D.3.
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Figure 7: Comparison of the averaged click rate averaged over 1,000 users under different recommendation
policies. X-axis represents how many times the recommender interacts with online users. Y -axis is the click
rate. Each point (x, y) means the click rate y is achieved after x times of user interactions.

It can be easily seen that the CDQN policy pre-trained over a GAN user model can quickly achieve
a high CTR even when it is applied to a new set of users (Figure 7). Without the user model, CDQN
can also adapt to the users during its interaction with them. However, it takes around 1,000 iterations
(i.e., 100,000 interactive data points) to achieve similar performance as the CDQN policy assisted by
GAN user model. LinUCB(hybrid) is also capturing users’ interests during its interaction with users.
Similarly, it takes too many interactions. In Appendix D.3, another figure is attached to compare
the cumulative reward received by the user instead of CTR. Generally speaking, GAN user model
provides a dynamical environment for RL policies to interact with. It helps the policy achieve a
more satisfying status before applying to online users.

7 CONCLUSION AND FUTURE WORK

We proposed a novel model-based reinforcement learning framework for recommendation systems,
where we developed a GAN formulation to model user behavior dynamics and her associated reward
function. Using this user model as the simulation environment, we develop a novel cascading
Q-network for combinatorial recommendation policy which can handle a large number of candidate
items efficiently. Although the experiments show clear benefits of our method in an offline and
realistic simulation setting, even stronger results could be obtained via future online A/B testing.
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A LEMMA

A.1 PROOF OF LEMMA 1

Lemma 1. Let the regularization term in Eq. (2) be R(φ) =
∑k
i=1 φi log φi and φ ∈ ∆k−1 is

allowed to be arbitrary mappings. Then the optimal solution φ∗ for the problem in Eq. (2) has a
closed form

φ∗(st,At)i = exp(ηr(st, ai))/
∑
aj∈At exp(ηr(st, aj)). (3)

Furthermore, in each session t, the user’s decision according to her optimal policy φ∗ is equivalent
to the following discrete choice model where εt follows a Gumbel distribution.

at = arg max
a∈At

η r(st, a) + εt. (4)

Proof. First, recall the problem defined in Eq. (2):

φ∗(st,At) = arg max
φ∈∆k−1

Eφ
[
r(st, at)

]
− 1

η
R(φ).

Denote φt = φ(st,At). Since φ can be an arbitrary mapping (i.e., φ is not limited in a specific
parameter space), φt can be an arbitrary vector in ∆k−1. Recall the notation At = {a1, · · · , ak}.
Then the expectation taken over random variable at ∈ At can be written as

Eφ
[
r(st, at)

]
− 1

η
R(φ) =

k∑
i=1

φtir(s
t, ai)−

1

η

k∑
i=1

φti log φti. (15)

By simple computation, the optimal vector φt∗ ∈ ∆k−1 which maximizes Eq. (15) is

φt∗i =
exp(ηr(st, ai))∑k
j=1 exp(ηr(st, aj))

, (16)

which is equivalent to Eq. (2). Next, we show the equivalence of Eq. (16) to the discrete choice
model interpreted by Eq. (4).

The cumulative distribution function for the Gumbel distribution is F (ε;α) = P[ε 6 α] = e−e
−α

and the probability density is f(ε) = e−e
−ε
e−ε. Using the definition of the Gumbel distribution,

the probability of the event [at = ai] where at is defined in Eq. (4) is

Pi := P
[
at = ai

]
= P

[
ηr(st, ai) + εi > ηr(st, aj) + εj , for all i 6= j

]
= P

[
εj 6 εi + ηr(st, ai)− ηr(st, aj), for all i 6= j

]
.

Suppose we know the random variable εi. Then we can compute the choice probability Pi
conditioned on this information. Let Bij = εi + ηr(st, ai)− ηr(st, aj) and Pi|E be the conditional
probability; then we have

Pi|εi =
∏
i6=j

P[εj 6 Bij ] =
∏
i 6=j

e−e
−Bij

.

In fact, we only know the density of εi. Hence, using the Bayes theorem, we can express Pi as

Pi =

∫ ∞
−∞

Pi|εif(εi)dεi =

∫ ∞
−∞

∏
i 6=j

e−e
−Bij

f(εi)dεi

=

∫ ∞
−∞

k∏
j=1

e−e
−Bij

ee
−εi
e−e

−εi
e−εidεi =

∫ ∞
−∞

( k∏
j=1

e−e
−Bij

)
e−εidεi
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Now, let us look at the product itself.
k∏
j=1

e−e
−Bij

= exp
(
−

k∑
j=1

e−Bij
)

= exp
(
− e−εi

k∑
j=1

e−(ηr(st,ai)−ηr(st,aj))
)

Hence

Pi =

∫ ∞
−∞

exp(−e−εiQ)e−εidεi

where Q =
∑k
j=1 e

−(ηr(st,ai)−ηr(st,aj)) = Z/ exp(ηr(st, ai)).

Next, we make a change of variable y = e−εi . The Jacobian of the inverse transform is J = dεi
dy =

− 1
y . Since y > 0, the absolute of Jacobian is |J | = 1

y . Therefore,

Pi =

∫ ∞
0

exp(−Qy)y|J |dy =

∫ ∞
0

exp(−Qy)dy

=
1

Q
=

1

exp(−ηr(st, ai))
∑
j exp(ηr(st, aj))

=
exp(ηr(st, ai)∑k
j=1 exp(ηr(st, aj))

.

A.2 PROOF OF LEMMA 2

Lemma 2. Consider the case where regularization in Eq. (7) is defined as R(φ) =
∑k
i=1 φi log φi

and Φ includes all mappings from S ×
(I
k

)
to ∆k−1. Then the optimization problem in Eq. (7) is

equivalent to the following maximum likelihood estimation

max
θ∈Θ

T∏
t=1

exp(ηrθ(s
t
true, a

t
true))∑

at∈At exp(ηrθ(sttrue, a
t))
. (9)

Proof. This lemma is a straight forward result of lemma 1. First, recall the problem defined
in Eq. (7):

min
θ∈Θ

(
max
φ∈Φ

Eφ

[
T∑
t=1

rθ(s
t
true, a

t)

]
− 1

η
R(φ)

)
−

T∑
t=1

rθ(s
t
true, a

t
true)

We make a assumption that there is no repeated pair (sttrue, a
t) in Eq. (7). This is a very soft

assumption because sttrue is updated overtime, and at is in fact representing its feature vector f tat ,
which is in space Rd. With this assumption, we can let φ map each pair (sttrue, a

t) to the optimal
vector φt∗ which maximize rθ(sttrue, a

t)− 1
ηR(φt) since there is no repeated pair. Using Eq. (16),

we have

max
φ∈Φ

Eφ

[
T∑
t=1

rθ(s
t
true, a

t)

]
− 1

η
R(φ) = max

φ∈Φ

T∑
t=1

Eφ
[
rθ(s

t
true, a

t)
]
− 1

η
R(φ)

=

T∑
t=1

(
k∑
i=1

φt∗i r(s
t, ai)−

1

η

k∑
i=1

φt∗i log φt∗i

)
=

T∑
t=1

1

η
log
( k∑
i=1

exp(ηrθ(s
t
true, ai))

)
.

Eq. (7) can then be written as

min
θ∈Θ

T∑
t=1

1

η
log
( k∑
i=1

exp(ηrθ(s
t
true, ai))

)
−

T∑
t=1

rθ(s
t
true, a

t
true),

which is the negative log-likelihood function and is equivalent to lemma 2.
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B ALOGRITHM BOX

The following is the algorithm of learning the cascading deep Q-networks. We employ the
cascading Q functions to search the optimal action efficiently (line 9). Besides, both the experience
replay (Mnih et al., 2013) and ε-exploration techniques are applied. The system’s experiences at
each time-step are stored in a replay memory setM (line 11) and then a minibatch of data will be
sampled from the replay memory to update Q̂j (line 13 and 14). An exploration to the action space
is executed with probability ε (line 8).

Algorithm 2 cascading deep Q-learning (CDQN) with Experience Replay

1: Initialize replay memoryM to capacity N
2: Initialize parameter Θj of Q̂j with random weights for each 1 ≤ j ≤ k
3: for iteration i = 1 to L do
4: Sample a batch of users U from training set
5: Initialize the states s0 to a zero vector for each u ∈ U
6: for t = 1 to T do
7: for each user u ∈ U simultaneously do
8: With probability ε select a random subset At of size k
9: Otherwise, At = ARGMAX Q(stu, It,Θ1, · · · ,Θk)

10: Recommend At to user u, observe user action at ∼ φ(st,At) and update user state
st+1

11: Add tuple
(
st,At, r(st, at), st+1

)
toM

12: end for
13: Sample random minibatch B iid.∼ M
14: For each j, update Θj by SGD over the loss

(
y − Q̂j(st, At1:j ; Θj)

)2
for B

15: end for
16: end for
17: return Θ1, · · · ,Θk

C DATASET DESCRIPTION

(1) MovieLens public dataset1 contains large amounts of movie ratings collected from their
website. We randomly sample 1,000 active users from this dataset. On average, each of these active
users rated more than 500 movies (including short films), so we assume they rated almost every
movie that they watched and thus equate their rating behavior with watching behavior. MovieLens
dataset is the most suitable public dataset for our experiments, but it is still not perfect. In fact,
none of the public datasets provides the context in which a user’s choice is made. Thus, we simulate
this missing information in a reasonable way. For each movie watched(rated) on the date d, we
collect a list of movies released within a month before that day d. On average, movies run for
about four weeks in theater. Even though we don’t know the actual context of user’s choice, at
least the user decided to watch the rated movie instead of other movies in theater. Besides, we
control the maximal size of each displayed set by 40. Features: In MovieLens dataset, only titles
and IDs of the movies are given, so we collect detailed movie information from Internet Movie
Database(IMDB). Categorical features as encoded as sparse vectors and descriptive features are
encoded as dense vectors. The combination of such two types of vectors produces 722 dimensional
raw feature vectors. To further reduce dimensionality, we use logistic regression to fit a wide&deep
networks (Cheng et al., 2016) and use the learned input and hidden layers to reduce the feature to
10 dimension.

(2) An online news article recommendation dataset from Ant Financial is anonymously
collected from Ant Financial news article online platform. It consists of 50,000 users’ clicks and
impression logs for one month, involving dozens of thousands of news. It is a time-stamped dataset
which contains user features, news article features and the context where the user clicks the articles.
The size of the display set is not fixed, since a user can browse the news article platform as she likes.

1https://grouplens.org/datasets/movielens/
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On average a display set contains 5 new articles, but it actually various from 2 to 10. Features:
The news article raw features are approximately of dimension 100 million because it summarizes
the key words in the article. Apparently it is too expensive to use these raw features in practice. The
features we use in the experiments are 20 dimensional dense vector embedding produced from the
raw feature by wide&deep networks. The reduced 20 dimensional features are widely used in this
online platform and revealed to be effective in practice.

(3) Last.fm2 contains listening records from 359,347 users. Each display set is simulated by
collecting 9 songs with nearest time-stamp.

(4) Yelp3 contains users’ reviews to various businesses. Each display set is simulated by collecting
9 businesses with nearest location.

(5) RecSys154 contains click-streams that sometimes end with purchase events.

(6) Taobao5 contains the clicking behavior and buying behavior of users in 22 days. We consider
the buying behaviors as positive events.

D MORE FIGURES FOR EXPERIMENTAL RESULTS

D.1 FIGURES FOR SECTION 6.2

An interesting comparison is shown in Figure 4 and more similar figures are provided here. The
blue curve is the trajectory of a user’s actual choices of movies over time. The orange curves are
simulated trajectories predicted by GAN and CCF, respectively. Similar to what we conclude in
section 6.2, these figures reveal the good performances of GAN user model in terms of capturing the
evolution of users’ interest.

GAN	prediction GAN	prediction

Figure 8: Two more examples: comparison of the true trajectory(blue) of user’s choices, the simulated
trajectory predicted by GAN model (orange curve in upper sub-figure) and the simulated trajectory predicted
by CCF (orange curve in the lower sub-figure) for the same user. Y -axis represents 80 categories of movies.

D.2 FIGURES FOR SECTION 6.3

We demonstrate the policy performance in user level in figure 5 by comparing the cumulative reward.
Here we attach the figure which compares the click rate. In each sub-figure, red curve represents
GAN-DQN policy and blue curve represents the other. GAN-DQN policy contributes higher averaged
click rate for most users.

D.3 FIGURES FOR SECTION 6.4

This figure shows three sets of results corresponding to different sizes of display set. It reveals how
users’ cumulative reward(averaged over 1,000 users) increases as each policy interacts with and
adapts to 1,000 users over time. It can be easily that the CDQN policy pre-trained over a GAN user
model can adapt to online users much faster then other model-free policies and can reduce the risk

2https://www.last.fm/api
3https://www.yelp.com/dataset/
4https://2015.recsyschallenge.com/
5https://tianchi.aliyun.com/datalab
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Figure 9: Comparison of click rates among 1,000 users under the recommendation policies based on different
user models. In each figure, red curve represents GAN-DQN policy and blue curve represents the other. The
experiments are repeated for 50 times and standard deviation is plotted as the shaded area. This figure is similar
to figure 5, except that it plots the value of click rates instead of user’s cumulative rewards.

of losing the user at the beginning. The experiment setting is similar to section 6.3. All policies
are evaluated on a separated set of 1,000 users associated with a test model. We need to emphasize
that the GAN model which assists the CDQN policy is learned from a training set of users without
overlapping test users. It is different from the test model which fits the 1,000 test users.
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Figure 10: Comparison of the averaged cumulative reward among 1,000 users under different adaptive
recommendation policies. X-axis represents how many times the recommender interacts with online users.
Here the recommender interact with 1,000 users each time, so in fact each interaction represents 100 online
data points. Y -axis is the click rate. Each point (x, y) in this figure means a click rate y is achieved after x
many times of interactions with the users.
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