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Abstract

Federated learning involves training and effec-
tively combining machine learning models from
distributed partitions of data (i.e., tasks) on edge
devices, and be naturally viewed as a multi-
task learning problem. While Federated Av-
eraging (FedAvg) is the leading optimization
method for training non-convex models in this
setting, its behavior is not well understood in re-
alistic federated settings when the devices/tasks
are statistically heterogeneous, i.e., where each
device collects data in a non-identical fash-
ion. In this work, we introduce a framework,
called FedProx, to tackle statistical heterogene-
ity. FedProx encompasses FedAvg as a spe-
cial case. We provide convergence guarantees
for FedProx through a device dissimilarity as-
sumption. Our empirical evaluation validates
our theoretical analysis and demonstrates the im-
proved robustness and stability of FedProx for
learning in heterogeneous networks.

1. Introduction

Large networks of remote devices, such as phones, ve-
hicles, and wearable sensors, generate a wealth of data
each day. Federated learning has emerged as an attrac-
tive paradigm to push the training of models in such net-
works to the edge (McMahan et al., 2017). In such settings,
the goal is to jointly learn over distributed partitions of
data/tasks, where statistical heterogeneity and systems con-
straints present significant challenges. Optimization meth-
ods that allow for local updating and low participation have
become the de facto solvers for federated learning (McMa-
han et al., 2017; Smith et al., 2017). These methods per-
form a variable number of local updates on a subset of de-
vices to enable flexible and efficient communication. Of
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current federated optimization methods, FedAvg (McMa-
han et al., 2017) has become state-of-the-art for non-convex
federated learning. However, FedAvg was not designed to
tackle the statistical heterogeneity which is inherent in fed-
erated settings; namely, that data may be non-identically
distributed across devices. In realistic statistically hetero-
geneous settings, FedAvg has been shown to diverge em-
pirically (McMahan et al., 2017, Sec 3), and it also lacks
theoretical convergence guarantees. Indeed, recent works
exploring convergence guarantees are limited to unrealistic
scenarios, where (1) the data is either shared across devices
or distributed in an IID (identically and independently dis-
tributed) manner, or (2) all devices are active at each com-
munication round (Zhou & Cong, 2017; Stich, 2018; Wang
& Joshi, 2018; Woodworth et al., 2018; Yu et al., 2018;
Wang et al., 2018).

Due to the statistical heterogeneity of the data in federated
networks, one can think of federated learning as a prime ex-
ample of distributed multi-task learning, where each device
corresponds to a task. However, the more common goal of
federated learning—and the focus of this work—involves
training a single global model on distributed data collected
for these various tasks. We introduce and study a novel op-
timization framework in the federated setting. Our focus
on its convergence behavior in the face of statistically het-
erogeneous data is closely related to the classical multi-task
setting which involves jointly learning task-specific models
from statistically heterogeneous data.

Contributions. We propose a federated optimization
framework for heterogeneous networks, FedProx, which
encompasses FedAvg. In order to characterize the conver-
gence behavior of FedProx, we invoke a device dissimi-
larity assumption in the network. Under this assumption,
we provide the first convergence guarantees for FedProx.
Finally, we demonstrate that our theoretical assumptions
reflect empirical performance, and that FedProx can im-
prove the robustness and stability of convergence over
FedAvg when data is heterogeneous across devices.

2. Related Work
Large-scale distributed machine learning has motivated the
development of numerous distributed optimization meth-
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ods in the past decade (see, e.g., Dean et al., 2012; Zhang
et al., 2013; Li et al., 2014a; Shamir et al., 2014; Reddi
et al., 2016; Zhang et al., 2015; Richtárik & Takáč, 2016;
Smith et al., 2018). However, it is increasingly attractive
to learn statistical models directly over networks of dis-
tributed devices. This problem, known as federated learn-
ing, requires tackling novel challenges with privacy, het-
erogeneous data, and massively distributed networks.

Recent optimization methods have been proposed that are
tailored to the specific challenges in the federated setting.
These methods have shown significant improvements over
traditional distributed approaches like ADMM (Boyd et al.,
2010) by allowing both for inexact local updating in order
to balance communication vs. computation in large net-
works, and for a small subset of devices to be active at any
communication round (McMahan et al., 2017; Smith et al.,
2017; Lin et al., 2018). For example, Smith et al. (2017)
proposes a communication-efficient primal-dual optimiza-
tion method that learns separate but related models for each
device through a multi-task learning framework. However,
such an approach does not generalize to non-convex prob-
lems, e.g. deep learning, due to lack of strong duality. In
the non-convex setting, Federated Averaging (FedAvg), a
heuristic method based on averaging local Stochastic Gra-
dient Descent (SGD) updates, has instead been shown to
work well empirically (McMahan et al., 2017).

Unfortunately, FedAvg is quite challenging to analyze due
to its local updating scheme, the fact that few devices are
active at each round, and the issue that data is heteroge-
neous. Recent works have made steps towards analyzing
FedAvg in simpler settings. For instance, parallel SGD
and related variants (Zhang et al., 2015; Zhou & Cong,
2017; Stich, 2018; Wang & Joshi, 2018; Woodworth et al.,
2018), which make local updates similar to FedAvg, have
been studied in the IID setting. Although some works (Yu
et al., 2018; Wang et al., 2018; Hao et al., 2019) have re-
cently explored convergence guarantees in heterogeneous
settings, they make the limiting assumptions such as full
participation of all devices, convexity (Wang et al., 2018),
or uniformly bounded gradients (Yu et al., 2018). There are
also several heuristic approaches that aim to tackle statis-
tical heterogeneity, either by sharing the local device data
or some server-side proxy data (Jeong et al., 2018; Zhao
et al., 2018; Huang et al., 2018), which may be unrealistic
in practical federated settings.

3. Federated Optimization: Algorithms

In this section, we introduce the key ingredients behind re-
cent methods for federated learning, including FedAvg,
and then outline our proposed framework, FedProx. Fed-

erated learning methods (e.g., McMahan et al., 2017; Smith
et al., 2017; Lin et al., 2018) are designed to handle multi-
ple devices collecting data and a central server coordinating
the global learning objective across the network. The aim
is to minimize:

min
w

f(w) =

N∑
k=1

pkFk(w) = Ek[Fk(w)], (1)

where N is the number of devices, pk ≥ 0,∀k, and∑
k pk=1. In general, the local objectives measure the local

empirical risk over possibly differing data distributionsDk,
i.e., Fk(w) := Exk∼Dk

[fk(w;xk)], with nk samples avail-
able at each device k. Hence, we can set pk=nk

n , where n=∑
k nk is the total number of data points.

To reduce communication and handle systems constraints,
federated optimization methods commonly allow for low
participation and local updating. At each round, a subset of
the devices are selected and use local solvers to optimize
the local objectives. Then the local updates are aggregated
via a central server. Each of the local objectives can be
solved inexactly, as formally defined below.

Definition 1 (γ-inexact solution). For a function
h(w;w0) = F (w) + µ

2 ‖w − w0‖2, and γ ∈ [0, 1],
we say w∗ is a γ-inexact solution of minw h(w;w0),
if ‖∇h(w∗;w0)‖ ≤ γ‖∇h(w0;w0)‖, where
∇h(w;w0) = ∇F (w) + µ(w − w0). Note that a
smaller γ corresponds to higher accuracy.

We use γ-inexactness in our analysis (Section 4) to measure
the amount of local computation from each local solver. In
experiments (Section 5), we simply run an iterative local
solver for some number of local epochs, which can be seen
as a proxy for γ-inexactness.

3.1. Federated Averaging (FedAvg)

In Federated Averaging (FedAvg) (McMahan et al., 2017),
at each round, a subset K � N of devices are selected
and run SGD locally for E number of epochs to optimize
the local objective Fk on device k, and then the resulting
model updates are averaged. McMahan et al. (2017) shows
empirically that it is crucial to tune the number of local
epochs for FedAvg to converge, as additional local epochs
allow local models to move further away from the initial
global model, potentially causing divergence. Thus, it is
beneficial to restrict the amount of local deviation through a
more principled tool than heuristically limiting the number
of local epochs of some iterative solver. This serves as our
inspiration for FedProx, introduced below.
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3.2. Proposed Framework: FedProx

Instead of just minimizing the local function Fk, in
FedProx, device k uses its local solver to approximately
minimize the following surrogate objective hk:

min
w
hk(w; wt) = Fk(w) +

µ

2
‖w − wt‖2. (2)

The proximal term in the above expression effectively lim-
its the impact of local updates by restricting them to be
close to the current model wt. We note that proximal terms
such as the one above are a popular tool utilized throughout
the optimization literature (see Appendix C). An important
distinction of the proposed usage is that we suggest, ex-
plore, and analyze such a term for the purpose of tackling
statistical heterogeneity in federated settings.

Algorithm 1 FedProx (Proposed Framework)
INPUT: K, T , µ, γ, w0, N , pk, k = 1, · · · , N
forall t = 0, · · · , T − 1 do

Server selects a subset St of K devices at random
(each device k is chosen with probability pk);
Server sends wt to all chosen devices;
Each chosen device k ∈ St finds a wt+1

k which is a γ-
inexact minimizer of: wt+1

k ≈ arg minw hk(w; wt) =
Fk(w) + µ

2 ‖w − w
t‖2;

Each chosen device k sends wt+1
k back to the server;

Server aggregates the w’s as wt+1 = 1
K

∑
k∈St

wt+1
k

In Section 4, we see that the usage of the proximal term
makes FedProx more amenable to theoretical analysis.
In Section 5, we also see the modified local subproblem in
FedProx results in more robust and stable convergence
compared to FedAvg for heterogeneous datasets. Note
that FedAvg is a special case of FedProx with µ = 0.

4. FedProx: Convergence Analysis

In this section we first introduce a metric that specifically
measures the dissimilarity among local functions. We call
this metric local dissimilarity. We then analyze FedProx
under an assumption on bounded local dissimilarity.

Definition 2 (B-local dissimilarity). The local functions
Fk are B-locally dissimilar at w if Ek

[
‖∇Fk(w)‖2

]
≤

‖∇f(w)‖2B2. We further define B(w)=
√

Ek[‖∇Fk(w)‖2]
‖∇f(w)‖2

for‖∇f(w)‖ 6=0.

Here Ek[·] denotes the expectation over devices with
masses pk=nk/n and

∑N
k=1 pk=1. Note thatB(w)≥ 1 and

the larger the value of B(w), the larger is the dissimilarity
among the local functions. Moreover, if Fk (·)’s are asso-
ciated with empirical risk objectives and the samples on all

the devices are homogeneous, then B(w)→ 1 for every w
as all the local functions converge to the same expected risk
function. Interestingly, similar assumptions (e.g., Vaswani
et al., 2019; Yin et al., 2018) have been explored elsewhere
for differing purposes; see more in Appendix C. Using Def-
inition 2, we now state our formal dissimilarity assumption,
which we use in our convergence analysis.

Assumption 1 (Bounded dissimilarity). For some ε > 0,
there exists a Bε such that for all the points w ∈ Scε =
{w | ‖∇f(w)‖2 > ε}, B(w) ≤ Bε.

Using Assumption 1, we analyze the amount of expected
objective decrease if one step of FedProx is performed.

Theorem 3 (Non-convex FedProx Convergence: B-local
dissimilarity). Let Assumption 1 hold. Assume the func-
tions Fk are non-convex, L-Lipschitz smooth, and there
exists L− > 0, such that ∇2Fk � −L−I, with µ̄ :=
µ − L− > 0. Suppose that wt is not a stationary so-
lution and the local functions Fk are B-dissimilar, i.e.
B(wt) ≤ B. If µ, K, and γ in Algorithm 1 are chosen
such that

ρ=

(
1

µ
− γB

µ
−B(1+γ)

√
2

µ̄
√
K

−LB(1+γ)

µ̄µ

−L(1+γ)2B2

2µ̄2
−LB

2(1+γ)2

µ̄2K

(
2
√

2K+2

))
>0,

then at iteration t of Algorithm 1, we have the following
expected decrease in the global objective:

ESt

[
f(wt+1)

]
≤f(wt)−ρ‖∇f(wt)‖2,

where St is the set of K devices chosen at iteration t.

We direct the reader to Appendix A.1 for a detailed proof.
Theorem 3 uses the dissimilarity in Definition 2 to iden-
tify sufficient decrease at each iteration for FedProx. In
Appendix A.2, we provide a corollary characterizing the
performance with a more common (though slightly more
restrictive) bounded variance assumption.

Remark 4. In order for ρ in Theorem 3 to be positive, we
need γB < 1. Moreover, we also need B√

K
< 1. These

conditions help to quantify the trade-off between dissimi-
larity bound (B) and the algorithm parameters (γ, K).

Finally, we can use the above sufficient decrease to char-
acterize the rate of convergence under Assumption 1. Note
that these results hold for general non-convex Fk(·).

Theorem 5 (Convergence rate: FedProx). Given some
ε > 0, assume that for B ≥ Bε, µ, γ and K the assump-
tions of Theorem 3 hold at each iteration of FedProx.
Moreover, f(w0)− f∗ = ∆. Then, after T = O( ∆

ρε ) itera-

tions of FedProx, we have 1
T

∑T−1
t=0 E

[
‖∇f(wt)‖2

]
≤ ε.
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While the results thus far hold for non-convex Fk(·), we
prove the convergence for convex loss in Appendix A.3. To
help provide context for the rate in Theorem 5, we compare
it with SGD in the convex case in Appendix A.4, Remark 9.

5. Experiments
We now present empirical results for FedProx. We
study the effect of statistical heterogeneity on the conver-
gence of FedAvg and FedProx, explore properties of
the FedProx framework, and show how empirical conver-
gence relates to the bounded dissimilarity assumption. We
show a subset of our experiments here due to space con-
straints; for full results we defer the reader to Appendix B.
All code, data, and experiments are publicly available at
github.com/litian96/FedProx.
Experimental Details. We evaluate FedProx on di-
verse tasks, models, and both synthetic and real-world
datasets. The real datasets are curated from prior work in
federated learning (McMahan et al., 2017; Caldas et al.,
2018). In particular, We study convex models on parti-
tioned MNIST (LeCun et al., 1998), Federated Extended
MNIST (Cohen et al., 2017; Caldas et al., 2018) (FEM-
NIST), and FMNIST*, and non-convex models on Sen-
timent140 (Go et al., 2009) (Sent140) and The Complete
Works of William Shakespeare (McMahan et al., 2017)
(Shakespeare). More details are provided in Appendix B.1.

Effect of Statistical Heterogeneity. In Figure 1, we
study how statistical heterogeneity affects convergence us-
ing four synthetic datasets. From left to right, as data be-
come more heterogeneous, convergence becomes worse for
FedProx with µ=0 (FedAvg). Setting µ > 0 is partic-
ularly useful in heterogeneous settings although that may
slow convergence for IID data.

Properties of FedProx Framework. The key parameters
of FedProx that affect performance are the number of lo-
cal epochs,E, and the proximal term scaled by µ. We study
FedProx under different values of E and µ using the fed-
erated datasets described in Table 1 in Appendix B.1. We
report the results on Shakespeare dataset here and provide
similar results on all datasets in Appendix B.3.

(1) Dependence on E. We explore the effect of E in Figure
2 (left) and show the convergence in terms of the training
loss. We see that large E leads to divergence on Shake-
speare. In Appendix B.3, we further show that large E
leads to similar instability on other heterogeneous datasets.
We note here that a large E may be particularly useful in
practice when communication is expensive (which is com-
mon in federated networks) where small E is prohibitive.
In Figure 3, e.g., we show that FedProx with a large E
(E=50) and an appropriate µ (µ=0.2) leads to faster and
more stable convergence compared with E=1, µ=0 (slow
convergence) and E=50, µ=0 (unstable convergence).
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Figure 1. Effect of data heterogeneity on convergence. We show
training loss (see testing accuracy and dissimilarity metric in Ap-
pendix B.3, Figure 7) on four synthetic datasets whose hetero-
geneity increases from left to right. The method with µ = 0
corresponds to FedAvg. Increasing heterogeneity leads to worse
convergence, but setting µ > 0 can help to combat this.
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Figure 2. Properties of the FedProx framework. Left: Effect of
increasing E on the Shakespeare dataset where µ=0. Too many
local updates can cause divergence for heterogeneous datasets.
Middle: Effect of µ. FedProx with µ>0 forces divergent meth-
ods to converge. Right: The dissimilarity measurement (variance
of gradients) on Shakespeare. This metric captures statistical het-
erogeneity and is consistent with training loss (middle subfigure).

(2) Dependence on µ. We consider the effect of µ on con-
vergence in Figure 2 (middle). We observe that the ap-
propriate µ can force divergent methods to converge or
increase the stability for unstable methods (Figure 5, Ap-
pendix B.3), thus making the performance of FedProx
less dependent on E. In practice, µ can be adaptively cho-
sen based on the current performance of the models. For
example, one simple heuristic is to increase µ when seeing
the loss increasing and decreasing µ when seeing the loss
decreasing. We provide additional experiments demon-
strating the effectiveness of this approach in Appendix B.5.

Dissimilarity Measurement and Divergence. Finally,
in Figure 2 (right), we track the variance of gradients on
each device, Ek[‖∇Fk(w) − ∇f(w)‖2], which is lower
bounded by Bε (see Bounded Variance Equivalence Corol-
lary 6). We observe that the dissimilarity metric in Def-
inition 2 is consistent with the training loss. Therefore,
smaller dissimilarity indicates better convergence, which
can be enforced by setting µ appropriately.
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Figure 3. FedProx can provide faster and more stable conver-
gence in communication-constraint environments (those requiring
large E) with appropriate µ.

https://github.com/litian96/FedProx
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A. Complete Proofs and Convergence Analysis

A.1. Proof of Theorem 3

Proof. Using our notion of γ-inexactness for each local solver (Definition 1), we can define et+1
k such that:

∇Fk(wt+1
k ) + µ(wt+1

k − wt)− et+1
k = 0,

‖et+1
k ‖ ≤ γ‖∇Fk(wt)‖ . (3)

Now let us define w̄t+1 = Ek
[
wt+1
k

]
. Based on this definition, we know

w̄t+1 − wt =
−1

µ
Ek
[
∇Fk(wt+1

k )
]

+
1

µ
Ek
[
et+1
k

]
. (4)

Let us define µ̄ = µ− L− > 0 and ŵt+1
k = arg minw hk(w;wt). Then, due to the µ̄-strong convexity of hk, we have

‖ŵt+1
k − wt+1

k ‖ ≤ γ

µ̄
‖∇Fk(wt)‖. (5)

Note that once again, due to the µ̄-strong convexity of hk, we know that ‖ŵt+1
k − wt‖ ≤ 1

µ̄‖∇Fk(wt)‖. Now we can use
the triangle inequality to get

‖wt+1
k − wt‖ ≤ 1 + γ

µ̄
‖∇Fk(wt)‖. (6)

Therefore,

‖w̄t+1 − wt‖ ≤ Ek
[
‖wt+1

k − wt‖
]
≤ 1 + γ

µ̄
Ek
[
‖∇Fk(wt)‖

]
≤ 1 + γ

µ̄

√
Ek[‖∇Fk(wt)‖2] ≤ B(1 + γ)

µ̄
‖∇f(wt)‖, (7)

where the last inequality is due to the bounded dissimilarity assumption.

Now let us define Mt+1 such that w̄t+1 − wt = −1
µ

(
∇f(wt) + Mt+1

)
, i.e. Mt+1 = Ek

[
∇Fk(wt+1

k )−∇Fk(wt)− et+1
k

]
.

We can bound ‖Mt+1‖:

‖Mt+1‖ ≤ Ek
[
L‖wt+1

k − wtk‖+ ‖et+1
k ‖

]
≤

(
L(1 + γ)

µ̄
+ γ

)
× Ek

[
‖∇Fk(wt)‖

]
≤

(
L(1 + γ)

µ̄
+ γ

)
B‖∇f(wt)‖, (8)

where the last inequality is also due to bounded dissimilarity assumption. Based on the L-Lipschitz smoothness of f and
Taylor expansion, we have

f(w̄t+1) ≤ f(wt) + 〈∇f(wt), w̄t+1 − wt〉+
L

2
‖w̄t+1 − wt‖2

≤ f(wt)− 1

µ
‖∇f(wt)‖2 − 1

µ
〈∇f(wt),Mt+1〉+

L(1 + γ)2B2

2µ̄2
‖∇f(wt)‖2

≤ f(wt)−
(

1− γB
µ

− LB(1 + γ)

µ̄µ
− L(1 + γ)2B2

2µ̄2

)
× ‖∇f(wt)‖2. (9)

From the above inequality it follows that if we set the penalty parameter µ large enough, we can get a decrease in the
objective value of f(w̄t+1)− f(wt) which is proportional to ‖∇f(wt)‖2. However, this is not the way that the algorithm
works. In the algorithm, we only use K devices that are chosen randomly to approximate w̄t. So, in order to find the
E
[
f(wt+1)

]
, we use local Lipschitz continuity of the function f .

f(wt+1) ≤ f(w̄t+1) + L0‖wt+1 − w̄t+1‖, (10)

where L0 is the local Lipschitz continuity constant of function f and we have

L0 ≤ ‖∇f(wt)‖+ Lmax(‖w̄t+1 − wt‖, ‖wt+1 − wt‖)
≤ ‖∇f(wt)‖+ L(‖w̄t+1 − wt‖+ ‖wt+1 − wt‖). (11)
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Therefore, if we take expectation with respect to the choice of devices in round t we need to bound

ESt

[
f(wt+1)

]
≤ f(w̄t+1) +Qt, (12)

where Qt = ESt

[
L0‖wt+1 − w̄t+1‖

]
. Note that the expectation is taken over the random choice of devices to update.

Qt ≤ ESt

[(
‖∇f(wt)‖+ L(‖w̄t+1 − wt‖+ ‖wt+1 − wt‖)

)
× ‖wt+1 − w̄t+1‖

]
≤
(
‖∇f(wt)‖+ L‖w̄t+1 − wt‖

)
ESt

[
‖wt+1 − w̄t+1‖

]
+ LESt

[
‖wt+1 − wt‖ · ‖wt+1 − w̄t+1‖

]
≤
(
‖∇f(wt)‖+ 2L‖w̄t+1 − wt‖

)
ESt

[
‖wt+1 − w̄t+1‖

]
+ LESt

[
‖wt+1 − w̄t+1‖2

]
(13)

From (7), we have that ‖w̄t+1 − wt‖ ≤ B(1+γ)
µ̄ ‖∇f(wt)‖. Moreover,

ESt

[
‖wt+1 − w̄t+1‖

]
≤
√

ESt [‖wt+1 − w̄t+1‖2] (14)

and

ESt

[
‖wt+1 − w̄t+1‖2

]
≤ 1

K
Ek
[
‖wt+1

k − w̄t+1‖2
]

≤ 2

K
Ek
[
‖wt+1

k − wt‖2
]
, (as w̄t+1 = Ek

[
wt+1
k

]
)

≤ 2

K

(1 + γ)2

µ̄2
Ek
[
‖∇Fk(wt)‖2

]
(from (6))

≤ 2B2

K

(1 + γ)2

µ̄2
‖∇f(wt)‖2, (15)

where the first inequality is a result ofK devices being chosen randomly to get wt and the last inequality is due to bounded
dissimilarity assumption. If we replace these bounds in (13) we get

Qt ≤

(
B(1 + γ)

√
2

µ̄
√
K

+
LB2(1 + γ)2

µ̄2K

(
2
√

2K + 2

))
‖∇f(wt)‖2 (16)

Combining (9), (12), (10) and (16) and using the notation α = 1
µ we get

ESt

[
f(wt+1)

]
≤ f(wt)−

(
1

µ
− γB

µ
− B(1 + γ)

√
2

µ̄
√
K

− LB(1 + γ)

µ̄µ

− L(1 + γ)2B2

2µ̄2
− LB2(1 + γ)2

µ̄2K

(
2
√

2K + 2

))
‖∇f(wt)‖2.

A.2. Proof for Bounded Variance

Theorem 3 uses the dissimilarity in Definition 2 to identify sufficient decrease at each iteration for FedProx. Here
we provide a corollary characterizing the performance with a more common (though slightly more restrictive) bounded
variance assumption. This assumption is commonly employed, e.g., when analyzing methods such as SGD.
Corollary 6 (Bounded Variance Equivalence). Let Assumption 1 hold. Then, in the case of bounded variance, i.e.,

Ek
[
‖∇Fk(w)−∇f(w)‖2

]
≤ σ2, for any ε > 0 it follows that Bε ≤

√
1 + σ2

ε .

Proof. We have,

Ek[‖∇Fk(w)−∇f(w)‖2] = Ek[‖∇Fk(w)‖2]− ‖∇f(w)‖2 ≤ σ2

⇒ Ek[‖∇Fk(w)‖2] ≤ σ2 + ‖∇f(w)‖2

⇒ Bε =

√
Ek[‖∇Fk(w)‖2]

‖∇f(w)‖2
≤
√

1 +
σ2

ε
.
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With Corollary 6 in place, we can restate the main result in Theorem 3 in terms of the bounded variance assumption.

Theorem 7 (Non-Convex FedProx Convergence: Bounded Variance). Let the assertions of Theorem 3 hold. In addition,
let the iterate wt be such that ‖∇f(wt)‖2 ≥ ε, and let Ek

[
‖∇Fk(w)−∇f(w)‖2

]
≤ σ2 hold instead of the dissimilarity

condition. If µ, K and γ in Algorithm 1 are chosen such that

ρ=

(
1

µ
−

(
γ

µ
+

(1+γ)
√

2

µ̄
√
K

+
L(1+γ)

µ̄µ

)√
1+

σ2

ε
−
(
L(1+γ)2

2µ̄2
+
L(1+γ)2

µ̄2K

(
2
√

2K+2

))(
1+

σ2

ε

))
>0,

then at iteration t of Algorithm 1, we have the following expected decrease in the global objective:

ESt

[
f(wt+1)

]
≤f(wt)−ρ‖∇f(wt)‖2,

where St is the set of K devices chosen at iteration t.

The proof of Theorem 7 follows from the proof of Theorem 3 by noting the relationship between the bounded variance
assumption and the dissimilarity assumption as portrayed by Corollary 6.

A.3. Convergence: Convex Case

Corollary 8 (Convergence: Convex Case). Let the assertions of Theorem 3 hold. In addition, let Fk (·) be convex and
γ = 0, i.e., all the local problems are solved exactly. If 1 � B ≤ 0.5

√
K, then we can choose µ ≈ 6LB2 from which it

follows that ρ ≈ 1
24LB2 .

Proof. In the convex case, where L− = 0 and µ̄ = µ, if γ = 0, i.e., all subproblems are solved accurately, we can get a
decrease proportional to ‖∇f(wt)‖2 if B <

√
K. In such a case if we assume 1 << B ≤ 0.5

√
K, then we can write

ESt

[
f(wt+1)

]
/ f(wt)− 1

2µ
‖∇f(wt)‖2 +

3LB2

2µ2
‖∇f(wt)‖2 . (17)

In this case, if we choose µ ≈ 6LB2 we get

ESt

[
f(wt+1)

]
/ f(wt)− 1

24LB2
‖∇f(wt)‖2 . (18)

Note that the expectation in (18) is a conditional expectation conditioned on the previous iterate. Taking expectation of
both sides, and telescoping, we have that the number of iterations to at least generate one solution with squared norm of
gradient less than ε is O(LB

2∆
ε ).

A.4. Comparison with SGD

Remark 9 (Comparison with SGD). Note that FedProx achieves the same asymptotic convergence guarantee as SGD.
In other words, under the bounded variance assumption, for small ε, if we replace Bε with its upper-bound in Corollary
6 and choose µ large enough, then the iteration complexity of FedProx when the subproblems are solved exactly and
Fk(·)’s are convex would be O(L∆

ε + L∆σ2

ε2 ), which is the same as SGD (Ghadimi & Lan, 2013).

B. Experimental Details

Synthetic data. To generate synthetic data, we follow a similar setup to that described in (Shamir et al., 2014), additionally
imposing heterogeneity among devices. Full details are given in Appendix B.1. In particular, for each device k, we generate
synthetic samples (Xk, Yk) according to the model y = argmax(softmax(Wx+ b)), x ∈ R60,W ∈ R10×60, b ∈ R10. We
model Wk ∼ N (uk, 1), bk ∼ N (uk, 1), uk ∼ N (0, α); xk ∼ N (vk,Σ), where the covariance matrix Σ is diagonal with
Σj,j = j−1.2. Each element in the mean vector vk is drawn from N (Bk, 1), Bk ∼ N(0, β). Therefore, α controls how
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much local models differ from each other and β controls how much the local data at each device differs from that of other
devices. We vary α, β to generate three heterogeneous distributed datasets, Synthetic (α, β), as shown in Figure 1. We also
generate one IID dataset by setting the same W, b on all devices and setting Xk to follow the same distribution. Our goal
is to learn a global W and b.

Real data. We also explore five real datasets, their statistics summarized in Table 1 in Appendix B.1. These datasets
are curated from prior work in federated learning as well as recent federated learning-related benchmarks (McMahan
et al., 2017; Caldas et al., 2018). We study two convex models on partitioned MNIST (LeCun et al., 1998), Federated
Extended MNIST (Cohen et al., 2017; Caldas et al., 2018) (FEMNIST), and FMNIST*. We study two non-convex models
on Sentiment140 (Go et al., 2009) (Sent140) and The Complete Works of William Shakespeare (McMahan et al., 2017)
(Shakespeare). Details of datasets, models, and workloads are provided in Appendix B.1.

Implementation. We implement FedAvg and FedProx in Tensorflow (Abadi et al., 2015). See details in Appendix B.2.

Setup. For each experiment, we tune the learning rate and ratio of active devices per round on FedAvg. We randomly
split the data on each local device into 80% training set and 20% testing set. For each comparison, the devices selected
and data read at each round are the same across all runs. We report all metrics based on the global objective f(w). Note
that FedAvg (µ = 0) and FedProx (µ ≥ 0) perform the same amount of work at each round when the number of local
epochs, E, is the same; we therefore report results in terms of rounds rather than FLOPs or wall-clock time.

B.1. Datasets and Models

Here we provide full details on the datasets and models used in our experiments. We curate a diverse set of non-synthetic
datasets, including those used in prior work on federated learning (McMahan et al., 2017), and some proposed in LEAF,
a benchmark for federated settings (Caldas et al., 2018). We also create synthetic data to directly test the effect of hetero-
geneity on convergence, as in Section 5.

• Synthetic: We set (α, β)=(0,0), (0.5,0.5) and (1,1) respectively to generate three non-identical distributed datasets
(Figure 1). In the IID data, we set the same W, b ∼ N (0, 1) on all devices and Xk to follow the same distribution
N (v,Σ) where each element in the mean vector v is drawn from N (0, 1) and Σ is diagonal with Σj,j = j−1.2. For
all synthetic datasets, there are 30 devices in total and the number of samples on each device follows a power law.

• MNIST: We study image classification of handwritten digits 0-9 in MNIST (LeCun et al., 1998) using multinomial
logistic regression. To simulate a heterogeneous setting, we distribute the data among 1000 devices such that each
device has samples of only 2 digits and the number of samples per device follows a power law. The input of the model
is a flattened 784-dimensional (28 × 28) image, and the output is a class label between 0 and 9.

• FEMNIST: We study an image classification problem on the 62-class EMNIST dataset (Cohen et al., 2017) using
multinomial logistic regression. Each device corresponds to a writer of the digits/characters in EMNIST. We call this
federated version of EMNIST FEMNIST. The input of the model is a flattened 784-dimensional (28× 28) image, and
the output is a class label between 0 and 61.

• Shakespeare: This is a dataset built from The Complete Works of William Shakespeare (McMahan et al., 2017). Each
speaking role in a play represents a different device. We use a two layer LSTM classifier containing 100 hidden units
with a 8D embedding layer. The task is next character prediction and there are 80 classes of characters in total. The
model takes as input a sequence of 80 characters, embeds each of the character into a learned 8 dimensional space and
outputs one character per training sample after 2 LSTM layers and a densely-connected layer.

• Sent140: In non-convex settings, we consider a text sentiment analysis task on tweets from Sentiment140 (Go et al.,
2009) (Sent140) with a two layer LSTM binary classifier containing 256 hidden units with pretrained 300D GloVe
embedding (Pennington et al., 2014). Each twitter account corresponds to a device. The model takes as input a
sequence of 25 characters, embeds each of the character into a 300 dimensional space by looking up Glove and
outputs one character per training sample after 2 LSTM layers and a densely-connected layer.
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Table 1. Statistics of Federated Datasets

Dataset Devices Samples Samples/device

mean stdev
MNIST 1,000 69,035 69 106
FEMNIST 900 305,654 340 107
Shakespeare 143 517,706 3,620 4,115
Sent140 5,726 215,829 38 19
FEMNIST* 200 79,059 395 873

• FEMNIST*: We generate FEMNIST* by subsampling 26 lower case characters from FEMNIST and distributing
only 20 classes to each device. There are 200 devices in total. The model is the same as the one used on FEMNIST.

B.1.1. STATISTICS OF FEDERATED DATASETS

We report the total number of devices, samples, and the mean and standard deviation of samples per device of real federated
datasets in Table 1.

B.2. Implementation Details

(Implementation) In order to draw a fair comparison with FedAvg, we use SGD as a local solver for FedProx, and
adopt a slightly different device sampling scheme than that in Algorithms FedAvg and 1: sampling devices uniformly and
averaging updates with weights proportional to the number of local data points (as originally proposed in (McMahan et al.,
2017)). While this sampling scheme is not supported by our analysis, we observe similar relative behavior of FedProx vs.
FedAvg whether or not it is employed. Interestingly, we also observe that the sampling scheme proposed herein results in
more stable performance for both methods (see Appendix B.4, Figure 10). This suggests an added benefit of the proposed
framework.

(Machines) We simulate the federated learning setup (1 server and N devices) on a commodity machine with 2 Intel R©

Xeon R© E5-2650 v4 CPUs and 8 NVidia R© 1080Ti GPUs.

(Hyperparameters) For each dataset, we tune the ratio of active clients per round from {0.01, 0.05, 0.1} on FedAvg. For
synthetic datasets, roughly 10% of the devices are active at each round. For MNIST, FEMNIST, Shakespeare, Sent140 and
FEMNIST*, the number of active devices (K) are 1%, 5%, 10%, 1% and 5% respectively. We also do a grid search on the
learning rate based on FedAvg. We do not decay the learning rate through all rounds. For all synthetic data experiments,
the learning rate is 0.01. For MNIST, FEMNIST, Shakespeare, Sent140 and FEMNIST*, we use the learning rates of 0.03,
0.003, 0.8, 0.3 and 0.003. We use a batch size of 10 for all experiments.

(Libraries) All code is implemented in Tensorflow (Abadi et al., 2015) Version 1.10.1. Please see
github.com/litian96/FedProx for full details.

B.3. Full Experiments

We explore the effect of E in Figure 4. For each dataset, we set E to be 1, 20, and 50 while keeping µ = 0 (FedProx
reduces to FedAvg in this case) and show the convergence in terms of the training loss. We see that large E leads to
divergence or instability on MNIST and Shakespeare. On FEMNIST and Sent140, nevertheless, larger E speeds up the
convergence. Based on conclusions drawn from Figure 1, we hypothesize this is due to the fact that the data distributed
across devices after partitioning FEMNIST and Sent140 lack significant heterogeneity. We validate this hypothesis by
observing instability on FEMNIST*, which is a skewed variant of the FEMNIST dataset.

https://github.com/litian96/FedProx
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Figure 4. Effect of increasing E on real federated datasets where µ = 0 (corresponds to FedAvg). Too many local updates can cause
divergence or instability for heterogeneous datasets. Note that FEMNIST* is a more skewed version of FEMNIST.
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Figure 5. Effect of µ on real datasets. The setting µ = 0 corresponds to FedAvg. FedProx with µ > 0 leads to more stable
convergence and enables otherwise divergent methods to converge.

We consider the effect of µ on convergence in Figure 5. For each experiment, in the case of E = 50, we compare the
results between µ = 0 and the best µ. For three out of the four datasets (all but Sent140) we observe that the appropriate µ
can increase the stability for unstable methods and can force divergent methods to converge.

Finally, in Figure 6, we demonstrate that our B-local dissimilarity measurement in Definition 2 captures the heterogeneity
of datasets and is therefore an appropriate proxy of performance. In particular, we track the variance of gradients on each
device, Ek[‖∇Fk(w) −∇f(w)‖2], which is lower bounded by Bε (see Bounded Variance Equivalence Corollary 6). We
observe that the dissimilarity metric is consistent with the training loss. Therefore, smaller dissimilarity indicates better
convergence, which can be enforced by setting µ appropriately. Full results tracking B (for all experiments performed) are
provided in Appendix B.3.

We present testing accuracy, training loss and dissimilarity measurements of all the experiments in Figure 7, Figure 8 and
Figure 9.
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Figure 6. The dissimilarity measurement (variance of gradients) on four federated datasets. This metric captures statistical heterogeneity
and is consistent with training loss (Figure 5). Smaller dissimilarity indicates better convergence.
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Figure 7. Training loss, testing accuracy and dissimilarity measurement for experiments in Figure 1

B.4. FedProx with two device sampling schemes

We show the training loss, testing accuracy and dissimilarity measurement of FedProx using two different device sam-
pling schemes in Figure 10.

B.5. Adaptively setting µ

We show a simple adaptive heuristic of setting µ on four synthetic datasets in Figure 11.

C. Connections to other federated and distributed methods

Two aspects of the proposed work: our framework, FedProx, and analysis tool, the bounded dissimilarity assumption,
have been utilized throughout the optimization literature—though often with very different motivations. For completeness,
we provide a discussion below on our relation to these prior works.



Federated Optimization for Heterogeneous Networks

0 100 200 300 400
# Rounds

1

2

Tr
ai

ni
ng

 L
os

s

MNIST

0 100 200 300 400
# Rounds

2

3

4

FEMNIST

0 10 20 30 40
# Rounds

2

3

4

Shakespeare

0 250 500 750 1000
# Rounds

0.6

0.7

0.8

0.9

Sent140

0 100 200 300 400
# Rounds

1

2

3

4

5
FEMNIST*

E=1
E=20
E=50

0 100 200 300 400
# Rounds

0.2

0.4

0.6

0.8

Te
st

in
g 

Ac
cu

ra
cy

MNIST

0 100 200 300 400
# Rounds

0.0

0.2

0.4

0.6

FEMNIST

0 10 20 30 40
# Rounds

0.0

0.2

0.4

Shakespeare

0 250 500 750 1000
# Rounds

0.5

0.6

0.7

Sent140

0 100 200 300 400
# Rounds

0.0

0.2

0.4

0.6

FEMNIST*

E=1
E=20
E=50

0 100 200 300 400
# Rounds

20

40

60

80

Va
ria

nc
e 

of
 L

oc
al

 G
ra

d. MNIST

0 100 200 300 400
# Rounds

10

20

30

FEMNIST

0 10 20 30 40
# Rounds

0

2

4

6
Shakespeare

0 250 500 750 1000
# Rounds

0

5

10

15

20

Sent140

0 100 200 300 400
# Rounds

0

20

40

60

80
FEMNIST*

E=1
E=20
E=50

Figure 8. Training loss, testing accuracy and dissimilarity measurement for experiments in Figure 4
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Figure 9. Training loss, testing accuracy and dissimilarity measurement for experiments in Figure 5

Proximal term. We note here a connection to elastic averaging SGD (EASGD) (Zhang et al., 2015), which was proposed
as a way to train deep networks in the data center setting, and uses a similar proximal term in its objective. While the
intuition is similar to EASGD (this term helps to prevent large deviations on each device/machine), EASGD employs a
more complex moving average to update parameters, is limited to using SGD as a local solver, and has only been analyzed
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Figure 10. Differences between two sampling schemes in terms of training loss, testing accuracy and dissimilarity measurement. Sam-
pling devices with a probability proportional to the number of local data points and then simply averaging local models performs slightly
better than uniformly sampling devices and averaging the local models with weights proportional to the number of local data points.
Under either sampling scheme, the settings with µ = 1 demonstrate more stable performance than settings with µ = 0.

for simple quadratic problems. The proximal term we introduce has also been explored in previous optimization literature
with very different purposes, such as (Allen-Zhu, 2018), to speed up (mini-batch) SGD training on a single machine. Li
et al. (2014b) also employs a similar proximal term for efficient SGD training both in a single machine and distributed
settings, but their analysis is limited to a single machine setting with different assumptions (e.g., IID data and solving
the subproblem exactly at each round). DANE (Shamir et al., 2014) also includes a proximal term in the local objective
function. However, due to the inexact estimation of full gradients (i.e., ∇φ(w(t−1)) in (Shamir et al., 2014, Eq (13)))
with device subsampling schemes and the staleness of the gradient correction term (Shamir et al., 2014, Eq (13)) in local
updating methods, it is not directly applicable to our setting and performs worse on heterogeneous datasets (see Figure 12).

Bounded dissimilarity assumption. The bounded dissimilarity assumption has appeared in different forms, for example
in (Yin et al., 2018; Vaswani et al., 2019). In (Yin et al., 2018), the bounded similarity assumption is used in context of
asserting gradient diversity and quantifying the benefit in terms of scaling of the mean square error for mini-batch SGD
for data which is i.i.d. In (Vaswani et al., 2019), the authors use a similar assumption, called strong growth condition,
which is a stronger version of Assumption 1 with ε = 0. They prove that some interesting practical problems satisfy such
a condition. They also use this assumption to prove better convergence rates for SGD with constant step-size. Note that
this is different with our approach as the algorithm that we are analyzing is not SGD and our analysis is different in spite
of the similarity in the assumptions.
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Figure 11. Results of choosing µ adaptively. We increase µ by 0.1 whenever the loss increases and decreases it by 0.1 whenever the loss
decreases for 5 consecutive rounds. We initialize µ to 1 for the IID data (Synthetic-IID) (in order to be adversarial to our methods), and
initialize it to 0 for the other three non-IID datasets. We observe that this simple heuristic works well in practice.
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Figure 12. We twist DANE (Shamir et al., 2014) to federated settings by allowing for local updating and low participation of devices,
which we call FedDane. We show the convergence of FedDane on synthetic datasets. In the top figures, we subsample 10 devices out
of 30 on all datasets for both FedProx and FedDane. While FedDane performs similarly as FedProx on the IID data, it suffers
from poor convergence on other non-IID datasets. In the bottom figures, we show the results of FedDane when we increase the number
of selected devices in order to narrow the gap between our estimated full gradient and the real full gradient (in the gradient correction
term). Note that communicating with all (or most of the) devices is already unrealistic in practical settings. We observe that although
sampling more devices per round might help to some extent, FedDane is still unstable and divergent.


