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Abstract

Video Temporal Grounding (VTG) aims to retrieve precise temporal segments
in a video conditioned on natural language queries. Unlike conventional neural
frameworks that rely heavily on computationally expensive dense matrix multi-
plications, Spiking Neural Networks (SNNs)—previously underexplored in this
domain—offer a unique opportunity to tackle VTG tasks through bio-plausible
spike-based communication and an event-driven accumulation-based computa-
tional paradigm. We introduce SpikingVTG, a multi-modal spiking detection
transformer, designed to harness the computational simplicity and sparsity of SNNs
for VTG tasks. Leveraging the temporal dynamics of SNNs, our model intro-
duces a Saliency Feedback Gating (SFG) mechanism that assigns dynamic saliency
scores to video clips and applies multiplicative gating to highlight relevant clips
while suppressing less informative ones. SFG enhances performance and reduces
computational overhead by minimizing neural activity. We analyze the layer-wise
convergence dynamics of SFG-enabled model and apply implicit differentiation
at equilibrium to enable efficient, BPTT-free training. To improve generalization
and maximize performance, we enable knowledge transfer by optimizing a Cos-L2
representation matching loss that aligns the layer-wise representation and attention
maps of a non-spiking teacher with those of our student SpikingVTG. Additionally,
we present Normalization-Free (NF)-SpikingVTG, which eliminates non-local
operations like softmax and layer normalization, and an extremely quantized 1-bit
(NF)-SpikingVTG variant for potential deployment on edge devices. Our models
achieve competitive results on QVHighlights, Charades-STA, TACoS, and YouTube
Highlights, establishing a strong baseline for multi-modal spiking VTG solutions.

1 Introduction

The rapid expansion of various social medias and portable smart technologies has triggered an
unprecedented surge in video content. This vast influx of data has intensified the need for efficient
methods to retrieve and analyze video information. Consequently, the field of Video Temporal
Grounding (VTG) [1] has emerged as an important area of research. The main objective of VTG is to
identify the precise segment of a video that corresponds to a given natural language query, enabling
accurate and context-driven video content retrieval. In this paper, we focus on two tasks: moment
retrieval [2, 3], which aims to identify video intervals relevant to a given query, and highlight detection
[4], which retrieves the best candidate segment of the video in response to the query. Our work
involves analyzing multimodal data—combining video content with natural language queries—to
develop an effective solution to the problem. With the rise of transformer based architectures the
field of VTG has seen significant advancements [3, 6]. However, these models demand substantial
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power and energy [7] to operate. Furthermore, VTG is inherently resource-intensive, requiring
the analysis of long video sequences, leading to significant computational overhead. Additionally,
applications such as edge-based event detection in video—e.g., identifying accidents from traffic
cameras—require deploying VTG models on resource-constrained devices near the data source,
in order to reduce data transfer to the cloud. These devices often operate under limited energy
availability. Inspired by neural dynamics in the brain, this paper leverages bio-plausible neuronal
models and learning dynamics to develop an efficient and brain-inspired solution for VTG tasks.
Our model enables flexible inference-time tradeoff between energy consumption and accuracy,
making it well-suited for edge-based deployment in VTG tasks.

SpikingVTG Model: We introduce SpikingVTG, a spiking detection transformer designed for
efficient and accurate VTG. Built on the sparse, event-driven communication and accumulation-
based computation of Spiking Neural Networks (SNNs) [8]], SpikingVTG leverages the intrinsic
dynamics of SNNs to offer a lightweight yet competitive alternative to conventional transformer-
based approaches—eliminating the need for costly dense, real-valued matrix multiplications. The
architecture comprises three key components: (i) a spiking transformer core, (ii) a Saliency Feedback
Gating (SFG) mechanism, and (iii) a spiking decoder for output generation. The spiking transformer
captures temporal and cross-modal dependencies, while the decoder produces task-specific outputs.
The SFG mechanism addresses a critical challenge unique to VT'G: given an input video composed
of many clips, how can we identify those most relevant to the query? Tailored specifically for
multi-modal VTG tasks, the SFG module leverages the temporal dynamics of SNNs to attend more
towards the most salient segments while suppressing irrelevant clips.

Saliency Feedback Gating Mechanism: Operating over discrete time steps, SpikingVTG uses
the intermediate spiking activity of the transformer core to dynamically estimate the relevance of
each video segment. We compute a feedback-based saliency score for each segment based on the
average spiking rate (ASR) of the output of the transformer, conditioned on the query. These scores
serve as soft attention masks within a multiplicative gating mechanism, suppressing less informative
segments to reduce computational overhead while enhancing focus on the most relevant candidate
clips. From a neuroscience perspective, feedback connections are known to play a critical role
in object recognition in the visual cortex [9]]. Furthermore, our feedback mechanism maintains
layer-wise convergence of ASR to equilibrium, enabling us to adopt an efficient training mechanism
leveraging the equilibrium dynamics [10]]. This approach circumvents the need for computationally
intensive BPTT [L1]], and instead updates model parameters using a single backward pass, significantly
improving memory efficiency.

Cos-L2 Representation Matching (CLRM): While our base SpikingVTG model achieves perfor-
mance comparable to non-pretrained, non-spiking VTG models such as M-DETR and UniVTG [} 6],
achieving state-of-the-art results on VTG tasks typically requires transformer-based, non-spiking
models like UniVTG to undergo extensive pre-training. This pre-training significantly boosts their
generalization and task-specific capabilities. To enable our SpikingVTG to benefit from similar
pre-training advantages—without incurring the high computational cost of training on large-scale
datasets like Ego4D, Video-CC [12]— we propose a direction and scale aware CLRM loss for
efficient knowledge transfer. Optimizing CLRM loss aligns the hidden states and attention score
maps of a pre-trained non-spiking multi-modal transformer with the hidden state converged ASR
and mean attention scores of our SpikingVTG model. By minimizing this alignment loss on the
downstream task, we allow the student model to imbibe the generalization capability learnt by the
pre-trained teacher without having to perform the extensive pre-training from scratch.

Optimizations and Application to VTG Tasks: Traditional transformer-based VTG solutions
[6L [13] rely heavily on non-local normalization operations, such as softmax and layer normalization,
which pose significant challenges for efficient implementation on neuromorphic hardware [14]. To
address this limitation, we develop and evaluate a Normalization-Free (NF)-SpikingVTG model,
which eliminates all layer normalization operations and substitutes softmax spiking attention with a
ReLU and scaling-based spiking attention mechanism. Although alternative Softmax-free attention
approaches have been explored in the literature [15} [16]], they have primarily been applied uni-modal
vision tasks. We empirically demonstrate that while these optimizations enhance computational
efficiency, they result in minimal performance degradation.

To further reduce computational complexity and memory footprint [[17, 18], we introduce 1-bit
(NF)-SpikingVTG model, which rely primarily on integer accumulation operations and eliminate
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Figure 1: High-level overview of the proposed SpikingVTG model. The model employs a spiking
transformer core that utilizes Saliency Feedback Gating through temporal feedback connections. The
model also incorporates a spiking decoder module that takes the output of the transformer core to
predict parameters for the VTG task.

all non-local operations. This design makes it well-suited for deployment on resource-constrained
edge devices. To our knowledge, this work is the first to evaluate an operational spiking detection
transformer across VTG tasks, including moment retrieval and highlight detection, on datasets such
as QVHighlights, Charades-STA, TACoS and Youtube Highlights. To further highlight the benefits
of using SpikingVTG, we present an energy-accuracy tradeoff analysis. This demonstrates that our
model is well-suited for deployment on edge devices, where its performance can be dynamically
adjusted based on the available energy budget.

2 Related Works

VTG Advancements: Moment-DETR [1]], a transformer encoder-decoder model introduced
alongside the QVHighlights dataset, laid a strong foundation for subsequent VTG architectures. UMT
[5]] introduced an unified framework for solving both highlight detection and moment retrieval tasks.
Due to the limited availability of trainable video data, UniVTG [l6] proposed an innovative solution by
unifying various VTG tasks and labels under a single formulation. This enables the development of an
LLM-like pretraining framework, achieving state-of-the-art performance on VTG tasks. Although no
fully spiking-based model has been explored for VTG tasks, SpikeMba [[19]—primarily a non-spiking
model—integrates SNN components to generate proposal sets from video data. However, since
its core framework is derived from Mamba [20] and relies on floating-point matrix multiplications,
SpikeMba cannot be considered a baseline for spiking models, which predominantly use accumulation-
based operations. While recent VTG models have significantly improved task-specific performance,
adopting a spiking framework enables us to leverage energy-accuracy tradeoff—making suitable
solutions on edge devices with limited or dynamic energy supply.

Spiking neural networks (SNNs): SNNs have been implemented in neuromorphic systems like IBM
TrueNorth [21] and Intel Loihi 2 [22]], demonstrating approximately 75 x greater energy efficiency
compared to traditional networks running on low-power GPUs [23]]. SNNs, with their energy-efficient
computational framework, offer a promising solution to the resource-intensive demands of multimodal
VTG tasks. While SNNs for a long time were confined in simpler vision-based tasks [24] with simple
architectures, recent developments have scaled them to transformer-based models for tasks ranging
from vision to language modelling [25] 26} 27], however majority of them are uni-modal and rely on
non-local operations not implementable on a neuromorphic chip.

3 Video Temporal Grounding (VTG)

For a given video V' and language query @), we start by segmenting V' into a sequence of L,, fixed-
length clips, denoted as {v1,...,vr, }. Each clip v; has a length [ and is centered at timestamp
t;. The textual query @ consists of L, tokens, denoted as Q = {qu, ..., qz, }. Following previous
studies on VTG [6], we define three parameters for each clip v; = (f;, d;, s;), where f; = 1 if the



clip is in foreground, i.e. relevant else f; = 0. d; = [ds,, d,] € R? represent the temporal distance
that converts the clip timestamp ¢; to its interval boundaries. Here, d; is valid when f; = 1. The
term d;, denotes the distance between the start of the interval and ¢;, while d., denotes the distance
between the end of the interval and ¢;. s; € [0, 1] is a continuous score that quantifies the relevance
between the visual content of clip v; and the query Q. Our proposed SpikingVTG predicts these three
parameters for each video clip. In this paper, we focus on the following VTG tasks:

Moment Retrieval: We rank the predicted clip boundaries {b;} =", where b; = [t; — ds,, t; + d.,],
based on their associated probabilities given by { fi}fil. Since the predicted L, boundaries are
dense, we employ a 1-dimensional Non-Maximum Suppression (NMS) [28]] with a threshold of 0.7
to eliminate highly overlapping boundary boxes, resulting in a final prediction.

Highlight Detection For each clip, we rank all clips based on their combined scores { f; + §i}f:“1.
This combined value represents how well the chip ¢ match with the underlying query. We then return
the top clips (e.g., Top-1) as predictions.

4 SpikingVTG: Architecture Overview

The core computational unit of the proposed SpikingVTG model is a leaky integrate-and-fire (LIF)
neuron [29]]. Neurons communicate with each other using sparse, spike-based activations instead
of real-valued signals, thus we can replace floating-point matrix multiplications with accumulative
operations, resulting in improved computational efficiency.

4.1 Spiking Neural Networks

The discrete time dynamics of an LIF-based spiking neuron can be given as follows,
ui[t + 0] = yu;[t] + Wii—1y(s@i—1)[t]) + bi,
wi[t + 1] = ui[t + 0] — Vap, st + 1],
>y 7 silr]
Zj—:l ,th'r

where, at time ¢, u;[t] is the membrane potential of the it? neuronal layer; b; indicates a bias term
and vy is the leaky term. W(;_1) represents the layer-specific operation; ¢ + ¢ is an intermediate
time step to determine if the neuron fired; V;y, is the threshold of layer <. We use a ternary spiking
model [30] in our work for spike (s[t + 1]) generation. This improves performance while avoiding
the introduction of additional floating-point multiplicative and accumulative (FP-MAC) operations.
The average spiking rate (ASR a;[t]) of neurons within each layer ¢ at time ¢ can be defined as a
weighted-average function.

()
al[t] =

4.2 Spiking Transformer Core

The high-level overview of each encoder block of our spiking transformer architecture is demonstrated
in Fig. [1l The model consists of N encoder layers, each consists of a spiking multi-headed attention
block, followed by an intermediate layer and an output layer. Communication within and between
encoder layers occurs via spikes. Furthermore, all matrix multiplications involved in linear layers and
attention layer comprises of more efficient fp-accumulative (FP-ACC) operations instead of FP-MAC
operations in conventional neural architectures. Detailed descriptions of each layer are provided
in the Appendix [A] Following architectural optimizations (Section[4.6)), we replace softmax-based
attention with a ReLU and scaling-based spiking attention mechanism, remove all layer normalization
operations, and explore extreme quantization of linear weights.

4.3 Saliency Feedback Gating (SFG)

SpikingVTG operates over a specific number of convergence time steps (7.), with the convergence
dynamics detailed in Section This temporal processing allows us to leverage intermediate
temporal outputs to dynamically update the input to the model at every time step for improved
performance. This approach conforms to the feedback connections observed in the human visual



cortex [9], providing a bio-plausible explanation for its efficacy. The ASR of the final encoder layer
of the Spiking Transformer core is used as a temporal feedback to compute a dynamic saliency score
with the input query enabling the design of a gating mechanism (Fig. [2p), allowing selective focusing
on relevant segments of the video while minimizing computation on irrelevant segments. The saliency
feedback gating mechanism is shown below,

| ‘ a{q [t] - M
FYi[t] = N [t M) = e
Vi[t] = cos(an, [t], M) llake, [t]]|2]/M]]2”

Vit + 1] = V[t] = F[t],
where, using attentive pooling operation, sentence representation M = QT So ftmaz(QW,), M €
RP | input textual query features Q € RE«*P input video features V € RLv*P and W, € RP*!
is a learnable embedding and D is the hidden dimension. FYi[¢t] is the dynamic saliency score,
at time ¢, for the i-th segment of the video. We compute F; by applying min-max normalization
to F¥, allowing us to obtain per-clip scores within the range [0, 1]. The ASR of the output of the
spiking transformer core is given as ay[t] € R(Fvtla)xD, ‘13‘\/,1, [t] is ASR of output of the spiking
transformer core, corresponding to video segment ¢, at time ¢. The output of SFG module is the
concatenation of saliency feedback gated video features and query features and serves as the input to
the spiking transformer core at time ¢ + 1.

@

To ensure compatibility between the two modalities during cosine similarity computation, both repre-
sentations are projected into a shared latent space of dimensionality D. The query representation is
aggregated into a global sentence embedding via attention-based pooling with a learnable embedding
vector. This adaptive mapping aligns the textual representation with the spatiotemporal semantics of
the spiking video features, thereby facilitating effective cross-modal compatibility.

SFG Computational Overhead: The SFG layer comprises O(L,, - D) floating-point multiplication
operations; however, the computational overhead of this layer is significantly less than that of the
transformer core which has a complexity of O(L? - D + L - D?), where L = L, + L,,.

4.3.1 Visualizing effect of SFG:

The dynamic saliency score (F, SU ) ‘SALIENCVFEEDBACKGATING (SFG)‘ i "ig"f'Ff:}iI'::"byc"“

achieves an equilibrium value F fol- / == \ , I
lowing the convergence of ASR of the atn. 3 cosine VE 08
neuronal layers of the SpikingVTG | ™" = °™™ 15

model (Fig. [3). As shown in Fig. Eement ey g [©°
[2b, we empirically analyze the scores Video ¥ v 5 s
per clip at equilibrium to gain in-  Features | Gancat/ | =

sights into the functioning of the SFG 1 'g 02
based multiplicative gating mecha- || _tex }7 ,

nism. Neighboring salient clips of / /1 G 5 10 15 20 25/30 35 40 45 50 55 60 °°

the target clip exhibit higher F scores (@) Video Ghp Index

at equilibrium, while irrelevant clips
show lower scores, highlighting the

. > Figure 2: (a) Overview of the internal operations of the
effectiveness of the SFG mechanism.

saliency-feedback gating mechanism. The ASR of the output
The SFG mechanism not only results ~Of the spiking transformer core at each time step is leveraged
in better performance of our Spik- as the feedback signal (Fig. [[). (b) Heatmap showing the
ingVTG architecture (Table [B) but scores per clip (Fy) at equilibrium, with the target frame for
also reduces overall neural activity highlight detection corresponding to clip index 28.

by sparsifying input spikes. Empirical

results (Fig. [3b) confirm that the model with the gating mechanism exhibits a lower neural activity,
particularly in the input and spiking attention layers, compared to the model without SFG.

4.4 Spiking Decoder Module

The spiking decoder comprises of stacked 1-D convolutions followed by integrate-fire (IF) neuron
layers (y = 1 in Eqn. [T), for spike generation. The spiking decoder used for predicting foreground
indicator ( f;) per clip, applies nq 1-D convolution operations with kernel size k1, each followed by an



IF layer. The final layer consists of a single output channel, and its temporal mean is passed through
a sigmoid activation to produce the prediction. The spiking decoder used for d; applies ny 1-D
convolution operations with kernel size k3, each followed by an IF layer, and the final convolution
layer has two output channels to predict d; = [ds,, d.,], after which we compute b;.

4.5 SpikingVTG: Convergence Dynamics

The membrane potential (u;) of the input LIF layer to the spiking transformer core, following the
SFG mechanism can be formulated as below,

urft + 1] = yur [t] + SFG(V, Q, an, [t]) + b1 — Vip, s1[t + 1] )
where, a™Vv [t] is the ASR of the final layer corresponding to the video features at time ¢, V is the input
video features, @ is the query features and SFG is defined in Eqn. [2] The layer-wise convergence
dynamics of the SpikingVTG with SFG is demonstrated in Fig. [3]

Following Eqn. the layer-wise ASR is, a;[t + 1] = V} (f(a(z plt+1]) +b; — “”’[HH ) where,

f is operation of layer . Followmg empirical evidence (Flg and theoretical formulatlon [LO, 26]
as time ¢ — oo, the layer-wise ASRs converge to equilibrium, enabling the derivation of layer-wise
steady-state equations given as,

aj = o(—(f(aj_1) +bs)) “

The equation describing the steady-state ASR dynamics of the input layer is given as,

(SFG(V,Q,a}y,) + b1)) (5)

aj =

1 — ( ‘/thl
where, clipping function o (z) clamps the values within [—1, 1]. This is because we allow ternary
spikes thus ASR must be with [—1, 1]. Furthermore, the dynamic saliency score also achieves an
equilibrium value F since the ASR at the final layer achieves equilirbrium state aj, . Convergence
dynamics of other layers are given in Appendix [A] To analyze the overall layer-w1se neural activity,
which includes both positive and negative spiking event, we present the layer-wise dynamics of the

t
absolute spiking activity events in Fig. , ie. act;[t] = M
Training: As described in the Layer-wise G Dynami Layer-wise Spiking Activity (act)
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The total loss over Ny clips in

the training set is given by L = Figure 3: Results from a random QVHighlights input passed
]\}T Z (L, + L, + L)), through SpikingYTG models. (a) Layer-wise mean ASR conver-
where Lf is the binary cross- gence over opera.tlng time steps for a sample splkmg transformer
entropy loss for the indicator encoder layer (Fig. [T); note ASR can be negative due to ternary
variable f;, Ly combines smooth spikes. (b) Layer-wise mean spiking activity (act;[t], averaged
L1 loss with ToU loss 3] for Over neurons) versus time steps. Model with SFG exhibit reduced
activity in both input and spiking attention layers, highlighting

the predicted boundaries, and L. , - PR« e
SFG’s role in minimizing neural activity.

is an optional loss incorporating
intra- and inter-video contrastive
learning [32]]. Detailed formulation of the loss functions is in Appendix [B]

During training, leveraging implicit differentiation [33] at equilibrium, only ASR values at equilibrium

BLa(Z*) =— aggz**) (T} ‘a*)af%i(;*) where, 6 is the model parameters, gg(a) = fo(a) —

are used,



f is the steady-state equation of ASR, J —1 is the inverse Jacobian of go when a = a*, i.e., at
equilibrium. Thus, unlike BPTT, we do not need to store the intermediate computational graph and
the model parameters can be updated using a single backpropagation step.

4.5.1 Cos-L2 Representation Matching (CLRM)

We train the base SpikingVTG model on VTG tasks such as QVHighlights [1]], achieving comparable
performance to a similarly scaled non-spiking transformer-based model, UniVTG [6]], as demonstrated
in Table[I] The later to improve its performance further uses pre-training on large datasets such
as Video-CC and Ego4D. Since, extensive pretraining of the SpikingVTG is considerably resource
intensive we propose an effective knowledge transfer strategy. This mechanism enables SpikingVTG
to inherit the generalization capabilities learned by the pre-trained detection transformer models like
UniVTG model. Importantly, since the primary benefit of spiking architectures manifests during
inference on resource-constrained edge devices, this knowledge transfer is a one-time process, which
significantly improves performance.

Hidden State Matching Loss: To Table 1: Ablation study of the effect of CLRM on Spik-
align the hidden state (output of in- gV TG evaluated on the evaluation set of QVHighlights.

dividual encoder layer) of the non- [ Method QVHighlights-MR QVHighlights-HD
spiking multi-modal transformer Tt 5@907-3 ﬁ)oég m/:g(‘f;"g ;‘g”;l; Hélng?ll
. ni . . . 398. .
model with the conv;rged ASR 1§ ikingVTG wio CLRM | 60.12 3968 36.23 3884  62.49
(@.3) of the corresponding layer of | UnivTG with PT [6] 6735  52.65 45.44 4134 6877
the SpikingVTG model, we propose | _SpikingVTG w/CLRM | 67.58  50.82 44.07 4081  68.64

a hybrid loss function combining a

squared cosine similarity based directional loss and a L2-norm based loss for minimizing the scale
difference. For each layer, the student representation is projected into the feature space of the teacher
via a learnable linear transformation W, € R% %%t The total loss is:

N B L

2 ] BN
Loy = ZZ { s+ (1= cos (652,)) "+ Ay« sV th,k)M ©)
i=1j5=1k

where N is total number of encoder layers, B is batch size, L is length of sequence, Acos, A, are
)

k k
Hs“ T 160,

) = , where,

hyperparameters and the cosine similarity is computed as: cos(0, ik

sgj k) a?i(j ’k)Wd € R9 is the projected student representation and tz(.] k) — Tr(f ) e R% is the
teacher representation at layer ¢, sequence position k, and batch index j. ay, € RB xLxds and
T, € REXEXdt gre the pre-activation outputs from student and teacher, respectively.

Attention Score Matching Loss: We align the attention score map (A € RB*L*L) of encoder
layer i of the non-spiking model with the mean attention score (A" = 7 Te AS[t] e RBXIxL)
of our corresponding converged SpikingVTG model. The total attention map alignment loss (L) is
then computed following Eqn. [6] This loss term encourages the student to learn cross-modal attention
behavior consistent with the pre-trained teacher.

The cumulative representation matching loss is given as Lcoirm = Lrep + Law. Optimizing this
loss enables our SpikingVTG model to learn the generalability enabling better performance as
demonstrated in Table[Il

4.6 Normalization-Free and Quantized SpikingVTG

We perform two key optimizations: removal of non-local operations and 1-bit weight quantization.
Although SpikingVTG replaces floating-point MACs with ternary spikes, it retains softmax and
layer normalization, which are inefficient for resource-constrained hardware. We eliminate these by
introducing a Normalization-Free (NF) SpikingVTG.

In NF-SpikingVTG, softmax in the spiking attention is replaced with a ReLU followed by scal-
ing with 1/L, reducing compute overhead. Given d-dimensional queries, keys, and values
{qilt], sk, [t], s, [t} £, at time ¢, the attention weights «;; are computed as follows:

Oéij[t] = ¢([q1[t] Skl[] ,ql[] Sk; [t]])j )



where, ¢ is a custom kernel consisting of ReLU operation followed by scaling with L~!. We further
remove all layer normalization layers to eliminate additional non-local operations.

To reduce memory and computational cost, we introduce 1-bit NF-SpikingVTG by binariz-
ing weights. Each weight matrix W € R" ™ is zero-centered and quantized as W, =

sgn (W — > Wij) o B = a2, [Wijl, where W, € {~1,41}. The output of each

quantized linear layer is scaled by 3, yielding a binary-weight, ternary-activation model that supports
efficient integer-ACC operations. 1-bit NF-SpikingVTG achieves competitive performance while
drastically reducing memory and compute, making it well-suited for edge deployment.

Table 2: Performance comparison of our SpikingVTG model against non-spiking VTG solutions on
test sets of QVHighlights-MR and Charades-STA datasets for moment retrieval task.

Method SNN QVHighlights-MR Charades-STA

@0.5 @0.7 mAP@0.5 mAP@0.75 | @03 @05 @0.7 mloU
M-DETR [1] No 52.89  33.02 54.82 29.40 65.83  52.07  30.59 4554
UMT [3] No 56.23  41.18 53.83 37.01 - 4935  26.16 -
UniVTG [6] No 58.86  40.86 57.60 35.59 70.81  58.01 3565  50.10
UniVTG+PT [6] No 6543 50.06 64.06 45.02 72.63  60.19 3855 5217
UVCOM [34] No 63.55  47.47 63.37 42.67 - 56.69  34.76 -
SpikeMba [[19] No 64.13  49.42 - 43.67 71.24  59.65  36.12  51.74
BAM-DETR [35] | No 6271  48.64 64.57 46.33 7293 5995 3938 5233
TR-DETR [36] No 64.66  48.96 63.98 43.73 - 57.61 3352 -
CG-DETR [37] No 6543  48.38 64.51 4271 7040  58.40 3630  50.10
LLMEPET [38] No 66.73  49.94 65.76 43.91 70.91 - 3649  50.25
SpikingVTG Yes 65.29  48.18 64.31 42.25 7120 5873  37.16  50.62

5 Experimentation

Table 3: Performance comparison on the test set

We evaluate SpikingVTG variants on moment )
of TACoS for moment retrieval task.

retrieval and highlight detection tasks using

X . Method SNN TACoS
the QVHighlights, Charades-STA, TACoS and @03 @05 @07 mioU
Youtube Highlight datasets. Since, to the best 2@%@2{&'}] 1}:110 431(7)'3? g‘;g; };g; ;ggg
. - o . B . .
of our knowledge, our proposed model is the | {7 y1G g No | 5144 3497 1735 3360

first spiking detection transformer evaluated on | QD-DETR [39] | No | 5239 3677 21.07 3576

VTG tasks, we compare its performance against | €G-DETR[37] | No | 5223 - = 2223 3648

Kine detection transf Addi UniVTG+PT[6] | No | 56.11 4344 2427 3863
sota non-spiking detection transtormers. 1= | SpikeMba 9] | No | 51.98 3934 2283 3581
tional training, dataset, evaluation metric, hyper- | SpikingVTG Yes | 54.71 3927 21.84 36.02

parameter and experimental details are provided
in Appendix [C] & [E] The experiments were run on a NVIDIA RTX A6000 GPU with 48GB memory.

5.1 Results

SpikingVTG establishes a baseline for spiking models on VTG tasks. The results are shown in Table
21 3] &[] Our model achieves competitive results compared to the current SOTA non-spiking models.

Training & Inference Metrics: In the CLRM-based knowledge transfer stage, the memory
requirement is 20GB when using a batch size of 32 on the QVHighlights dataset. In contrast,
replacing our training method with BPTT would require over 100GB of memory for 7, > 10, making
BPTT computationally infeasible. Training on true labels with similar batch size requires 8GB of

Table 4: Performance comparison of our SpikingVTG model against other non-spiking VTG solutions
on the test set of the QVHighlights and Youtube Highlights for highlight detection task.

Method SNN | QVHighlights-HD Youtube Highlights

mAP HIT@I Dog Gym. Skating  Skiing  Parking  Surfing  Avg.
UMT 5] No 38.18 59.99 65.9 75.2 71.8 72.3 81.6 82.7 74.9
UniVTG [6] No 38.20 60.96 71.8 76.5 733 732 73.9 82.2 75.2
UniVTG+PT [6] | No 40.54 66.28 74.3 79.0 84.9 75.1 74.4 83.9 78.6
QD-DETR [39] No 38.90 62.40 722 714 727 72.8 71.0 80.6 74.4
SpikeMba [3] No - - 74.4 754 74.3 75.5 - - 75.5
CG-DETR [37] No 40.30 66.20 76.3 76.1 76.0 75.1 70.0 81.9 75.9
UVCOM [34] No 39.98 65.58 73.8 77.1 76.0 75.1 75.7 82.7 76.4
LLMEPET [38] No 38.18 59.99 73.6 732 753 74.0 72.5 82.5 75.3
SpikingVTG Yes 40.46 65.82 73.9 78.1 80.1 74.2 72.2 81.7 76.7




memory. The clock time for 50 epochs of training on QVHighlights is = 5 HOURS. Inference latency
on entire test set of QVHighlights ranges from 25 sec (7, = 2) to &2 4 mins (7. = 20).

Table 5: Ablation Study of SpikingVTG variants on the evaluation set of QVHighlights.

Method QVHighlights-MR QVHighlights-HD | Operations | Local Activity Energy
@0.5 @0.7 mAP HIT@1
Pre-trained UniVTG (sota) 67.35 52.65 41.34 68.77 FP-MAC X 1.0 23.92m]
SpikingVTG without SFG 64.94 4721 40.49 67.37 FP-ACC X 0.41 15.2mJ
SpikingVTG with SFG 67.58 50.82 40.81 68.64 FP-ACC X 0.34 13.8mJ
(NF)-SpikingVTG w/ SFG 66.59 48.31 40.61 67.73 FP-ACC v 0.25 10.1mJ
1-bit (NF)-SpikingVTG w/ SFG 65.31 47.48 40.35 67.30 INT-ACC v 0.19 1.3mJ
1-bit (NF)-SpikingVTG w/ ReLU | 65.91 47.04 40.16 67.07 INT-ACC v 0.19 1.3mJ

Ablation Study: As demonstrated in Table [5] the inclusion of the SFG mechanism enhances
performance compared to the model without SFG. It results in reduced neuronal activity and overall
less energy consumption. Thus, we enable SFG for the SpikingVTG variants we discuss next. Without
non-local operations, the (NF)-SpikingVTG model achieves competitive performance even compared
to other SOTA non-spiking VTG models. Although the 1-bit (NF)-SpikingVTG variant shows a slight
reduction in performance, it is highly memory efficient and involves simpler INT-ACC computations,
resulting in order of magnitude less energy consumption. Along with energy consumption (7, = 10)
Table 5] also highlights the sparsity in the SpikingVTG variants particularly in the 1-bit version
underscoring considerably reduced mean neural activity. For a more hardware friendly model, we
train a variant of 1-bit (NF)-SpikingVTG by replacing all GELU layers with ReLU layer [40] and
observe minimal degradation in performance. Extensive hyper-parameter study is done in Appendix

El
Analysis of Energy Efficiency: We analyze

the test-time energy efficiency of SpikingVTG 20071 /-"/' | 67
variants compared to a non-spiking transformer- _ 1754 \ _/' o
based model with same depth and hidden di- < _ | =
mensions. The analysis considers arithmetic & b
operation costs using a 45nm CMOS technology G 125 P %I
with 32-bit precision, where FP-MAC, FP-ACC, & 1004 \. £
and INT-ACC ops. consume 4.6pJ, 0.9pJ, and ‘2 AN [ 602
0.1 pJ respectively [41]. The energy cost fora £ 757 \ 5
non-spiking transformer encoder layer basedon 5 5| . ~e- Energy | z
total FLOPs used in attention and linear layers, \o\_._ Hret o
is B4 = [(3LD?)+(LD?*+L?D)+(2LD?)] x 257 = —

4.6 pJ. Considering L = 200, D = 1024, we 1 2 4 6 8 10
compute /4 = 5.98 mJ. Since, UniVTG has 4 Time Steps

encoder layers, so total energy is 23.92m.J.
Figure 4: Graph showing tradeoff of energy effi-

In contrast, the 1-bit (NF)-SpikingVTG oper- ciency (E +) and HIT@1 on QVHighlights-HD for
ates over T, time steps. Its per time-step Cost yarying time steps.

is: Es, = [(3-IFRy,- LD?)+ (IFRy - LD? +

IFR, - L?D) + (IF Ry - LD?) + (IF Ry, -

LD?)] x 0.1pJ, where IFR; denotes the mean activity of component . For our 1-bit (NF)-
SpikingVTG model, which uses INT-ACC operations, we empirically measure: [F' R;, = 0.40,
IFRy =0.18, IFR, = 0.19, I F Rytn = 0.03, and I F Rjpterm. = 0.09, resulting in Eg, = 0.03 mJ.
With T, = 10, the total spiking energy is Eg = T, - E's, = 0.3 m], yielding an energy efficiency of
E¢ = E4/Es = 19.93. Model-wise energy comparison is shown in Table

Energy-Accuracy Tradeoff: Unlike conventional non-spiking VTG solutions, SpikingVTG enables
a controllable trade-off between performance and energy consumption, as total energy usage scales
with the number of operating time steps. In Fig. @l we demonstrate this performance-energy tradeoff
achieved using 1-bit (NF)-SpikingVTG model by running it for different number of time steps.
Notably, when running the model for just 2 time steps, SpikingVTG attains a HIT@]1 score of 66.4
(compared to the SOTA score of 68.77), while achieving an energy efficiency factor E'y ~ 100.



6 Conclusions

In this paper we propose SpikingVTG, a bio-inspired computationally efficient solution for VTG
tasks in resource constraint environment. We propose a saliency feedback gating mechanism, which
leverages the temporal dynamics of the model to improve performance while lowering computational
costs by reducing overall neuronal activity across the model. We empirically demonstrate the
convergence dynamics of the SpikingVTG model and leverage the formulated steady-state equations
to efficiently train our model using implicit differentiation at equilibrium. To improve generalization,
we propose a Cos-L2 Representation Matching loss, enabling knowledge transfer from non-spiking
VTG models and yielding substantial performance gains. We further optimize the model by removing
non-local operations and applying extreme quantization, leading to the 1-bit NF-SpikingVTG. Our
framework significantly improves computational efficiency and model compactness, enabling tunable
energy-accuracy tradeoffs on low-resource devices. While this work presents the first spiking solution
for VTG with competitive performance, there remains room for improvement in fully closing the
performance gap. Future research can build upon our framework to further advance spiking models
in this domain.
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A Extended Architecture Overview

The Spiking Transformer layer primarily consists of a spiking multi-head attention (MHA) block,
followed by a spiking feedforward network comprising an intermediate layer and an output layer
with both inter- and intra-layer communication happening using spikes. Details of the operations in
each layer are provided below.

Spiking Attention Block: In Spiking MHA, to enable computationally efficient accumulate based
operations the input to the attention layer are spikes instead of real-valued data. The spiking attention
mechanism [26] is given as follows,

Attn(X[t], K[t], Vslt]) = o(d* Q(XS[H]) - (BL[E)T) - V() ®)

Here, Q(X(t)) represents the Query, obtained by passing the input spikes X(¢) at time ¢ through a
linear layer (W¢). The spikes for the Key layer (K,(t)) are generated by passing X,(t) through a
linear mapping (W), followed by an LIF neuron layer. Similarly, we generate spikes for Value. d is a
scaling constant. Since the input, key, and value matrices consist of spike trains rather than real-valued
data, the primary computations in all matrix multiplications are floating-point accumulation operations
rather than floating point multiplicative and accumulative operations. In the (NF)-SpikingVTG variant,
as discussed in the paper, we use ¢ as the ReLU and scaling operation, significantly reducing the
computational overhead compared to employing ¢ as the non-local Softmax operation. The output
of the attention layer is fed to an LIF neuron, which outputs spikes. The convergence dynamics of the
layer at equilibrium is given as, a4, = o V}h (Attn(ak, ay, al) + batn ), Where a,, represents the
ASR of the layer used to generate the Query, a,, denotes the ASR of the Key, and a;; corresponds to
the ASR of the Value. b,,, is a bias term.

Intermediate Layer: The intermediate layer takes as input the spikes generated from the preceding

layer and maps it to an intermediate dimension with a linear layer. The output is then passed

through an LIF layer. The convergence dynamics of the layer at equilibrium is given as, a;,,;c;m. =
1

O’(W (act(Winterm.ay) +binterm.)), Where Wipserr,. is the linear weight and gelu() is the activation
used for the layer. a; is the ASR at equilibrium for the previous layer. b;,term,. 1S a bias term. In this
paper, we have used explored different choices for act, such as GELU and ReLU. During inference,

all matrix multiplications involve accumulative operations due to the nature of the input.

Output Layer: The output layer takes as input the spikes generated from the preceding layers as
shown in Fig. [I] The output is then passed through an LIF layer. The convergence dynamics of
the layer at equilibrium is given as, aj,;,,; = o(ﬁ(norm(Woutputaz‘merm' + ay) + boutput)),
where Wiyiput 18 the linear weight and layer norm is used for normalization. a,,.,.,, is the ASR
at equilibrium for the previous intermediate layer. boyipyt is @ bias term. During inference, all
matrix multiplications involve accumulative operations due to the nature of the input. In the (NF)-

SpikingVTG model we further remove the layer normalization to improve on-chip deployability.

B Loss Function Details

As described in the main paper, the total loss over N clips in the training set is defined as L =

% Zf\; (L¢, + La, + Lc,), where Ly represents the binary cross-entropy loss for the indicator
variable f;, Ly combines the smooth L1 loss with the generalized IoU loss [31] for the predicted
boundaries, and L. is an optional loss term incorporating intra- and inter-video contrastive learning
[32]]. We follow similar loss function construction as previous works on VTG [1}6]. The loss for
fore-ground parameter is given as follows,

Ly ==Xs [filog fi+ (1= fi)log(1 - )] ©)

where, f; is the true label and f; is the model prediction. The loss for predicted boundaries is given
as follows,

La = 17,21 (Au Dsmoniit (4, i) + Niow Liou(bi; ) (10)
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where, d;, b; are the true label and d;, b; is the model prediction. L. = Ainer Linter + Aintra Lintra 1 used
for inter-video and intra video contranstive learning [6]. For each video V', we randomly select a clip
v; with fore-ground indicator = 1 and positive saliency score. Clips from the same video, denoted as
v;, with saliency scores s; < s; are treated as negative samples. i.e., A = {j | s; < s;,1 < j < L, },
and perform intra-video contrastive learning using the loss

exp(§;/7)
exp(3:/7) + 2 e 4 exp(55/7)

. Furthermore, we treat textual queries from other samples within the batch (k € S) as negative
samples, enabling inter-video contrastive learning for cross-sample supervision:

Limra = - IOg (11)

exp(8; /1)

Lin er = _1 ~—~ <L N
t % T e exp(3F/7)

(12)

, where S is the training batch, 3% = cos(v;, M} ) and M} is the sentence representation (Eqn. [2) and
cos is cosine similarity.

C Dataset Details

QVHighlights: The QVHighlights dataset [1]] stands out as the sole dataset providing annotations
for both moment retrieval and highlight detection, making it an excellent resource for benchmarking
on both the VTG tasks. Comprising 10,148 videos with an average duration of 150 seconds. It
features a total of 10,310 queries linked to 18,367 moments, resulting in an average of 1.8 distinct
moments per query within each video. The dataset spans a variety of scenarios, including daily vlogs,
travel vlogs, and news events.

Charades-STA: The Charades-STA [42] dataset comprises 16,128 indoor videos, each with an
average duration of 30.6 seconds. It includes 12,408 query-interval pairs designated for training and
3,720 query-interval pairs reserved for testing.

TACoS: TACoS [43] consists of 127 videos, each averaging 4.78 minutes in length. The dataset is
split into 75 videos for training, 27 for validation, and 25 for testing.

Youtube Highlights: YouTube Highlights [44] consists of 433 videos across 6 domains, using the
domain names as text queries.

D Evaluation Metrics:

For QVHighlights, following previous work [[1]] we use Recall@1 with IoU thresholds of 0.3, 0.5 and
0.7 and avg. mean average precision (mAP), mAP@0.5 and mAP@0.75 as the evaluation metric
for moment retrieval tasks. For highlight detection, we use mAP and HIT@1 [1]], where a clip is
considered a true positive if it receives a score of “Very Good” [5]. For Charades-STA and TACoS,
we employ Recall@1 with IoU thresholds of 0.3, 0.5, and 0.7, along with the mean IoU (mloU). For
Youtube Highlights we use mAP.

E Additional Experimental Details

In this subsection, we provide a concise overview of the implementation details and provide additional
experimental details. The GPU specifications for the experiments are detailed in the main paper,
while the CPU utilized is an AMD Ryzen Threadripper 3960X 24-Core Processor. We have used
Python and the PyTorch framework to write the code. The video and textual feature are developed
following previous work [1,16]. We have used the Adam optimizer to train our model. We list the
hyper-parameters used in the work in Table[6] We used grid search to find optimal values.

E.1 Training Stages

Training a multi-modal spiking architecture like SpikingVTG is resource-intensive. To enhance the
efficiency of this process and develop computationally efficient variants of our model, we leverage a
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Hyper-parameters Range Optimal
N: Encoder Layers (2-6) 4
D: Hidden Dimension (768-2048) 1024
ni: f-decoder depth (1-5) 3
ki1: f-decoder kernel size (3-9) 3
ng: d-decoder depth (1-5) 3
ka: d-decoder kernel size (3-9) 7
Tcrrm: Timesteps for CLRM (5-100) 50
T's: Timesteps for Finetuning (5-50) 16
Vin: Threshold Potential (0.5-2.0) 1.0
~: Leaky-factor (0.9-1.0) 0.99
As :Ly co-efficient (1-20) 10
A1 :Lsmooth1 co-efficient (1-20) 10
Nintra Lintra co-efficient (0-1.0) 0.05
Ninter :Linter-co-efficient (0-1.0) 0.01
Xiow :Liow co-efficient (1-20) 10
Acos: Sq. cosine weight (CLRM) | (0 - 1.0) 0.2
Ayt Lo weight (CLRM) (0-1.0) 0.8
Ir: Learning Rate (Ie™® —1e79) 8e 0
wq: weight decay (le™® —1e™%) le™
Batch Size (8-64) 32
Epochs: CLRM 10-100 50
Epochs: Finetuning 20-200 100

Table 6: Hyper-parameters of our SpikingVTG model. Optimal values for QVHighlights dataset is
also shown.

multi-staged training framework. We utilize a transformer-based non-spiking VTG model (such as
UniVTG) to perform CLRM loss optimization. After this initial stage, we fine-tune SpikingVTG
using the true labels. Once the base SpikingVTG model is established, we modify its architecture to
remove non-local operations and perform extreme quantization, followed by additional fine-tuning
to create computationally efficient variants with minimal performance degradation. The resulting
computationally efficient, lightweight models are well-suited for deployment on neuromorphic chips,
enabling efficient inference.

16



NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and Introduction are upheld in the method-
ological discussions and empirical results provided in Sectiond]and 3]

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitation of the proposed model in the Conclusions Section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our work is primarily empirical; we demonstrate the model’s convergence
dynamics and validate the performance gains of our proposed techniques through compre-
hensive experiments on relevant benchmarks.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section [4] and [5] extensively goes over the primary contributions. We also
provide additional experimental details (hyper-parameters, dataset details, etc.) in the
Appendix.
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Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We are uploading the code as part of the submission. If accepted we will make
it open access on github.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have added detailed discussion on datasets, hyper-parameters, experimental
setup in Section [5and Appendix[C|

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have added the experimental results following similar literature in Section

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have thoroughly discussed computational resource requirement in Section
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10.

11.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer:[Yes]
Justification: The research conforms to the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work aims to develop sustainable Al solutions that reduce the carbon
footprint of machine learning models, thereby contributing to environmentally responsible
and socially impactful Al

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[Yes]
Justification: Proper citations to all resources are provided.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Video Temporal Grounding (VTG)
	SpikingVTG: Architecture Overview
	Spiking Neural Networks
	Spiking Transformer Core
	Saliency Feedback Gating (SFG)
	Visualizing effect of SFG:

	Spiking Decoder Module
	SpikingVTG: Convergence Dynamics
	Cos-L2 Representation Matching (CLRM)

	Normalization-Free and Quantized SpikingVTG

	Experimentation
	Results 

	Conclusions
	Acknowledgments
	Extended Architecture Overview
	Loss Function Details
	Dataset Details
	Evaluation Metrics:
	Additional Experimental Details
	Training Stages


