
Under review as a conference paper at ICLR 2020

DEEPSIMPLEX: REINFORCEMENT LEARNING OF
PIVOT RULES IMPROVES THE EFFICIENCY OF SIM-
PLEX ALGORITHM IN SOLVING LINEAR PROGRAM-
MING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Linear Programs (LPs) are a fundamental class of optimization problems with a
wide variety of applications. Fast algorithms for solving LPs are the workhorse
of many combinatorial optimization algorithms, especially those involving integer
programming. One popular method to solve LPs is the simplex method which, at
each iteration, traverses the surface of the polyhedron of feasible solutions. At each
vertex of the polyhedron, one of several heuristics chooses the next neighboring
vertex, and these vary in accuracy and computational cost. We use deep value-
based reinforcement learning to learn a pivoting strategy that at each iteration
chooses between two of the most popular pivot rules – Dantzig and steepest edge.
Because the latter is typically more accurate and computationally costly than the
former, we assign a higher wall time-based cost to steepest edge iterations than
Dantzig iterations. We optimize this weighted cost on a neural net architecture
designed for the simplex algorithm. We obtain between 20% to 50% reduction in
the gap between weighted iterations of the individual pivoting rules, and the best
possible omniscient policies for LP relaxations of randomly generated instances
of five-city Traveling Salesman Problem. Our results indicate that learning within
combinatorial optimization algorithms is possible and that there is much room
for improvement in learning more sophisticated pivoting strategies, especially for
larger LP instances.

1 INTRODUCTION

Machine learning has revolutionized many fields by leveraging large amounts of data to learn
functions, replacing approaches which used to rely heavily on hand-designed features. One area
where machine learning has not made much of an impact is heuristics used inside combinatorial
optimization algorithms such as the simplex or integer programming algorithms.

The No-Free Lunch (NFL) theorem (Wolpert et al., 1997) of search and optimization essentially says
there are no general-purpose optimization algorithms that work well on all problems. In practice,
this implies that many optimization algorithms rely on several different kinds of hand-designed
heuristics. But these lack theoretical guarantees, and they embody a one-size-fits-all approach that
cannot specialize to the instance distribution. A clear historical example is that of linear programs
(LPs). LPs require specification of a pivoting rule, and decades of research has generated many
different options. However, no theory exists for how to choose pivoting rules based on the LP instance
distributions encountered in practice, let alone how to design new pivot rules based on properties of
the instance family.

We propose to address this issue by using data-driven machine learning approaches to learn such
heuristics, based on the data encountered by the combinatorial optimization algorithms in practice.
Our approach can be interpreted as instantiating the converse of the NFL theorem: any advances
made in quality or speed must be due to the algorithm’s specialization to the distribution/family of
instances it encounters.

1



Under review as a conference paper at ICLR 2020

In this vein, here we focus on learning pivot rules for the simplex algorithm for solving LP instances.
In particular, we learn new pivoting rule policies that combine existing hand-designed heuristics
by training on large data sets of LP relaxations of randomly generated instances of the Traveling
Salesman Problem (TSP). Our main contributions are:

• We introduce a data-driven approach to learning pivoting rules that focuses explicitly on
maximizing the speed of optimization as measured by a novel wall-time weighted iteration
cost.
• We use reinforcement learning to learn a hybrid policy that combines two of the most

prominent pivoting rules for the Simplex algorithm - Dantzig and steepest edge. The
resultant policy decides when to switch between the two rules based on the LP instance
objective value and reduced costs at that time.
• We also employ a novel omniscient oracle-based analysis to gauge just how well our policy

does relative to an oracle, testing how difficult it is to learn the ground-truth omniscient
policy, and whether there exist learnable patterns in the omniscient policy or whether it is a
“random” function that can only be memorized.
• We achieve a 20-50% reduction in the gap between the existing pivoting rules and the best

possible (omniscient) policy. To our knowledge, this is one of the first studies to report
improvements via learning for combinatorial algorithms.

2 RELATED WORK

Algorithms for solving optimization problems, e.g., combinatorial optimization problems, often
involve heuristic-based algoritmic strategies where, arguably, it is impossible to find an optimal policy
that will improve the performance of the algorithm for a wide range of instances. Machine learning
approaches give the possibility of devising data-driven methods for the existing heuristics. Khalil et al.
(2016) learn to make branching decisions on the branch-and-bound tree in mixed-integer programming.
Bonami et al. (2018) learn a classifier for mixed-integer quadratic programming problems to decide
whether linearizing the quadratic objective will improve the performance. Bertsimas & Stellato
(2019) solve online mixed-integer optimization problems at very high speed using machine learning.
They convert parametric mixed-integer quadratic optimization problems to a multiclass classification
problem and obtain two to three orders of magnitude speedups compared to the state-of-the-art
solver Gurobi. Bengio et al. (2018) provide a detailed survey of machine learning approaches for
combinatorial optimization problems.

TSP is a canonical example of combinatorial optimization problems, where there are recent studies
for developing machine learning-based heuristic algorithms (Khalil et al., 2017; Bonami et al.,
2018; Hansknecht et al., 2018). Vinyals et al. (2015) develop a supervised learning algorithm for
combinatorial problems using “pointer networks” and present computational results for TSPs. Bello
et al. (2016) use a reinforcement learning approach where they optimize the parameters of the
recurrent neural network using a policy gradient method. They claim that their reinforcement learning
approach outperforms the supervised learning algorithm presented by Vinyals et al. (2015).

Concorde TSP solver (Applegate et al., 2006a) is one of the best exact TSP solvers, which uses
cutting plane methods (Applegate et al., 2003) on the TSP integer programming formulation, i.e., a
lazy implementation of a conventional TSP formulation (details given in Section 3). It iteratively
solves linear programming relaxations of the TSP formulation and uses a branch-and-bound tree to
reduce the search space for the optimal solution. One of the main motivations of this study is to learn
the structure of the LP relaxation of the TSP and speed up solving the iterative LP relaxations by
learning a pivoting rule policy.

3 LINEAR PROGRAMMING AND TRAVELLING SALESMAN PROBLEM

A general formulation of an LP is as follows:
Minimize c>x

subject to Ax = b,

x ≥ 0,

2



Under review as a conference paper at ICLR 2020

Q-Values for 
each Pivot Rule

Apply phase 1 + 
basic row 

operations

Choose Pivot Rule 
(via argmax /softmax)

Traveling Salesman
Problem 

(Non-Euclidean)

Integer Program
(Sequential Form)

Linear Program
(Standard Form)

Schematic of 
the standard LP

Fully Connected
ReLU Net

Tableaux
-cost

Figure 1: Steps of the Learning algorithm

where the objective c ∈ Rn, right-hand side b ∈ Rm, constraint matrixA ∈ Rm×n, and the number of
variables is greater than the number of constraints, i.e., n > m. The goal of an LP is to find an optimal
decision variable x that minimizes the c>x value over the feasibility region P = {x ∈ Rn

+ | Ax = b}.
There are different approaches to solve LPs, e.g., the simplex algorithm, interior-point methods, and
the ellipsoid algorithm, where the interior-point methods and the ellipsoid algorithm are polynomial
algorithms. In this study, we focus on the simplex algorithm, which is the most commonly used
method of solving LPs by commercial solvers, e.g., CPLEX and Gurobi.

Simplex Algorithm. LPs have attractive properties, including (i) the feasible region is convex, (ii) if
there is an optimal solution, there exists an optimal solution that is an extreme point of P , and (iii) an
optimal extreme point has at most m non-zero entries, which are called basic variables. The simplex
algorithm has two phases. Phase one finds a basic feasible solution, and Phase two finds an optimal
basic feasible solution.

The main idea of the simplex algorithm is to find an extreme point and implicitly check its adjacent
extreme points. If no adjacent extreme points improve the objective, then the current extreme point is
optimal because of the linearity the objective and convexity of P . If there are adjacent extreme points
that improve the objective, the simplex algorithm moves to one of them and continues the search
until an extreme point with no improving adjacent extreme points can be found. An iteration of the
simplex method is given below (Bertsimas & Tsitsiklis, 1997).

1. Form the basis matrix B ∈ Rm×m consisting of basic columns of A that are associated with
an extreme point (basic feasible solution) x.

2. Compute the reduced costs c̄j = cj − cBB−1Aj for all nonbasic indices j ∈ {1, . . . , n},
i.e., j ∈ {1, . . . , n} such that xj = 0, where cB is the objective vector associated with the
basic entries of x and Aj is the jth column of A. If they are all nonnegative, the current
basic feasible solution is optimal, and the algorithm terminates; else, choose some j for
which c̄j < 0.

3. Compute u = B−1Aj . If no component of u is positive, we have θ∗ = ∞, the optimal
cost is −∞, and the algorithm terminates. If some component of u is positive, let θ∗ =
min{i|ui>0}

xB(i)

ui
and ` ∈ arg min{i|ui>0}

xB(i)

ui
.

4. Form a new basis by replacing AB(`) with Aj . If y is the new basic feasible solution, the
values of the new basic variables are yj = θ∗ and yB(i) = xB(i) − θ∗ui, i 6= `.

Pivoting Rule. The bold part in Step 2 is the only part of the simplex algorithm that is not precisely
specified. The rule of choosing an index is called as the pivoting rule. There are many proposed
ways to choose the extreme point among the adjacent points in Step 2 above, e.g., Bland’s rule,
Dantzig’s rule, steepest edge rule, and greatest improvement rule. The most commonly used methods
for choosing the next extreme point, i.e., the pivoting rule, are Dantzig’s rule and the steepest edge
rule. Dantzig’s rule calculates the rate of improvement (reduced costs) for all nonbasic variables and
chooses the best one, i.e., choose j ∈ arg min c̄j , where c̄j < 0, and the steepest edge normalizes the

3



Under review as a conference paper at ICLR 2020

reduced costs with the norm of their corresponding updated constraint matrix columns and chooses
the best one, i.e., choose j ∈ arg min

c̄j
||B−1Aj || , where c̄j < 0.

Among the mentioned pivoting rules, only Bland’s rule guarantees finiteness; however, it is not
practically efficient. For the remaining methods, generally the total number of required iterations
of the simplex algorithm decreases as the pivoting rule becomes more complex and requires more
time to choose the leaving variable. However, there is no guarantee that a more expensive pivoting
rule (in terms of the time it takes to calculate the leaving variable) takes fewer iterations to find an
optimal solution. Furthermore, these methods do not guarantee finiteness. Hence, pivoting rules may
be improved by learning algorithms.

The simplex algorithm can be viewed as a problem of finding a path on a graph, where extreme points
are nodes and only adjacent extreme points are connected. The starting node is the initial extreme
point and the end node is an optimal extreme point. The pivoting rules dictate how the next node on
the path is selected. Thus, the pivoting rule is a natural candidate for learning algorithms.

Travelling Salesman Problem. LPs are essential for solving integer programs (IP) which are LPs for
which the decision variables are restricted to take only integer values. Unlike LPs, IPs are NP-hard.
The most common way of solving IPs is using branch-and-bound algorithms, which we repeatedly
solve linear relaxations of the IP with added inequalities (dropping the integrality requirement and
solving the corresponding LP) to obtain feasible integer solutions to form a global lower bound and
to get local upper bounds with the relaxed problem.

In this study, we focus on the LP relaxation of the TSP. The TSP considers a list of cities on a
connected graph and finds the shortest route that visits each city exactly once and returns to the origin
city. The TSP is famously hard to solve, which has attracted the attention of many researchers from
different fields. The TSP is an IP with many different formulations presented in the literature, e.g.,
the subtour elimination formulation Dantzig et al. (1954) and the sequential formulation Miller et al.
(1960). Both formulations use a set of cities N = {1, . . . , n} where the length of an arc i, j ∈ N
is cij , and define decision variables xij = 1 if and only if i, j ∈ N is a link in the tour and xij = 0
otherwise. Furthermore, both formulations share the following objective and constraints:

Minimize
∑

i,j∈N :i6=j

cijxij (1a)

subject to
∑

j∈N :j 6=i

xij = 1, ∀i ∈ N, (1b)

∑
i∈N :i6=j

xij = 1, ∀j ∈ N, (1c)

xij ∈ {0, 1}, ∀i, j ∈ N : i 6= j. (1d)

The conventional formulation (Dantzig et al., 1954) has the following set of subtour elimination
constraints ∑

i,j∈N :i 6=j

xij ≤ |M | − 1, ∀M ⊂ N\{1}, |M | ≥ 2. (1e)

Hence, the conventional formulation has n(n− 1) binary variables and 2n + 2n− 2 constraints.

The sequential formulation introduces new continuous variables ui which represents the sequence in
which city i is visited for i 6= 1. The set of extra constraints of the sequential formulation is

ui − uj + nxij ≤ n− 1, ∀i, j ∈ N\{1}, i 6= j. (1f)

The sequential formulation has n(n − 1) binary and n − 1 continuous variables, and n2 − n + 2
constraints. The sequential formulation has a polynomial number of constraints compared to the
exponential number of constraints of the conventional formulation. However, the conventional
formulation is more practical computationally, despite its larger size (Applegate et al., 2006b).

Our study focuses on reducing the solution time of the LP relaxation of the sequential formulation for
the TSP. We aim to learn an optimal way of choosing the pivoting rule for the LP relaxation of the
sequential formulation which will potentially lead to reduction of the TSP solution time using the
sequential formulation.

4



Under review as a conference paper at ICLR 2020

4 LEARNING APPROACH

Our study focuses on reducing the solution time of the LP relaxation of the sequential formulation for
the TSP. We aim to learn an optimal way of choosing the pivoting rule for the LP relaxation of the
sequential formulation, which will potentially lead to a reduction of the TSP solution time using the
sequential formulation.

The main steps of our learning algorithm are illustrated in Figure 1. The first step is generating a TSP
instance by determining the number of nodes and assigning distance between them. We formulate
the problem using the sequential formulation and take its linear relaxation. We then convert the LP
relaxation to the standard form by adding slack variables so that we can use the simplex algorithm to
solve the instance. We use the phase one implementation of a linear programming solver to find a
basic feasible solution. The focus of this study is learning a pivoting rule for phase two of the simplex
algorithm, where the algorithm starts from a basic feasible solution and finds a path to an optimal
solution by traveling to a neighboring basic feasible solution in each iteration.

Every basic feasible solution of the LP has its own basis matrix B, reduced cost c̄, and right-hand side
b̄. In each iteration in phase two of the simplex algorithm, we pass the reduced cost vector c̄ and the
objective value to a fully connected ReLU neural network to estimate the Q-Value which decreases as
expected weighted distance rises. Based on the Q-Value estimations, we choose a pivoting rule and
iterate the simplex algorithm. The algorithm continues to choose a pivoting rule in each step until the
simplex algorithm reaches an optimal basic feasible solution.

5 EXPERIMENT DESIGN

Training Data: We generate TSP instances with five cities. We use five-city TSP instances because
they are the largest TSP instances where we can build and store the exact graph of the extreme points
of the LP relaxation. All instances have fully connected graphs where the cost of traveling between
two cities is a random integer value between 1 and 100. We construct 1000 instances where we use
800 of them for training and the remaining 200 for testing.

Action and State Space: We consider only Dantzig’s and the steepest edge rules because they are
the most commonly used pivoting rules in practice. At iteration t of the simplex algorithm, we define
action at = 0 if the Dantzig’s rule is selected and at = 1 if the steepest edge rule is selected. The
state space is the set of possible simplex tableaux. We denote the current state at iteration t as st.

Choice of metric: We minimize the total number of weighted simplex iterations. The steepest edge
rule is computationally more expensive. Thus we penalize the learner more for choosing the steepest
edge rule over Dantzig’s rule. We calculate the relative cost of the steepest edge against Dantzig’s
rule by solving all of the generated TSP instances using purely Dantzig’s rule, and purely the steepest
edge rule. We calculate the average time of a single iteration for both the Dantzig’s rule and the
steepest edge rule. In our experiments, we find that the steepest edge rule is 15% more costly than
the Dantzig’s rule. Hence we weight each steepest edge iteration with 1.15. We note that this relative
cost may be hardware and software dependent enabling a user to customize.

Reward function: We denote T as the maximum number of unweighted iterations, which is taken as
28 for our experiments to limit the size of Q-values without cutting off a significant portion of paths to
optimal solutions, w as the factor by which steepest edge rule is costlier relative to Dantzig’s rule, i.e.,
0.15, `′(st) as the objective value before the action is performed, `(st, at) as the objective after the
action is performed, `∗ as the optimal value. Then the reward, denoted as R(st, at), at iteration t is:

R(st, at) =


0 t > T or `′ = `∗

1− 1
T t ≤ T, at = 0, and `′(st) > `(st, at) = `∗.

− 1
T t ≤ T, at = 0, and `(st, at) > `∗.

1− 1+w
T t ≤ T, at = 1, and `′(st) > `(st, at) = `∗.

− 1+w
T t ≤ T, at = 1, and `(st, at) > `∗.

5



Under review as a conference paper at ICLR 2020

Q-Value function: The true Q-value function, denoted as Q*, is the total of expected discounted
future rewards,

Q∗(st′ , at′) = R(st′ , at′) + max
{at}∞t=t′+1

∞∑
t=t′+1

γR(st, at)

where st−1 → st is a valid state transition and γ is the discount factor. If the optimal policy π∗’s
actions a∗ are known in advance, e.g., obtained by using the full simplex graph, then the optimal
Q-value function, Q∗, can be derived using the following recursion when γ = 1:

Q∗(st+1, a
∗
t+1) = Q∗(st, a

∗
t ) +

1

T
+ wa∗t .

Network architecture: The network has 8 fully connected hidden layers, where each layer has a
width of 128 and ReLU activation functions. The input of the network is the reduced costs and the
objective value of at the given simplex algorithm iteration. The width of the output is 2, the predicted
Q-Value when choosing Dantzig’s rule and the steepest edge rule, respectively. The tanh activation
function is applied on the 2 outputs.

5.1 LEARNING WITH Q*-VALUE

Unlike usual reinforcement learning (RL) applications, for the linear relaxations of five-city TSP
instances, we can generate Q*-values by creating the extreme point graph of each LP instance where
edges represent possible transitions using the Dantzig’s rule or the steepest edge rule. Since these
graphs tell us how many weighted and unweighted iterations are needed to reach the optimal solution
from any given current state/tableau/vertex and the action that leads to the optimal solution fastest, we
can use these actions to recursively construct the Q*-values. Before attempting to learn the Q-values
using RL, we use supervised learning of Q∗ to glean insights regarding the "learnability" of Q∗ and
the improvement potential of RL algorithms for minimizing the total weighted iterations.

Training Algorithm: For each LP instance, at each iteration of the simplex algorithm, a random
choice of action is taken. The tableaux for that LP are stored and sorted into batches of the chosen
batch size. Then the neural network is trained on this data set using supervised learning with
Q*-values.

Loss Function: For a single epoch of the training algorithm, at each iteration of simplex, the neural
network generates estimated Q-Values for the simplex tableau. The action corresponding to the higher
Q-Value is chosen and the error with respect to the Q*-values is noted. The mean square error over
all tableaux is reported as the test loss for that epoch.

5.2 LEARNING WITH DEEP RL

Learning with Q*-values tests the potential for learning pivoting rules, and learning with Deep RL,
without using Q*-values, aims to show whether it is possible to improve the performance of the
simplex algorithm using RL.

Training Algorithm: We implement a standard Q-learning algorithm with the reward function
described above. During an epoch, for each LP, at each iteration of simplex, the tableaux for the LP
instances are stored and sorted into batches. Then the network provides estimated Q-Values, where
an action is chosen with an epsilon-greedy approach. Q-Values of the next state and therefore the
gradients are found using the target network which is updated every 1/2 epoch. Epsilon is decayed
appropriately.

Loss function: At any t and a tableau st, we perform an action at and transition to tableau st+1 ←
(st, at). We define the loss as the mean square error betweenQ(st, at) and maxat+1

Q(st+1, at+1)−
1
T − wat, where Q refers to the network’s estimation of Q∗.

6 EXPERIMENTAL RESULTS

We first give performance results on supervised learning with Q*-values and reinforcement learning
algorithms. We then give an overall analysis of the experiments.

6



Under review as a conference paper at ICLR 2020

6.1 LEARNING WITH Q*-VALUES

Figure 2: Performance comparison of the supervised learning with Q*-values (blue line) against a
random pivoting rule (purple line), pure Dantzig’s rule (orange line), pure steepest edge rule (green
line), and the best possible strategy (red line) for weighted and unweighted iterations on training (first
row) and test sets (second row) for 850 epochs.

Figure 2 presents the performance comparison of the supervised learning with Q*-values against pure
Dantzig and steepest edge rules, a random strategy where Dantzig’s rule or the steepest edge rule is
chosen with a 50% chance, and the best possible strategy calculated using the graph representation
of the simplex algorithm. The first column of Figure 2 shows the performance of the algorithms for
weighted iterations, which is the metric used for training the network. The second column shows the
number of unweighted iterations, i.e., the total number of iterations taken. The final column gives the
training and test loss in each epoch.

For weighted iterations, the pure Dantzig’s rule takes 13.17 iterations, the pure steepest edge takes
11.85 iterations, and the random policy takes 12.9 iterations. The best performing network on the test
set takes 11.33 iterations with a corresponding 11.09 iterations on the training set. The network used
steepest edge 45.2% of the time on the training set and 47.6% of the time on the test set. The best
policy takes 9.65 weighted iterations on average and uses steepest edge 19.1% of the time. Hence, the
trained network outperforms all of the pure and random strategies, reducing the difference between
the best policy and the pure Dantzig’s rule, the pure steepest edge rule and the random policy by
52.3%, 23.6%, and 48.3%, respectively.

The hyperparameters used are a learning rate of 0.0001, a batch size of 128 tableaus, Orthognal Initial-
isation and Adams Optimizer with default Tensorflow parameters and an L2 regularization of 10−7.

6.2 DEEP REINFORCEMENT LEARNING (RL)

The experiments have the following parameters: 0.001 learning rate, 128 batch size, orthogonal
initialization, Adams optimizer and L2 regularisation with λ = 10−7. We use an epsilon greedy
approach to training over time, epsilon begins at 1.00 and is annealed to 0.01 over 50 epochs linearly.
The target network is updated twice per epoch.

Figure 3 presents the performance comparison of the deep reinforcement learning algorithm against
pure Dantzig and steepest edge rules, the random strategy, and the best policy where their weighted
iteration performances on the test set are 13.17, 11.85, 12.9, and 9.65, respectively. The best test
performance of the deep RL is 11.25 weighted iterations (using steepest edge 70.1 % of the time)
with corresponding 11.17 on the training set (using steepest edge 70.2% of the time), reducing the
difference between the best policy and the pure Dantzig and steepest edge rules, and the random
policy by 54.5%, 27.3%, and 50.8%, respectively. The last row of Figure 2 shows the RL loss plots on
training and test sets. The last column of Figure 2 presents the true loss with respect to the Q*-values
calculated in Section 6.1, indicating that deep RL network successfully estimates Q*-values.

7



Under review as a conference paper at ICLR 2020

Figure 3: Performance comparison of the deep reinforcement learning algorithm (blue line) against a
random pivoting rule (purple line), pure Dantzig’s rule (orange line), pure steepest edge rule(green
line), and the best possible strategy (red line) for weighted and unweighted iterations on training (first
row) and test (second row) sets for 500 epochs, given with both the reinforcement learning loss and
true loss against Q*-values.

6.3 ANALYSIS OF RESULTS

One of the most striking consequences of experiments is that the deep Q network performs on par with
the network trained with Q*-values in terms of weighted iterations on the test sets, which suggests
that the use of more sophisticated RL frameworks is unlikely to bring significant improvement. The
capacity of the network trained using RL to perform as well as supervised learning with Q*-values
also suggests scope for success on larger instances, and highlights the need for more bespoke neural
network architectures for further improvement.

7 CONCLUSION AND FUTURE WORK

We provide the first study on pivoting rules of the simplex algorithm and show the potential for
reducing the wall time of solving LPs. Applegate et al. (2003) report that their exact TSP algorithm
spends more than 98% of its computational time for solving LPs in large TSP instances. Hence, we
believe designing data-driven pivoting rules for a family of LP instances have potential benefits.

In this study, we have focused on small TSP instances (five cities) due to the cost of training neural
networks and the difficulty of developing new architectures for this task. Also, omniscient oracle
analysis becomes intractable for a larger number of cities. In future work, we want to explore how
well our approach scales to larger LP instances and how well it can be incorporated into combinatorial
optimization algorithms that solve LPs as a subroutine. The neural network inference has a significant
wall time cost, and we do not consider hardware acceleration approaches here. However, the successes
seen on mobile devices for image and video recognition networks suggest that if there is something to
be gained, then the hardware will follow. Finally, our results rely on the relative wall time estimates,
which are, in turn, heavily dependent on the hardware used and the typical instance size in the family.
We plan to update our algorithm to learn wall-time costs online.

8



Under review as a conference paper at ICLR 2020

REFERENCES

David L Applegate, Robert E Bixby, Vašek Chvátal, and William J Cook. Implementing the Dantzig-
Fulkerson-Johnson algorithm for large traveling salesman problems. Mathematical Programming,
97(1):91–153, Jul 2003.

David L Applegate, Robert E Bixby, Vašek Chvátal, and William J Cook. Concorde TSP solver,
2006a.

David L Applegate, Robert E Bixby, Vašek Chvátal, and William J Cook. The traveling salesman
problem: A computational study. Princeton University Press, 2006b.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
a methodological tour d’horizon. arXiv preprint arXiv:1811.06128, 2018.

Dimitris Bertsimas and Bartolomeo Stellato. Online mixed-integer optimization in milliseconds.
arXiv preprint arXiv:1907.02206, 2019.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to Linear Optimization, volume 6. Athena
Scientific Belmont, MA, 1997.

Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. Learning a classification of mixed-integer
quadratic programming problems. In Willem-Jan van Hoeve (ed.), Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pp. 595–604, Cham, 2018. Springer
International Publishing.

George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-salesman
problem. Journal of the operations research society of America, 2(4):393–410, 1954.

Christoph Hansknecht, Imke Joormann, and Sebastian Stiller. Cuts, primal heuristics, and learning
to branch for the time-dependent traveling salesman problem. arXiv preprint arXiv:1805.01415,
2018.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems 30,
pp. 6348–6358. Curran Associates, Inc., 2017.

Elias Boutros Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to
branch in mixed integer programming. In Thirtieth AAAI Conference on Artificial Intelligence,
2016.

Clair E Miller, Albert W Tucker, and Richard A Zemlin. Integer programming formulation of
traveling salesman problems. Journal of the ACM (JACM), 7(4):326–329, 1960.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing
Systems 28, pp. 2692–2700. Curran Associates, Inc., 2015.

David H Wolpert, William G Macready, et al. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation, 1(1):67–82, 1997.

9


	Introduction
	Related Work
	Linear Programming and Travelling Salesman Problem
	Learning Approach
	Experiment Design
	Learning with Q*-value
	Learning with Deep RL

	Experimental Results
	Learning with Q*-values
	Deep Reinforcement Learning (RL)
	Analysis of results

	Conclusion and Future Work

