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ABSTRACT

Recently, progress has been made towards improving relational reasoning in ma-
chine learning field. Among existing models, graph neural networks (GNNs) is
one of the most effective approaches for multi-hop relational reasoning. In fact,
multi-hop relational reasoning is indispensable in many natural language process-
ing tasks such as relation extraction. In this paper, we propose to generate the
parameters of graph neural networks (GP-GNNs) according to natural language
sentences, which enables GNNs to process relational reasoning on unstructured
text inputs. We verify GP-GNNs in relation extraction from text. Experimental
results on a human-annotated dataset and two distantly supervised datasets show
that our model achieves significant improvements compared to baselines. We also
perform a qualitative analysis to demonstrate that our model could discover more
accurate relations by multi-hop relational reasoning.

1 INTRODUCTION

Recent years, graph neural networks (GNNs) have been applied to various fields of machine learn-
ing, including node classification (Kipf & Welling, 2016), relation classification (Schlichtkrull et al.,
2017), molecular property prediction (Gilmer et al., 2017), few-shot learning (Garcia & Bruna,
2018), and achieve promising results on these tasks. These works have demonstrated GNNs’ strong
power to process relational reasoning on graphs.

Relational reasoning aims to abstractly reason about entities/objects and their relations, which is
an important part of human intelligence. Besides graphs, relational reasoning is also of great im-
portance in many natural language processing tasks such as question answering, relation extraction,
summarization, etc. Consider the example shown in Fig. 1, existing relation extraction models could
easily extract the facts that Luc Besson directed a film Léon: The Professional and that the film is
in English, but fail to infer the relationship between Luc Besson and English without multi-hop re-
lational reasoning. By considering the reasoning patterns, one can discover that Luc Besson could
speak English following a reasoning logic that Luc Besson directed Léon: The Professional and this
film is in English indicates Luc Besson could speak English. However, most existing GNNs can
only process multi-hop relational reasoning on pre-defined graphs and cannot be directly applied in
natural language relational reasoning. Enabling multi-hop relational reasoning in natural languages
remains an open problem.

To address this issue, in this paper, we propose graph neural networks with generated parameters
(GP-GNNs), to adapt graph neural networks to solve the natural language relational reasoning task.
GP-GNNs first constructs a fully-connected graph with the entities in the sequence of text. After that,
it employs three modules to process relational reasoning: (1) an encoding module which enables
edges to encode rich information from natural languages, (2) a propagation module which propa-
gates relational information among various nodes, and (3) a classification module which makes pre-
dictions with node representations. As compared to traditional GNNs, GP-GNNs could learn edges’
parameters from natural languages, extending it from performing inferring on only non-relational
graphs or graphs with a limited number of edge types to unstructured inputs such as texts.

In the experiments, we apply GP-GNNs to a classic natural language relational reasoning task:
relation extraction from text. We carry out experiments on Wikipedia corpus aligned with Wikidata
knowledge base (Vrandečić & Krötzsch, 2014) and build a human annotated test set as well as
two distantly labeled test sets with different levels of denseness.Experiment results show that our
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Léon: The Professional is a 1996 English-language French thriller film directed by Luc Besson.

LéonEnglish Luc Besson

Language Spoken

Language Cast member

Figure 1: An example of relation extraction from plain text. Given a sentence with several entities
marked, we model the interaction between these entities by generating the weights of graph neural
networks. Modeling the relationship between “Léon” and “English” as well as “Luc Besson” helps
discover the relationship between “Luc Besson” and “English”.

model outperforms other state-of-the-art models on relation extraction task by considering multi-
hop relational reasoning. We also perform a qualitative analysis which shows that our model could
discover more relations by reasoning more robustly as compared to baseline models.

Our main contributions are in two-fold:

(1) We extend a novel graph neural network model with generated parameters, to enable relational
message-passing with rich text information, which could be applied to process relational reasoning
on unstructured inputs such as natural languages.

(2) We verify our GP-GNNs in the task of relation extraction from text, which demonstrates its
ability on multi-hop relational reasoning as compared to those models which extract relationships
separately. Moreover, we also present three datasets, which could help future researchers compare
their models in different settings.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS (GNNS)

GNNs were first proposed in (Scarselli et al., 2009) and are trained via the Almeida-Pineda algo-
rithm (Almeida, 1987). Later the authors in Li et al. (2016) replace the Almeida-Pineda algorithm
with the more generic backpropagation and demonstrate its effectiveness empirically. Gilmer et al.
(2017) propose to apply GNNs to molecular property prediction tasks. Garcia & Bruna (2018)
shows how to use GNNs to learn classifiers on image datasets in a few-shot manner. Gilmer et al.
(2017) study the effectiveness of message-passing in quantum chemistry. Dhingra et al. (2017) apply
message-passing on a graph constructed by coreference links to answer relational questions. There
are relatively fewer papers discussing how to adapt GNNs to natural language tasks. For example,
Marcheggiani & Titov (2017) propose to apply GNNs to semantic role labeling and Schlichtkrull
et al. (2017) apply GNNs to knowledge base completion tasks. Zhang et al. (2018) apply GNNs to
relation extraction by encoding dependency trees, and De Cao et al. (2018) apply GNNs to multi-hop
question answering by encoding co-occurence and co-reference relationships. Although they also
consider applying GNNs to natural language processing tasks, they still perform message-passing
on predefined graphs. Johnson (2017) introduces a novel neural architecture to generate a graph
based on the textual input and dynamically update the relationship during the learning process. In
sharp contrast, this paper focuses on extracting relations from real-world relation datasets.

2.2 RELATIONAL REASONING

Relational reasoning has been explored in various fields. For example, Santoro et al. (2017) propose
a simple neural network to reason the relationship of objects in a picture, Xu et al. (2017) build up a
scene graph according to an image, and Kipf et al. (2018) model the interaction of physical objects.

In this paper, we focus on the relational reasoning in natural language domain. Existing works (Zeng
et al., 2014; 2015; Lin et al., 2016) have demonstrated that neural networks are capable of capturing
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Figure 2: Overall architecture: the encoding module takes a sequence of vector representations as
inputs, and output a transition matrix as output; the propagation module propagates the hidden states
from nodes to its neighbours with the generated transition matrix; the classification module provides
task-related predictions according to nodes representations.

the pair-wise relationship between entities in certain situations. For example, (Zeng et al., 2014) is
one of the earliest works that applies a simple CNN to this task, and (Zeng et al., 2015) further ex-
tends it with piece-wise max-pooling. Nguyen & Grishman (2015) propose a multi-window version
of CNN for relation extraction. Lin et al. (2016) study an attention mechanism for relation extrac-
tion tasks. Peng et al. (2017) predict n-ary relations of entities in different sentences with Graph
LSTMs. Le & Titov (2018) treat relations as latent variables which are capable of inducing the rela-
tions without any supervision signals. Zeng et al. (2017) show that the relation path has an important
role in relation extraction. Miwa & Bansal (2016) show the effectiveness of LSTMs (Hochreiter &
Schmidhuber, 1997) in relation extraction. Christopoulou et al. (2018) proposed a walk-based model
to do relation extraction. The most related work is (Sorokin & Gurevych, 2017), where the proposed
model incorporates contextual relations with attention mechanism when predicting the relation of a
target entity pair. The drawback of existing approaches is that they could not make full use of the
multi-hop inference patterns among multiple entity pairs and their relations within the sentence.

3 GRAPH NEURAL NETWORK WITH GENERATED PARAMETERS (GP-GNNS)

We first define the task of natural language relational reasoning. Given a sequence of text with m
entities, it aims to reason on both the text and entities and make a prediction of the labels of the
entities or entity pairs.

In this section, we will introduce the general framework of GP-GNNs. GP-GNNs first build a fully-
connected graph G = (V, E), where V is the set of entities, and each edge (vi, vj) ∈ E , vi, vj ∈ V
corresponds to a sequence s = xi,j0 , xi,j1 , . . . , xi,jl−1 extracted from the text. After that, GP-GNNs
employ three modules including (1) encoding module, (2) propagation module and (3) classification
module to proceed relational reasoning, as shown in Fig. 2.

3.1 ENCODING MODULE

The encoding module converts sequences into transition matrices corresponding to edges, i.e. the
parameters of the propagation module, by

A(n)
i,j = f(E(xi,j0 ), E(xi,j1 ), · · · , E(xi,jl−1); θ

n
e ), (1)

where f(·) could be any model that could encode sequential data, such as LSTMs, GRUs, CNNs,
E(·) indicates an embedding function, and θne denotes the parameters of the encoding module of
n-th layer.

3.2 PROPAGATION MODULE

The propagation module learns representations for nodes layer by layer. The initial embeddings of
nodes, i.e. the representations of layer 0, are task-related, which could be embeddings that encode
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features of nodes or just one-hot embeddings. Given representations of layer n, the representations
of layer n+ 1 are calculated by

h
(n+1)
i =

∑
vj∈N (vi)

σ(A(n)
i,j h

(n)
j ), (2)

where N (vi) denotes the neighbours of node vi in graph G and σ(·) denotes non-linear activation
function.

3.3 CLASSIFICATION MODULE

Generally, the classification module takes node representations as inputs and outputs predictions.
Therefore, the loss of GP-GNNs could be calculated as

L = g(h0
0:|V|−1,h

1
0:|V|−1, . . . ,h

K
0:|V|−1, Y ; θc), (3)

where θc denotes the parameters of the classification module, K is the number of layers in propa-
gation module and Y denotes the ground truth label. The parameters in GP-GNNs are trained by
gradient descent methods.

4 RELATION EXTRACTION WITH GP-GNNS

Relation extraction from text is a classic natural language relational reasoning task. Given a
sentence s = (x0, x1, . . . , xl−1), a set of relations R and a set of entities in this sentence
Vs = {v1, v2, . . . , v|Vs|}, where each vi consists of one or a sequence of tokens, relation extrac-
tion from text is to identify the pairwise relationship rvi,vj ∈ R between each entity pair (vi, vj).

In this section, we will introduce how to apply GP-GNNs to relation extraction.

4.1 ENCODING MODULE

To encode the context of entity pairs (or edges in the graph), we first concatenate the position em-
beddings with word embeddings in the sentence:

E(xi,jt ) = [xt;p
i,j
t ], (4)

where xt denotes the word embedding of word xt and pi,j
t denotes the position embedding of word

position t relative to the entity pair’s position i, j (Details of these two embeddings are introduced
in the next two paragraphs.) After that, we feed the representations of entity pairs into encoder f(·)
which contains a bi-directional LSTM and a multi-layer perceptron:

A(n)
i,j = [MLPn(BiLSTMn((E(xi,j0 ), E(xi,j1 ), · · · , E(xi,jl−1))], (5)

where n denotes the index of layer 1, [·] means reshaping a vector as a matrix, BiLSTM encodes a
sequence by concatenating tail hidden states of the forward LSTM and head hidden states of the
backward LSTM together and MLP denotes a multi-layer perceptron with non-linear activation σ.

Word Representations We first map each token xt of sentence {x0, x1, . . . , xl−1} to a k-
dimensional embedding vector xt using a word embedding matrix We ∈ R|V |×dw , where |V | is
the size of the vocabulary. Throughout this paper, we stick to 50-dimensional GloVe embeddings
pre-trained on a 6 billion corpus (Pennington et al., 2014).

Position Embedding In this work, we consider a simple entity marking scheme2: we mark each
token in the sentence as either belonging to the first entity vi, the second entity vj or to neither of
those. Each position marker is also mapped to a dp-dimensional vector by a position embedding
matrix P ∈ R3×dp . We use notation pi,j

t to represent the position embedding for xt corresponding
to entity pair (vi, vj).

1Adding index to neural models means their parameters are different among layers.
2As pointed out by Sorokin & Gurevych (2017), other position markers lead to no improvement in perfor-

mance.
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4.2 PROPAGATION MODULE

Next, we use Eq. (2) to propagate information among nodes where the initial embeddings of nodes
and number of layers are further specified as follows.

The Initial Embeddings of Nodes Suppose we are focusing on extracting the relationship be-
tween entity vi and entity vj , the initial embeddings of them are annotated as h

(0)
vi = asubject, and

h
(0)
vj = aobject, while the initial embeddings of other entities are set to all zeros. We set special val-

ues for the head and tail entity’s initial embeddings as a kind of “flag” messages which we expect to
be passed through propagation. Annotators asubject and aobject could also carry the prior knowledge
about subject entity and object entity. In our experiments, we generalize the idea of Gated Graph
Neural Networks (Li et al., 2016) by setting asubject = [1;0]> and aobject = [0;1]>3.

Number of Layers In general graphs, the number of layers K is chosen to be of the order of the
graph diameter so that all nodes obtain information from the entire graph. In our context, however,
since the graph is densely connected, the depth is interpreted simply as giving the model more
expressive power. We treat K as a hyper-parameter, the effectiveness of which will be discussed in
detail (Sect. 5.4).

4.3 CLASSIFICATION MODULE

The output module takes the embeddings of the target entity pair (vi, vj) as input, which are first
converted by:

rvi,vj = [[h(1)
vi � h(1)

vj ]
>; [h(2)

vi � h(2)
vj ]

>; . . . ; [h(K)
vi � h(K)

vj ]>], (6)

where � represents element-wise multiplication. This could be used for classification:

P(rvi,vj |h, t, s) = softmax(MLP(rvi,vj )), (7)

where rvi,vj ∈ R, and MLP denotes a multi-layer perceptron module.

We use cross entropy here as the classification loss

L =
∑
s∈S

∑
i 6=j

log P(rvi,vj |i, j, s), (8)

where rvi,vj denotes the relation label for entity pair (vi, vj) and S denotes the whole corpus.

In practice, we stack the embeddings for every target entity pairs together to infer the underlying
relationship between each pair of entities. We use PyTorch (Paszke et al., 2017) to implement our
models. To make it more efficient, we avoid using loop-based, scalar-oriented code by matrix and
vector operations.

5 EXPERIMENTS

Our experiments mainly aim to: (1) showing that our best models could improve the performance of
relation extraction under a variety of settings; (2) illustrating that how the number of layers affect the
performance of our model; and (3) performing a qualitative investigation to highlight the difference
between our models and baseline models. In both part (1) and part (2), we do three subparts of
experiments: (i) we will first show that our models could improve instance-level relation extraction
on a human annotated test set, and (ii) then we will show that our models could also help enhance
the performance of bag-level relation extraction on a distantly labeled test set 4, and (iii) we also
split a subset of distantly labeled test set, where the number of entities and edges is large.

3The dimensions of 1 and 0 are the same. Hence, dr should be positive even integers. The embedding of
subject and object could also carry the type information by changing annotators. We leave this extension for
future work.

4Bag-level relation extraction is a widely accepted scheme for relation extraction with distant supervision,
which means the relation of an entity pair is predicted by aggregating a bag of instances.
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5.1 EXPERIMENT SETTINGS

5.1.1 DATASETS

Distantly labeled set Sorokin & Gurevych (2017) have proposed a dataset with Wikipedia cor-
pora. There is a small difference between our task and theirs: our task is to extract the relationship
between every pair of entities in the sentence, whereas their task is to extract the relationship be-
tween the given entity pair and the context entity pairs. Therefore, we need to modify their dataset:
(1) We added reversed edges if they are missing from a given triple, e.g. if triple (Earth, part
of, Solar System) exists in the sentence, we add a reversed label, (Solar System, has a member,
Earth), to it; (2) For all of the entity pairs with no relations, we added “NA” labels to them.5 We use
the same training set for all of the experiments.

Human annotated test set Based on the test set provided by (Sorokin & Gurevych, 2017), 5
annotators6 are asked to label the dataset. They are asked to decide whether or not the distant
supervision is right for every pair of entities. Only the instances accepted by all 5 annotators are
incorporated into the human annotated test set. There are 350 sentences and 1,230 triples in this test
set.

Dense distantly labeled test set We further split a dense test set from the distantly labeled test set.
Our criteria are: (1) the number of entities should be strictly larger than 2; and (2) there must be at
least one circle (with at least three entities) in the ground-truth label of the sentence 7. This test set
could be used to test our methods’ performance on sentences with the complex interaction between
entities. There are 1,350 sentences and more than 17,915 triples and 7,906 relational facts in this
test set.

5.1.2 MODELS FOR COMPARISON

We select the following models for comparison, the first four of which are our baseline models.

Context-Aware RE, proposed by Sorokin & Gurevych (2017). This model utilizes attention mecha-
nism to encode the context relations for predicting target relations. It was the state-of-the-art models
on Wikipedia dataset. This baseline is implemented by ourselves based on authors’ public repo8.

Multi-Window CNN. Zeng et al. (2014) utilize convolutional neural networks to classify relations.
Different from the original version of CNN proposed in (Zeng et al., 2014), our implementation,
follows (Nguyen & Grishman, 2015), concatenates features extracted by three different window
sizes: 3, 5, 7.

PCNN, proposed by Zeng et al. (2015). This model divides the whole sentence into three pieces and
applies max-pooling after convolution layer piece-wisely. For CNN and following PCNN, the entity
markers are the same as originally proposed in (Zeng et al., 2014; 2015).

LSTM or GP-GNN with K = 1 layer. Bi-directional LSTM (Schuster & Paliwal, 1997) could be
seen as an 1-layer variant of our model.

GP-GNN with K = 2 or K = 3 layerss. These models are capable of performing 2-hop reasoning
and 3-hop reasoning, respectively.

5.1.3 HYPER-PARAMETERS

We select the best parameters for the validation set. We select non-linear activation functions be-
tween relu and tanh, and select dn among {2, 4, 8, 12, 16}9. We have also tried two forms of
adjacent matrices: tied-weights (set A(n) = A(n+1)) and untied-weights. Table 1 shows our best
hyper-parameter settings, which are used in all of our experiments.

5We also resolve entities at the same position and remove self-loops from the previous dataset. Furthermore,
we limit the number of entities in one sentence to 9, resulting in only 0.0007 data loss.

6They are all well-educated university students.
7Every edge in the circle has a non-“NA” label.
8https://github.com/UKPLab/emnlp2017-relation-extraction
9We set all dns to be the same as we do not see improvements using different dns
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Hyper-parameters Value

learning rate 0.001
batch size 50
dropout ratio 0.5
hidden state size 256
non-linear activation σ relu
embedding size for #layers = 1 8
embedding size for #layers = 2 and 3 12
adjacent matrices untied

Table 1: Hyper-parameters settings.

5.2 EVALUATION DETAILS

So far, we have only talked about the way to implement sentence-level relation extraction. To
evaluate our models and baseline models in bag-level, we utilize a bag of sentences with given
entity pair to score the relations between them. Zeng et al. (2015) formalize the bag-level relation
extraction as multi-instance learning. Here, we follow their idea and define the score function of
entity pair and its corresponding relation r as a max-one setting:

E(r|vi, vj , S) = max
s∈S

P(rvi,vj |i, j, s). (9)

Dataset Human Annotated Test Set
Metric Acc Macro F1
Multi-Window CNN 47.3 17.5
PCNN 30.8 3.2
Context-Aware RE 68.9 44.9
GP-GNN (#layers=1) 62.9 44.1
GP-GNN (#layers=2) 69.5 44.2
GP-GNN (#layers=3) 75.3 47.9

Table 2: Results on human annotated dataset

Dataset Distantly Labeled Test Set Dense Distantly Labeled Test Set
Metric P@5% P@10% P@15% P@20% P@5% P@10% P@15% P@20%
Multi-Window CNN 78.9 78.4 76.2 72.9 86.2 83.4 81.4 79.1
PCNN 73.0 65.4 58.1 51.2 85.3 79.1 72.4 68.1
Context-Aware RE 90.8 89.9 88.5 87.2 93.5 93.0 93.8 93.0
GP-GNN (#layers=1) 90.5 89.9 88.2 87.2 97.4 93.5 92.4 91.9
GP-GNN (#layers=2) 92.5 92.0 89.3 87.1 95.0 94.6 95.2 94.2
GP-GNN (#layers=3) 94.2 92.0 89.7 88.3 98.5 97.4 96.6 96.1

Table 3: Results on distantly labeled test set

5.3 EFFECTIVENESS OF REASONING MECHANISM

From Table 2 and 3, we can see that our best models outperform all the baseline models significantly
on all three test sets. These results indicate our model could successfully conduct reasoning on the
fully-connected graph with generated parameters from natural language. These results also indicate
that our model not only performs well on sentence-level relation extraction but also improves on
bag-level relation extraction. Note that Context-Aware RE also incorporates context information
to predict the relation of the target entity pair, however, we argue that Context-Aware RE only
models the co-occurrence of various relations, ignoring whether the context relation participates
in the reasoning process of relation extraction of the target entity pair. Context-Aware RE may
introduce more noise, for it may mistakenly increase the probability of a relation with the similar
topic with the context relations. We will give samples to illustrate this issue in Sect. 5.5. Another
interesting observation is that our #layers=1 version outperforms CNN and PCNN in these three
datasets. One probable reason is that sentences from Wikipedia corpus are always complex, which
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may be hard to model for CNN and PCNN. Similar conclusions are also reached by Zhang & Wang
(2015).
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Figure 3: The aggregated precision-recall curves of our models with different number of layers on
distantly labeled test set (left) and dense distantly labeled test set (right). We also add Context Aware
RE for comparison.

The association was 
organized in Enterprise (now 
known as Redbush) 
Johnson County, 
Kentucky in 1894 and was 
incorporated in 1955, after 
relocating to Gallipolis, 
Ohio.

Sentence GP-GNN (#layers = 3)LSTMContext Aware
Relation Extraction

Oozham ( or Uzham ) is an 
upcoming 2016 Malayalam 
drama film written and 
directed by Jeethu Joseph 
with Prithviraj Sukumaran 
in the lead role.

Ground Truth

The third annual of the 2006 
Premios Juventud (Youth 
Awards) edition will be held 
on July 13, 2006 at the 
BankUnited Center from 
the University of Miami in 
Coral Gables, Florida .

Oozham

MalayalamJeethu Joseph

Prithviraj Sukumaran

cast member

director original language

language spoken
Oozham

MalayalamJeethu Joseph

Prithviraj Sukumaran

cast member

director original language

language spoken
Oozham

MalayalamJeethu Joseph

Prithviraj Sukumaran

cast member

director original language

Oozham

MalayalamJeethu Joseph

Prithviraj Sukumaran

cast member

director original language

BankUnited Center

University of Miami

Coral Gables, Florida

located in the admini-
strative territorial entity BankUnited Center

University of Miami

Coral Gables, Florida

located in the admini-
strative territorial entity BankUnited Center

University of Miami

Coral Gables, Florida

owned by

located in the admini-
strative territorial entityBankUnited Center

University of Miami

Coral Gables, Florida

owned by

located in the admini-
strative territorial entity

located in the admini-
strative territorial entity

Redbush

Johnson County

KentuckyOhio

located in the admini-
strative territorial entity

located in the admini-
strative territorial entity

Redbush

Johnson County

KentuckyOhio

located in the admini-
strative territorial entity

located in the admini-
strative territorial entity

Redbush

Johnson County

KentuckyOhio

located in the admini-
strative territorial entity

located in the admini-
strative territorial entity

Redbush

Johnson County

KentuckyOhio

located in the admini-
strative territorial entity

located in the admini-
strative territorial entity

share 
boarder with

Table 4: Sample predictions from the baseline models and our GP-GNN model. Ground truth graphs
are the subgraph in Wikidata knowledge graph induced by the sets of entities in the sentences. The
models take sentences and entity markers as input and produce a graph containing entities (colored
and bold) and relations between them. Although “No Relation” is also be seen as a type of relation,
we only show other relation types in the graphs.

5.4 THE EFFECTIVENESS OF THE NUMBER OF LAYERS

The number of layers represents the reasoning ability of our models. A K-layer version has the
ability to inferK-hop relations. To demonstrate the effects of the number of layers, we also compare
our models with different numbers of layers. From Table 2 and Table 3, we could see that on all
three datasets, 3-layer version achieves the best. We could also see from Fig. 3 that as the number
of layers grows, the curves get higher and higher precision, indicating considering more hops in
reasoning leads to better performance. However, the improvement of the third layer is much smaller
on the overall distantly supervised test set than the one on the dense subset. This observation reveals
that the reasoning mechanism could help us identify relations especially on sentences where there
are more entities. We could also see that on the human annotated test set 3-layer version to have a
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greater improvement over 2-layer version as compared with 2-layer version over 1-layer version. It
is probably due to the reason that bag-level relation extraction is much easier. In real applications,
different variants could be selected for different kind of sentences or we can also ensemble the
prediction from different models. We leave these explorations for future work.

5.5 QUALITATIVE RESULTS: CASE STUDY

Tab. 4 shows qualitative results that compare our GP-GNN model and the baseline models. The
results show that GP-GNN has the ability to infer the relationship between two entities with reason-

ing. In the first case, GP-GNN implicitly learns a logic rule ∃y, x ∼cast-member−−−−−−−→ y
original language−−−−−−−−−→ z ⇒

x
language spoken−−−−−−−−→ z to derive (Oozham, language spoken, Malayalam) and in the second case

our model implicitly learns another logic rule ∃y, x owned-by−−−−−→ y
located in−−−−−→ z ⇒ x

located in−−−−−→ z to find
the fact (BankUnited Center, located in, English). Note that (BankUnited Center, located
in, English) is even not in Wikidata, but our model could identify this fact through reasoning. We
also find that Context-Aware RE tends to predict relations with similar topics. For example, in the
third case, share boarder with and located in are both relations about territory issues.
Consequently, Context-Aware RE makes a mistake by predicting (Kentucky, share boarder
with, Ohio). As we have discussed before, this is due to its mechanism to model co-occurrence
of multiple relations. However, in our model, since Ohio and Johnson County have no relationship,
this wrong relation is not predicted.

6 CONCLUSION AND FUTURE WORK

We addressed the problem of utilizing GNNs to perform relational reasoning with natural languages.
Our proposed models, GP-GNNs, solves the relational message-passing task by encoding natural
language as parameters and performing propagation from layer to layer. Our model can also be
considered as a more generic framework for graph generation problem with unstructured input other
than text, e.g. images, videos, audios. In this work, we demonstrate its effectiveness in predicting
the relationship between entities in natural language and bag-level and show that by considering
more hops in reasoning the performance of relation extraction could be significantly improved.

REFERENCES

Luis B Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. In Proceedings, 1st First International Conference on Neural Networks, pp. 609–
618. IEEE, 1987.

Fenia Christopoulou, Makoto Miwa, and Sophia Ananiadou. A walk-based model on entity graphs
for relation extraction. In Proceedings of the 56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), volume 2, pp. 81–88, 2018.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Question answering by reasoning across documents
with graph convolutional networks. arXiv preprint arXiv:1808.09920, 2018.

Bhuwan Dhingra, Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Linguistic knowledge
as memory for recurrent neural networks. arXiv preprint arXiv:1703.02620, 2017.

JVictor Garcia and Joan Bruna. Few-shot learning with graph neural networks. In Proceedings of
ICLR, 2018.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of ICML, 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, pp.
1735–1780, 1997.

Daniel D Johnson. Learning graphical state transitions. In Proceedings of ICLR, 2017.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In ICML, 2018.

9



Under review as a conference paper at ICLR 2019

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. Proceedings of ICLR, 2016.

Phong Le and Ivan Titov. Improving entity linking by modeling latent relations between mentions,
2018.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. Proceedings of ICLR, 2016.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. Neural relation extraction
with selective attention over instances. In Proceedings of ACL, pp. 2124–2133, 2016.

Diego Marcheggiani and Ivan Titov. Encoding sentences with graph convolutional networks for
semantic role labeling. In Proceedings EMNLP, 2017.

Makoto Miwa and Mohit Bansal. End-to-end relation extraction using lstms on sequences and tree
structures. In Proceedings of ACL, pp. 1105–1116, 2016.

Thien Huu Nguyen and Ralph Grishman. Relation extraction: Perspective from convolutional neural
networks. In Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language
Processing, pp. 39–48, 2015.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina Toutanova, and Wen-tau Yih. Cross-sentence
n-ary relation extraction with graph lstms. TACL, pp. 101–115, 2017.

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of EMNLP, pp. 1532–1543, 2014.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Tim Lillicrap. A simple neural network module for relational reasoning. In NIPS,
pp. 4967–4976, 2017.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, pp. 61–80, 2009.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convolutional networks. arXiv preprint
arXiv:1703.06103, 2017.

Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE Transactions
on Signal Processing, pp. 2673–2681, 1997.

Daniil Sorokin and Iryna Gurevych. Context-aware representations for knowledge base relation
extraction. In Proceedings of EMNLP, pp. 1784–1789, 2017.
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