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ABSTRACT

Most research on lifelong learning applies to images or games, but not language.
We present LAMOL, a simple yet effective method for lifelong language learning
(LLL) based on language modeling. LAMOL replays pseudo-samples of pre-
vious tasks while requiring no extra memory or model capacity. Specifically,
LAMOL is a language model that simultaneously learns to solve the tasks and
generate training samples. When the model is trained for a new task, it gen-
erates pseudo-samples of previous tasks for training alongside data for the new
task. The results show that LAMOL prevents catastrophic forgetting without
any sign of intransigence and can perform five very different language tasks se-
quentially with only one model. Overall, LAMOL outperforms previous meth-
ods by a considerable margin and is only 2–3% worse than multitasking, which
is usually considered the LLL upper bound. The source code is available at
https://github.com/jojotenya/LAMOL.

1 INTRODUCTION

The current dominant paradigm for machine learning is to run an algorithm on a given dataset to
produce a trained model specifically for a particular purpose; this is isolated learning (Chen & Liu,
2016, p. 150). In isolated learning, the model is unable to retain and accumulate the knowledge it
has learned before. When a stream of tasks are joined to be trained sequentially, isolated learning
faces catastrophic forgetting (McCloskey & Cohen, 1989) due to a non-stationary data distribution
that biases the model (left figure of Figure 1). In contrast, lifelong learning is designed to address a
stream of tasks by accumulating interconnected knowledge between learned tasks and retaining the
performance of those tasks. A human easily achieves lifelong learning, but this is nontrivial for a
machine; thus lifelong learning is a vital step toward artificial general intelligence.

In this paper, we focus on lifelong language learning, where a machine achieves lifelong learning
on a stream of natural language processing (NLP) tasks. To the best of our knowledge, lifelong
language learning has been studied in only a few instances; for sentiment analysis (Chen et al.,
2015b; Xia et al., 2017), conversational agents (Lee, 2017), word representation learning (Xu et al.,
2018), sentence representation learning (Liu et al., 2019), text classification, and question answer-
ing (d’Autume et al., 2019). However, in all previous work, the tasks in the stream are essentially
the same task but in different domains. To achieve lifelong language learning on fundamentally
different tasks, we propose LAMOL — LAnguage MOdeling for Lifelong language learning.

It has been shown that many NLP tasks can be considered question answering (QA) (Bryan McCann
& Socher, 2018). Therefore, we address multiple NLP tasks with a single model by training a
language model (LM) that generates an answer based on the context and the question. Treating QA
as language modeling is beneficial because the LM can be pre-trained on a large number of sentences
without any labeling (Radford et al., 2019); however, this does not directly solve the problem of LLL.
If we train an LM on a stream of tasks, catastrophic forgetting still occurs. However, as an LM is
intrinsically a text generator, we can use it to answer questions while generating pseudo-samples of
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Figure 1: Left: After learning Task 2, the learner has already forgetten how to solve Task 1. This
is “catastrophic forgetting”. Middle: The basic idea of the data-based LLL approach. A generator
is learned to generate examples it has seen before. Using the generator, the learner also learns
from examples from the previous task to prevent it from forgetting. Right: A language model that
simultaneously takes on the roles of learner and generator.

the previous task to be replayed later. LAMOL is inspired by the data-based approach for LLL in
which a generator learns to generate samples in previous tasks (middle of Figure 1) (Hanul Shin &
Kim, 2017; Kemker & Kanan, 2017). In contrast to previous approaches, LAMOL needs no extra
generator (right of Figure 1). LAMOL is also similar to multitask training, but the model itself
generates data from previous tasks instead of using real data.

Our main contributions in this paper are:

• We present LAMOL, a simple yet effective method for LLL. Our method has the advantages of
no requirements in terms of extra memory or model capacity. We also do not need to know how
many tasks to train in advance and can always train on additional tasks when needed.

• Experimental results show that our methods outperform baselines and other state-of-the-art meth-
ods by a considerable margin and approaches the multitasking upper bound within 2–3%.

• Furthermore, we propose adding task-specific tokens during pseudo-sample generation to evenly
split the generated samples among all previous tasks. This extension stabilizes LLL and is partic-
ularly useful when training on a large number of tasks.

• We analyze how different amounts of pseudo-samples affect the final performance of LAMOL,
considering results both with and without the task-specific tokens.

• We open-source our code to facilitate further LLL research.

2 RELATED WORK

Lifelong learning research is based on regularization, architecture, or data. Here is a brief survey of
works in these three categories.

2.1 REGULARIZATION-BASED METHODS

In this approach, a constraint, i.e., a regularization term, is added to minimize deviation from trained
weights while updating the weights in a new task. Most regularization based methods estimate the
importance of each parameter and add the importance as a constraint to the loss function. Elas-
tic weight consolidation (EWC) (Kirkpatrick et al., 2017) calculates a Fisher information matrix
to estimate the sensitivity of parameters as importance. Online EWC (Schwarz et al., 2018) is a
transformed version of EWC. Instead of tracking the importance of parameters for each task, online
EWC simply accumulates the importance of the stream of tasks. Synaptic intelligence (SI) (Zenke
et al., 2017) assigns importance to each parameter according to its contribution to the change in the
total loss. Memory aware synapses (MAS) (Aljundi et al., 2018) estimate importance via the gradi-
ents of the model outputs. In contrast to estimating the importance of weights, incremental moment
matching (IMM) (Lee et al., 2017) matches the moment of weights between different tasks.
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2.2 ARCHITECTURE-BASED METHODS

For this category, the main idea is to assign a dedicated capacity inside a model for each task. After
completing a task, the weights are frozen and may not be changed thereafter. Some methods allow
models to expand, whereas some fix the size but must allocate capacity for tasks at the beginning.
Progressive neural networks (Rusu et al., 2016) utilize one column of the neural network per task.
Once a new task is trained, progressive neural networks augment a new column of the neural network
for the task while freezing the past trained columns. Columns that have been frozen are not allowed
to change but are connected to the new column to transfer knowledge from old tasks. Towards
Training Recurrent Neural Networks for Lifelong Learning (Sodhani et al., 2018) unifies Gradient
episodic memory (Lopez-Paz et al., 2017) and Net2Net (Chen et al., 2015a). Using the curriculum-
based setting, the model learns the tasks in easy-to-hard order. The model alleviates the forgetting
problem by GEM method, and if it fails to learn the current task and has not been expanded yet, the
model will expand to a larger model by the Net2Net approach.

PathNet (Fernando et al., 2017) reuses subsets of a neural network to transfer knowledge between
tasks. Unlike progressive neural networks, PathNet does not allow the model to expand. Instead,
it builds a huge fixed-size model composed of a neural network and paths between different layers
of the neural networks. While training a task, it selects the best combination of neural networks
and paths for that particular task. Similar to progressive neural networks, selected parts are fixed to
allow only inference and not training. Inspired by network pruning, PackNet (Mallya & Lazebnik,
2018) prunes and re-trains the network iteratively to pack numerous tasks into a single huge model.

This category has some drawbacks. When resources are limited, model expansion is prohibited.
Also, some architecture-based methods require the number of tasks in advance to allocate the ca-
pacity for the tasks, which greatly reduces their practicality.

2.3 DATA-BASED METHODS

This method restricts weights through the data distribution of old tasks. One data-based approach
keeps a small amount of real samples from old tasks, and the other distills the knowledge from
old data and imagines pseudo-data of old tasks later on. While training a new task, the data or
pseudo-data is used to prevent weights from greatly deviating from the previous status.

Gradient episodic memory (GEM) (Lopez-Paz et al., 2017) preserves a subset of real samples from
previous tasks. Utilizing these real samples during optimization helps somewhat to constrain pa-
rameter gradients. Averaged-GEM (A-GEM) (Chaudhry et al., 2018) is a more efficient version of
GEM which achieves the same or even better performance than the original GEM. Learning without
forgetting (Li & Hoiem, 2017) minimizes the alteration of shared parameters by recording the out-
puts from old task modules on data from the new task before updating. Hanul Shin & Kim (2017)
and Kemker & Kanan (2017) encode data from old tasks into a generative model system. The lat-
ter imitates the dual-memory system of the human brain, in that the model automatically decides
which memory should be consolidated. Both methods replay pseudo-data of previous tasks using
the generative model during training.

d’Autume et al. (2019) investigates the performance of the episodic memory system on NLP
problems. It distills the knowledge of previous tasks into episodic memory and replays it afterward.
This work evaluates the method on two streams of tasks: question answering and text classification.

3 LAMOL

A pre-trained LM can generate a coherent sequence of text given a context. Thus, we propose
LAMOL, a method of training a single LM that learns not only to answer the question given the
context but also to generate the context, the question, and the answer given a generation token. That
is, in LAMOL, a model plays the role of both LM and QA model. Hence, answering questions and
generating pseudo-old samples can both be done by a single model. During LLL, these pseudo-old
samples are trained with new samples from new tasks to help mitigate catastrophic forgetting.
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Figure 2: Upper: LM learns to answer question given context. Lower: LM learns to generate
training samples given generation token GEN.

3.1 DATA FORMATTING

Inspired by the protocol used by decaNLP (Bryan McCann & Socher, 2018), samples from the
datasets we used are framed into a SQuAD-like scheme, which consists of context, question, and
answer. Although the LM is simultaneously a QA model, the data format depends on the training
objective. When training as a QA model, the LM learns to decode the answer after reading the
context and question. On the other hand, when training as an LM, the LM learns to decode all three
parts given a generation token.

In addition to context, question, and answer, we add three special tokens:

ANS Inserted between question and answer. As the context and question are known during infer-
ence, decoding starts after inputting ANS.

EOS The last token of every example. Decoding stops when EOS is encountered.
GEN The first token during pseudo-sample generation. Decoding starts after inputting GEN.

The data formats for QA and LM training are shown in Figure 2.

3.2 TRAINING

Assume a stream of tasks {T1, T2, . . . }, where the number of tasks may be unknown. Directly
training the LM on these tasks sequentially results in catastrophic forgetting. Thus, before beginning
training on a new task Ti, i > 1, the model first generates pseudo samples T

′

i by top-k sampling that
represent the data distribution of previous tasks T1, . . . , Ti−1. Then, the LM trains on the mixture
of Ti and T

′

i . To balance the ratio between |Ti| and |T ′

i |, the LM generates γ|Ti| pseudo samples,
where |Ti| denotes the number of samples in task Ti and γ is the sampling ratio. If the generated
sample does not have exactly one ANS in it, then the sample is discarded. This happens in only
0.5%-1% of generated samples.

During training, each sample is formatted into both the QA format and the LM format. Then, in the
same optimization step, both formats are fed into the LM to minimize the QA loss LQA and LM loss
LLM together. Overall, the loss is L = LQA + λLLM, where λ is the weight of the LM loss.

3.3 TASK-SPECIFIC TOKENS

Using the same GEN token for all tasks is problematic when training for many tasks because the
portion of old tasks decreases exponentially in theory. For instance, if γ = 0.01, then the portion of
the first task when training the second task is about 1%, but is only about 0.01% when training the
third task. This issue is definitely harmful to LLL. To mitigate this, we can choose to replace the
GEN token with a task-specific token for each task to inform the model to generate pseudo-samples
belonging to the specific task. Under this setup, all previous tasks have the same share of the γ|Ti|
generated pseudo samples. That is, when beginning training for the i-th task Ti, we generate γ

i−1 |Ti|
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Task Dataset # Train # Test Metric

Question answering SQuAD 87599 10570 nF1
Semantic parsing WikiSQL 56355 15878 lfEM
Sentiment analysis SST 6920 1821 EM
Semantic role labeling QA-SRL 6414 2201 nF1
Goal-oriented dialogue WOZ 2536 1646 dsEM

Text classification

AGNews

115000 7600 EM
Amazon
DBPedia
Yahoo
Yelp

Table 1: Summary of tasks, datasets, dataset sizes, and their corresponding metrics. As this work
uses no development set, only the training and test datasets are shown. nF1 is the normalized version
of the F1 score; EM represents an exact match between texts: for text classification, this amounts to
accuracy; for WOZ, it is equivalent to dfEM (turn-based dialogue state exact match); for WikiSQL,
it is equivalent to lfEM (exact match of logical forms).

SQuAD WikiSQL SST SRL WOZ AGNews Amazon DBPedia Yahoo Yelp

GPT-2 score 72.3 70.7 90.9 70.4 84.9 94.6 62.3 99.1 73.9 67.7
Other scores 75.5 72.6 88.1 75.2 84.4 93.8 60.1 30.5 68.6 50.7

Table 2: Comparison of GPT-2 and other methods on single task scores. Other scores are retrieved
from Bryan McCann & Socher (2018) or d’Autume et al. (2019). Better performance in boldface.

for the previous i− 1 tasks. Note that as each task uses a specific token, the vocabulary size and the
embedding weight of the LM increase slightly as more tasks are trained.

4 EXPERIMENT SETUP

4.1 TASKS, DATASETS, AND METRICS

We collect five disparate tasks mentioned in decaNLP (Bryan McCann & Socher, 2018): question
answering, semantic parsing, sentiment analysis, semantic role labeling, and goal-oriented dialogue,
with a dataset for each task.

Furthermore, to compare our method with d’Autume et al. (2019), we conducted experiments on four
text classification tasks: news classification, sentiment analysis, Wikipedia article classification, and
question-and-answer categorization with five datasets. We use the procedure from d’Autume et al.
(2019) to produce equal-sized datasets.

We do not train on all datasets from both papers due to a lack of computational resources. For each
task, there is a corresponding evaluation metric. Table 1 contains a summary of tasks, datasets,
and metrics. Additional details are provided in Appendix A. Note that the score of any metric lies
between 0 and 100%.

4.2 METHODS TO BE COMPARED

All methods use the smallest pre-trained GPT-2 model (Radford et al., 2019)1 as the LM. Each task
is trained for nine epochs; greedy decoding is applied during inference.

• LAMOL In all experiments, k = 20 in top-k sampling and λ = 0.25 for weight of the LM loss
are set. LAMOLγGEN denotes LAMOL with a sampling ratio of γ, and the same GEN token is
used for all tasks. If the task-specific tokens are used, GEN is replaced by TASK.

• Keep real data Pseudo-samples are replaced by real samples from previous tasks. The quantity
of real samples is equally split between previous tasks. This approach can be considered the upper
bound of LAMOL. We denote it as LAMOLγREAL.
1https://github.com/huggingface/pytorch-transformers
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Methods SST SRL WOZ SST WOZ SRL SRL SST WOZ SRL WOZ SST WOZ SST SRL WOZ SRL SST Average Std

Fine-tuned 50.2 24.7 62.9 31.3 32.8 33.9 39.3 12
EWC 50.6 48.4 64.7 35.5 43.9 39.0 47.0 8.7
MAS 36.5 45.3 56.6 31.0 49.7 30.8 41.6 8.9
GEM 50.4 29.8 63.3 32.6 44.1 36.3 42.8 11
LAMOL0

GEN 46.5 36.6 56.6 38.6 44.9 45.2 44.8 6.0
LAMOL0.05

GEN 79.6 78.9 73.1 73.7 68.6 75.7 74.9 3.4
LAMOL0.2

GEN 80.0 80.7 79.6 78.7 78.4 80.5 79.7 0.8
LAMOL0

TASK 41.0 33.5 50.1 41.9 49.3 41.5 42.9 5.2
LAMOL0.05

TASK 77.3 76.9 78.1 74.7 73.4 75.8 76.0 1.5
LAMOL0.2

TASK 79.4 79.9 80.1 78.7 79.8 79.0 79.5 0.5

LAMOL0.05
REAL 81.0 78.9 80.1 80.9 77.7 78.0 79.4 1.2

LAMOL0.02
REAL 81.8 80.6 81.6 81.2 80.4 80.5 81.0 0.5

Multitasked 81.5

Table 3: Summary of averaged metric scores for different methods under permuted task orders
using models at last epoch of last task. The Average and Std columns respectively are the average
and standard deviation of the averaged scores for each row of the methods. Multitasked learning as
an upper bound is shown at the bottom.

Fine-tuned MAS LAMOL0.05
GEN LAMOL0.2

GEN LAMOL0.05
TASK LAMOL0.2

TASK LAMOL0.05
REAL LAMOL0.2

REAL Multitasked

51.5 49.5 69.6 73.1 71.5 74.3 74.5 76.0 76.6

Table 4: Summary of averaged score on five tasks. The scores are reported as the averaged score
over all tasks of the models after training on every task. The rightmost three columns – LAMOL
with γ = 0.05 and γ = 0.2 of real samples from previous tasks and Multitasked – are upper bounds
for comparison. Best performance in boldface.

• Fine-tune The model is directly fine-tuned on the stream of tasks, one after another.

• Multitask learning All tasks are trained simultaneously. Multitask learning is often seen as an
upper bound of lifelong learning. In addition, it is also used to determine whether forgetting is
caused by a lack of model capacity.

• Regularization-based methods Online EWC (Schwarz et al., 2018) and MAS (Aljundi et al.,
2018) are compared. They are chosen because they are more computationally efficient than
SI (Zenke et al., 2017) and more memory efficient than IMM (Lee et al., 2017). Additionally,
experiments such as Elhoseiny et al. (2018) show that MAS has better performance overall.

• Gradient Episodic Memory (GEM) When training each task, we randomly sample data from
previous task with the amount equivalent to 5% of the current task size into the memory. In each
optimization step, the GEM (Lopez-Paz et al., 2017) approach retrieves all the data in the memory
to calculate the gradients for the previous tasks.

• Improved memory-based parameter adaptation (MBPA++) Sparse experience replay and lo-
cal adaptation for LLL as proposed in d’Autume et al. (2019). We also re-implement the paper
and report better scores using different hyperparameters.

5 EXPERIMENTAL RESULTS

5.1 SINGLE TASK

To establish a reference on the capability of the GPT-2 model on every dataset, we trained the model
on each dataset independently. The results are shown in Table 2. We observe that the performance
of the GPT-2 model is actually quite good, even beating the BERT-based model (d’Autume et al.,
2019) on text classification datasets by a large margin. Thus, the GPT-2 model has the potential for
superior LLL performance, as long as we can prevent catastrophic forgetting.
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5.2 SST, QA-SRL, AND WOZ TASKS

For an initial understanding of the performance on all of the methods and the effect of task order,
we first conducted a small-scale experiment on three small datasets: SST, QA-SRL, and WOZ. We
trained all but the the multitasked method on all six permutations of the task order. The final score
for each order was obtained by evaluating the model at the conclusion of the training process. The
results are shown in Table 3; we make several observations. Note that LAMOL with γ = 0 is not
the same as Fine-tuned, as the LM loss is still optimized.

• Fine-tuned, EWC, MAS, and LAMOL with γ = 0 show similar performance and are much worse
than LAMOL with γ > 0.

• LAMOL0.2
GEN, our best performing method, is only 1.8 percent away from Multitasked, which

implies almost no forgetting during LLL.

• The order of the tasks is crucial to the performance. For instance, the WOZ score drops signif-
icantly after training other tasks. Thus, if WOZ is not the last task, the performance is usually
noticeably worse.

• When using LAMOL, the performance of old tasks maintains almost the same level throughout
the training process. When the sampling ratio γ is increased, the performance also increases,
especially when increased from 0 to 0.05.

• When γ = 0, adding task-specific tokens harms performance, because the model must fit addi-
tional special tokens that are useless. Adding task-specific tokens is also not helpful if γ = 0.2.
We believe that 0.2 is enough for three tasks; thus task-specific tokens are redundant. However,
when γ = 0.05, task-specific tokens are beneficial because the tokens are needed to help retain a
substantial presence of the first task when training the third task.

• We see that a better LLL method usually has a smaller standard deviation, which implies that it is
effected less by task order. Adding task-specific tokens also has a stabilizing effect.

The complete forgetting progress is illustrated in Appendix B. Clearly, Fine-tuned, EWC, MAS,
LAMOL0

GEN, and LAMOL0
TASK reveal similar patterns. However, the proposed LAMOL with γ > 0

displays the ability to retain its learned knowledge. In the case of WOZ→ SRL→ SST, the WOZ
score even increases after training the third task using LAMOL with γ = 0.2.

5.3 FIVE DECANLP TASKS

Here, we train the following five tasks sequentially: SQuAD, WikiSQL, SST, QA-SRL, and WOZ.
Given the limited computing resources, we explore only one task order: from large to small tasks,
according to the number of training samples.

As shown in Table 4, LAMOL outperforms all baselines by a large margin and on average ap-
proaches within 2–3% of the multitasked upper bound. Also, as expected, the performance of
LAMOL improves as the sampling ratio γ increases and task-specific tokens are used.

There is also a gap between our method and the method of keeping real samples. As shown in
the table, using real samples is much more sample-efficient, as 5% of real samples beats 20% of
pseudo-samples. This may be due to the less-than-ideal quality of the pseudo-data. The longer
the paragraphs are, the harder it is for the model to create high-quality samples. After observing
the samples generated when using task-specific tokens, we discover some “chaos”. That is, some
examples generated by the model do not exactly correspond to the task-specific token. This implies
that the task-specific tokens are sometimes too weak to constrain the model; thus their influence
is overshadowed by other tokens. We believe that solving this problem will bring the performance
when using task-specific tokens closer to using real samples; however, we leave this as future work.

Figure 3 illustrates the test scores of each method on each task throughout the training. We clearly
see that when using LAMOL, the model remembers nearly perfectly.

We make several observations:

• When training SQuAD, QA-SRL has not been trained yet, but the score of QA-SRL is
already around 40. Also, when training QA-SRL, the SQuAD score revives if the model
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Figure 3: Training progress of five tasks. The
graph records the performance of the model
at each epoch of each task.

Figure 4: Performance after each epoch under
five different sampling ratios, with or without task
specific-specific tokens.

has forgotten SQuAD. These two facts imply that SQuAD and SRL are similar tasks, such
that the model is capable of transferring knowledge from one to the other.

• If forward transfer exists, replaying pseudo-data also retains the forward transfer. That is,
the QA-SRL score does not drop after training on WikiSQL and SST when LAMOL is
used but drops significantly for other methods.

• The transferability between SQuAD and QA-SRL is expected. On the other hand, the
transferability between WikiSQL and QA-SRL is quite surprising; the WikiSQL score im-
proves considerably when training on QA-SRL for Fine-tuned and MAS after WikiSQL is
forgotten during SST training.

5.4 TEXT CLASSIFICATION TASKS

We compared the proposed method against the state-of-the-art MBPA++ proposed in d’Autume
et al. (2019), both by citing their original numbers and also by reproducing their methods. We chose
text classification as opposed to QA because we believe that LM has more of a disadvantage in text
classification than in QA. We compared with LAMOL0.2

TASK due to its good performance and stability.
Following their paper and testing our model on the same four kinds of task orders, the results are
shown in Table 5.

Our implementation results in much higher scores than the original ones. However, the proposed
LAMOL0.2

TASK still outperforms our implementation of MBPA++.

5.5 INFLUENCE OF SAMPLING RATIO γ

As the value of γ determines the performance of LLL, we conducted a medium-scale experiment
to understand the influence of γ with and without task-specific tokens. In this experiment we used
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Order MBPA++ MBPA++ (our impl.) LAMOL0.2
TASK

i 70.8 74.1 76.7
ii 70.9 74.9 77.2
iii 70.2 73.1 76.1
iv 70.7 74.9 76.1
Average 70.7 74.2 76.5

Table 5: Summary of results on text classification tasks using averaged EM score (equivalent to
averaged accuracy in d’Autume et al. (2019)) of models at last epoch of last task. The four orders
mirror those in d’Autume et al. (2019). For MBPA++ (out impl.) and LAMOL0.2

TASK, the results are
averaged over two runs. The p-value of pairted t-test between eight numbers of MBPA++ (our impl.)
and LAMOL0.2

TASK is smaller than 1%, which shows that there is significant difference. Our imple-
mentation of MBPA++ is available at https://github.com/Daikon-Sun/EM-in-LLL.

WikiSQL (blue color), SST (orange), QA-SRL (green), and WOZ (red), in that training order. The
results are shown in Figure 4.

Unsurprisingly, the less generation done by the model, the more likely the vanishing distribution in
Section 3 occurs: the model forgets how to generate previous tasks, as the ratio of previous tasks in
the total dataset decreases exponentially over time. Models using task-specific tokens mitigate this
somewhat, as demonstrated in the first subgraph where the performance of LAMOL0.03

TASK is much
better than that of LAMOL0.03

GEN.

In addition, the more samples the model generates, the better the overall performance of the model.
However, this performance gain disappears when the sampling ratio γ is around 0.1 to 0.3.

6 CONCLUSION

We propose LAMOL, a simple yet effective method for LLL based on language modeling. A single
LM achieves LLL without additional model components and without keeping old examples. More-
over, any pre-trained LM can be used to leverage a large amount of unlabeled text to improve LLL.
Finally, more tasks can be added whenever needed.
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A TASKS, DATASET, AND METRICS

Five tasks and their corresponding datasets from decaNLP (Bryan McCann & Socher, 2018):

• Question Answering – Stanford Question Answering Dataset (SQuAD) (Rajpurkar
et al., 2016): This dataset consists of context, questions, and answers. The context is para-
graphs from English Wikipedia, and the answers are spans from its corresponding question
paragraphs. For evaluation, we use the normalized F1 score (nF1), which strips out articles
and punctuation as in Bryan McCann & Socher (2018). Test datasets in this task are hidden
from the host so that users must upload models to their platform to generate the test results;
due to this inconvenience and our many models, we elected to use the development set to
test the metric. Note that we do not use the development set in the training process. The
size of the training set is 87,599 while that of the development set is 10,570.

• Semantic Parsing – WikiSQL (Zhong et al., 2017): In this task, normal sentences are
translated into SQL-structured SQL queries. WikiSQL provides logical forms along with
natural language utterances. The exact match of the logical forms (lfEM) is used to evaluate
the performance. The model outputs are required to be matched the SQL format. Other-
wise, its won’t get any score. The size of the training set is 56,355; that of the test set is
15,878.

• Sentiment Analysis – Stanford Sentiment Treebank (SST, binary version) (Radford
et al., 2017): This dataset consists of movie reviews with its answers, including positive
and negative binary options. The exact match score is used as the metric. The size of the
training set is 6,920; that of the test set is 1,821.

• Semantic Role Labeling – QA-SRL (He et al., 2017): QA-SRL is a question answering
form of the SRL task. The normalized F1 (nF1) score is used. The size of the training set
is 6,414; that of the test set is 2,201.

• Goal-Oriented Dialogue – English Wizard of Oz (WOZ) (Wen et al., 2016): WOZ is a
restaurant reservation task that provides a predefined ontology of a series of information for
helping an agent to make reservations for customers. To keep track of the dialogue state,
turn-based dialogue state EM (dsEM), which requires the model outputs exactly follow the
characters’ conversation order, is used for judgment. The size of the training set is 2,536;
that of the test set is 1,646.

Four text classification tasks and five datasets from MBPA++ (dAutume et al. 2019):

• News Classification – AGNews: News articles to be classified into 4 classes.
• Sentiment Analysis – Yelp and Amazon: Customer reviews and ratings on Yelp and

Amazon. Both datasets include 5 classes.
• Wikipedia Article Classification – DBPedia: Articles and their corresponding categories

on Wikipedia, including 14 classes.
• Questions and Answers Categorization – Yahoo: Questions and answers on the Yahoo!

platform, including 10 classes.

The dataset collected by Xiang Zhang (2015) is available at http://goo.gl/JyCnZq. Given the unbal-
anced dataset sizes, we randomly sample 115,000 training examples and 7,600 test examples from
all the datasets per d’Autume et al. (2019). All the tasks use exact match accuracy as the evaluation
metric.
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B OVERVIEW OF THE FORGETTING PROGRESS FOR THREE TASKS

Figure 5: Overview of the forgetting progress for different methods and permuted orders. The blue
line indicate the scores of the first task after training each task. The orange line corresponds to that
of the second task.
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C REVERSE ORDER OF FIVE DECANLP TASKS

Fine-tuned MAS LAMOL0.05
GEN LAMOL0.2

GEN LAMOL0.05
TASK LAMOL0.2

TASK LAMOL0.05
REAL LAMOL0.2

REAL Multitasked

45.4 44.7 63.2 73.0 75.3 76.9 75.9 78.2 76.6

Table 6: Summary of averaged score on reversed five tasks. The scores are reported as the averaged
score over all tasks of the models after training on every task. The rightmost three columns –
LAMOL with γ = 0.05 and γ = 0.2 of real samples from previous tasks. Best performance in
boldface.

Figure 6: Training progress of the five tasks with reverse order, i.e. small to large. The graph
records the performance of the model at each epoch of each tasks. The order of tasks in the progress
follows: WOZ, QA-SRL, SST, WikiSQL, and then SQuAD. From the figure, we can clearly see that
Fine-tune and MAS completely forget WOZ and WikiSQL.
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D GENERATED EXAMPLES

Normal Examples

squad1 The United States has been accused of a wide ranging war in Afghanistan since 9 / 11. During the campaign,
US forces in Afghanistan were involved in an extensive air campaign. At least 1,600 American servicemen and women were
killed, while more than 1,600 civilians were injured. After the US-led invasion of Afghanistan on 12 / 11 / 2001, an estimated
10,000 American soldiers were killed in combat.What were the targets included in the conflict? ans Afghanistan

squad1 In 1849, the French army was forced to withdraw, and the French were finally expelled, although it was not until
late November that the French recaptured most of their territories. French troops then reached Egypt. On 21 January 1852
(the year after he left), in Cairo, they captured Tripoli, Benghazi, Benghazi, and the eastern part of Libya. After Gaddafi’s
return to office, he established the Gaddafi regime. On 13 February 1856, the Gaddafi family relocated to Egypt. On 13 May
1857, the army was forced to withdraw from Libya, and the army returned to Benghazi.On whom did Gaddafi’s army return
to Benghazi? ans Gaddafi’s family

wikisql the table has columns rank, athlete, sport, nation, gold, silver and key words max, min, count, sum, avg, =, >, <,
op, select, where, and, col, table, caption, page, section, op, cond, question, agg, aggops, condops - - what is the nation when
they have the rank 10 and the gold is 6?what is the translation from english to sql? ans select nation from table where rank
= 10 and gold = 6

wikisql the table has columns home team, home team score, away team, away team score, venue, crowd, date and key
words max, min, count, sum, avg, =, >, <, op, select, where, and, col, table, caption, page, section, op, cond, question,
agg, aggops, condops - - what is the home team’s score when they played at richfield?what is the translation from english to
sql? ans select home team score from table where venue = richfield

sst it’s a movie that’s not worth a look.is this review negative or positive? ans negative

sst it’s an ugly movie about an old man who’s been given power by a new god to bring about a new era.is this review
negative or positive? ans negative

srl in a statement on his official page, juan valderrama said that the president’s nominees would be appointed by the
president and confirmed by the national senate.who might be appointed? ans president

srl the first two films, released on august 21, 1999, are the first in a line of films that were made by two different people,
each of whom worked in tandem on the film.what was released? ans the first two films

Examples of Chaos

squad1 the table has columns rank ( nation ), gold, silver, bronze, total and key words max, min, count, sum, avg, =, >, <,
op, select, where, and, col, table, caption, page, section, op, cond, question, agg, aggops, condops - - which total has a gold
smaller than 2, and has the lowest rank of bronze of 3?what is the translation from english to sql? ans select min total from
table where gold < 2 and bronze = 3

squad1 In addition to the role played by the main characters, the main cast members are played by the same cast members
who were in season one of the original series.is this review negative or positive? ans positive

wikisql it’s a shame that the story doesn’t end with a good ending, but it certainly means the world to me.is this review
negative or positive? ans positive

wikisql on the same day, june 19, 2012, former heavyweight champion arthur lang defended his title against alexander
green in the final of the world heavyweight championship.what did someone defend? ans his title

sst at this point, he was only twenty - five years old at the time of his first appearance on the mcf tv series.who was something
twenty - five years old? ans he

sst on paper, the movie’s two most fascinating characters are two peas in the same class, both of whom have made an
appearance in this film.who did something feature? ans two most fascinating characters

srl a popular seasonal film in austrian films and the most influential in the history of cinema.is this review negative or
positive? ans positive

srl it’s not a bad film, it’s just not as good as you’ve seen it before.is this review negative or positive? ans negative

Table 7: Examples generated by LAMOL with task-specific tokens. Annotations squad1 ,
wikisql , sst , srl correspond to each task-specific token of SQuAD, WikiSQL, SST, and

QA-SRL, respectively. ans is the ANS token that separates the question from the answer. The
upper frame shows the normal situation whereas the lower frame shows generated contents that are
inconsistent with their task-specific token.
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